Electronic Supplementary Information for

A Versatile Access to Vicinal Diamine Motifs by Highly *anti*-Selective Asymmetric Vinylogous Mannich Reactions: An Efficient Total Synthesis of (+)-Absouline Jian-Liang Ye, * Hang Chen,[§] Yu-Feng Zhang,[§] and Pei-Qiang Huang*

Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, Collaborative Innovation Centre of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China

§ These authors contribute equally to this work.

E-mail: pqhuang@xmu.edu.cn yejl@xmu.edu.cn

Contents (38 pages):

- Optimization of the Vinylogous Mannich Reaction (pp. 2).
- Diagnostic resonances of the two isomers of (8) (pp. 3).
- X-Ray structures of compounds $(R_s, 5R, 6S)$ -**8a** and $(R_s, 5R, 6S)$ -**8m** (pp.

4,5)

- Experimental procedures and characterization of compounds 6a ~ 60 (pp. 6-11).
- References (pp. 11).
- ¹ H and ¹³ C NMR spectra of compounds 6j~6k, 6o, 8a~8o, 15~19 and
 (+)-absouline (*E*-1) (pp. 12-38)

	O H t-Bu ^r (R) N OTIPS		$t-Bu_{(R)}^{O} \stackrel{H}{\overset{H}{\underset{(R)}{\underset{(R)}{\overset{H}{\underset{(R)}{\overset{H}{\underset{(R)}{\overset{H}{\underset{(R)}{\underset{(R)}{\overset{H}{\underset{(R)}{\underset{(R)}{\overset{H}{\underset{(R)}{\underset{(R)}{\overset{H}{\underset{(R)}{(R)}{\underset{(R)}{(R)}{\underset{(R)}{(R)}{\underset{(R)}{(R)}{\underset{(R)}{(R)}{\underset{(R)}{(R)}{(R)}{(R)}{(R)}{(R)}{(R)}{(R)}$	√_N +		
Вос 7	6a		TIPSO	Вос 8а	Вос 20	
Entry	Lewis acid (equiv)	7 (equiv)	Resulting (yield) ^b			
			8a		20	
1	$BF_3 \cdot Et_2O(1.5)$	1.5	none		85%	
2	$TiCl_4(1.0)$	1.5	none		70%	
3	Sm(OTf) ₃ (0.25)	1.5	trace		64%	
4	Bi(OTf) ₃ (0.25)	1.5	trace		80%	
5	$Cu(OTf)_2(1.0)$	1.5	27%		58%	
6	TMSOTf(1.0)	1.5	96%		10%	
7	TMSOTf(1.0)	1.0	80%		5%	
8	TMSOTf(1.0)	1.3	91%		10%	
9 c	TMSOTf (1.0)	1.4	96%		10%	
10	TMSOTf(1.0)	2.0	96%		60%	

Table S1. Optimization of the Vinylogous Mannich Reaction.

^{*a*} Conditions: **6a** (0.5 mmol), **7** (0.7 mmol), Lewis acid, CH₂Cl₂ (0.1 M), -78 °C, 7 h.

^b Isolated yield.

^c Optimized conditions.

Table S2. Diagnostic resonances of the two diastereomers of 8.

$t-Bu \xrightarrow{O}_{I} H \xrightarrow{H_4}_{I} H^3 \qquad t-Bu \xrightarrow{O}_{I} H \xrightarrow{O}_{I} H \xrightarrow{H_4}_{I} H^3 \qquad t-Bu \xrightarrow{O}_{I} H \xrightarrow{O}$										
Entry	compound	R	Major isomer (ppm)		Minor isomer					
					(ppm)					
			H3 ^c	H4	H3 ^c	H4				
1	8a <i>a</i> , <i>d</i>	TIPSO(CH ₂) ₂	6.21	7.18	ſ	_f				
2	8b ^{<i>a</i>}	Et	6.22	7.10	ſ	ſ				
3	8c ^{<i>a</i>}	<i>n</i> -Pr	6.21	7.10	ſ	_f				
4	8d ^{<i>a</i>}	<i>n</i> -C ₅ H ₁₁	6.22	7.09	ſ	ſ				
5	8e ^{<i>a</i>}	Ph(CH ₂) ₂	6.21	7.08	ſ	ſ				
6	8f ^a	3-Cl- <i>n</i> -Pr	6.24	7.15	ſ	_f				
7	8g ^{<i>a</i>}	<i>i</i> -Pr	6.20	7.09	ſ	_f				
8	8h ^a	<i>c</i> -Hex	6.19	7.08	ſ	ſ				
9	8i ^b	Ph	6.20	6.85	5.94 ^g	7.24 ^g				
10	8j ^b	<i>p-i</i> -PrC ₆ H ₄	6.20	6.88	5.95 ^g	7.26 ^g				
11	8 k ^b	4-Ph-C ₆ H ₄	6.22	6.91	5.98	7.29				
12	81 ^b	<i>p</i> -MeOC ₆ H ₄	6.20	6.88	5.96	7.24				
13	8m ^{b,e}	<i>p</i> -ClC ₆ H ₄	6.22	6.84	5.99	7.22				
14	8n ^b	$p-O_2NC_6H_4$	6.24	6.84	5.99 ^g	7.33 ^g				

^{*a*} 8a-h, VMR products of aliphatic *t*-BS-imines.

80^b

^b**8i-o**, VMR products of aromatic *t*-BS-imines.

^{*c*} Assignments of H-3 and H-4 in compounds (R_{S} , 5R, 6S)-**8a**, (R_{S} , 5R, 6S)-**8m** and (R_{S} , 5S, 6S)-**8m** were determined using 2D NMR technique including COSY, HSQC and HMBC.

6.18

6.71

1-Naphthyl

^{*d*} The stereochemistry of major isomer of **8a** was determined to be $R_{S,5}R,6S$ (5,6-*anti*) by singlecrystal X-ray diffraction crystallographic analysis, see: Figure S1.

^{*e*} The stereochemistry of major isomer of **8m** was determined to be $R_S, 5R, 6S$ (5,6-*anti*) by singlecrystal X-ray diffraction crystallographic analysis, see: Figure S2.

^fMinor isomer was not isolated.

15

^{*g*} Analyzed by ¹H NMR of crude product.

ſ

ſ

Figure S1. ORTEP of $(R_S, 5R, 6S)$ -**8a** (CCDC 1046181), thermal ellipsoids are drawn at 50% probability level.

Figure S2. ORTEP of (R_S , 5R, 6S)-**8m** (CCDC 1445824), thermal ellipsoids are drawn at 50% probability level.

General procedure A for the synthesis of aliphatic (*Rs*)-*t*-butanesulfinimines (6a-h).

(*Rs*)-*t*-Butanesulfinimines **6a-h** are known compounds, which were prepared from (*R_S*)-*N*-*t*-butanesulfinamide following Ellman's procedure^{2a}.

To a stirred suspension of (R_S) -*t*-butanesulfinamide **13** (5.5 mmol) and CuSO₄ (10.0 mmol) in anhydrous CH₂Cl₂ (125 mL) was added dropwise an aldehyde (5.0 mmol) at room temperature. After being stirred for 12 h, the mixture was filtered through a pad of silica gel and the filtrates were concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to give a (R_S) -*t*-butanesulfinimine (**6**).

General procedure B for the synthesis of aromatic (*Rs*)-*t*-butanesulfinimines (6io).

(*Rs*)-*t*-Butanesulfinimines **6i-o**, **6i** and **6l-o** are known compounds, and were prepared from (*R_s*)-*N*-*t*-butanesulfinamide following Ellman's procedure^{2a}.

To a stirred suspension of (R_S) -*t*-butanesulfinamide **13** (5.5 mmol) and an aldehyde (5.0 mmol) in anhydrous CH₂Cl₂ (125 mL) was added Ti(OEt)₄ (2.0 mL, 10.0 mmol) slowly at room temperature. After being stirred for 12 h, the reaction was quenched with a saturated aqueous NaHCO₃. The mixture was filtered through a Celite pad and extracted with CH₂Cl₂ (15 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography silica gel to give a (R_S)-*t*-butanesulfinimine (**6**).

(*R*,*E*)-(–)-*N*-{3-[(Triisopropylsilyl)oxy]propylidene}-*tert*-butanesulfinamide, (*R*_S)-6a

Following the general procedure A, the condensation between (R_S) -tbutanesulfinamide **13** (5.1 g, 42.1 mmol) and benzaldehyde **14a** (8.8 g, 38.3 mmol) produced, after flash column chromatography on silica gel (eluent: EtOAc/ Hexane = 1/5), (*Rs*)-*t*-butanesulfinimine **6a** (12.0 g, yield: 94%) as a colorless oil. $[\alpha]_D^{20}$ –152.5 (*c* 1.0, CH₂Cl₂) {lit.³ $[\alpha]_D$ –157 (*c* 0.8, CH₂Cl₂)}. The spectral data of **6a** are identical with those reported in the literature.³

(R,E)-(-)-N-Propylidene-tert-butanesulfinamide, (R_S)-6b

Yield: 93%. Colorless oil. $[\alpha]_D{}^{20}$ –230.8 (*c* 1.0, CHCl₃) {lit.^{2b} $[\alpha]_D{}^{23}$ –328.5 (*c* 1.0, CHCl₃)}. The spectral data of **6b** are identical with those reported in the literature.^{2b}

(R,E)-(-)-N-Butylidene-*tert*-butanesulfinamide, (R_S) -6c

Yield: 90%. Colorless oil. $[\alpha]_D{}^{20}$ –302.1 (*c* 1.1, CHCl₃) {lit.⁴ $[\alpha]_D{}^{23}$ –305.0 (*c* 0.94, CHCl₃)}. The spectral data of **6c** are identical with those reported in the literature.⁴

(R,E)-(-)-N-Hexylidene-tert-butanesulfinamide, (R_S) -6d

Yield: 95%. Colorless oil. $[\alpha]_D{}^{20} -210.0$ (*c* 1.0, CHCl₃) [The optical rotation value has not been described in the literature,^{5a} $[\alpha]_D{}^{20} +240.0$ (*c* 1.0, CHCl₃) for its enantiomer (*S_S*)-6d];^{5b} The spectral data of 6d are identical with its enantiomer (*S_S*)-6d reported in the literature.^{5b}

(R,E)-(-)-N-(3-Phenylpropylidene)-tert-butanesulfinamide, (R_S)-6e

Yield: 94%. Yellow oil. $[\alpha]_D^{20}$ -183.0 (*c* 1.0, CHCl₃) {lit.⁶ $[\alpha]_D^{20}$ -196 (*c* 1.0, CHCl₃)} The spectral data of **6e** are identical with those reported in the literature.⁶

(R,E)-(-)-N-(4-Chlorobutylidene)-tert-butanesulfinamide, (R_S)-6f

Yield: 85%. Colorless oil. $[\alpha]_D{}^{20} - 211.8$ (*c* 1.0, CHCl₃) {lit.⁷ $[\alpha]_D{}^{25} - 229.2$ (*c* 1.01, CHCl₃)}. The spectral data of **6f** are identical with those reported in the literature.⁷

(R,E)-(-)-N-(2-Methylpropylidene)-tert-butanesulfinamide, (R_S)-6g

Yield: 94%. Colorless oil. $[\alpha]_D{}^{20}$ –315.3 (*c* 1.0, CHCl₃) {lit.^{2b} $[\alpha]_D{}^{23}$ –259.4 (*c* 1.0, CHCl₃)}. The spectral data of **6g** are identical with those reported in the literature.^{2b}

(R,E)-(-)-N-(Cyclohexylmethylene)-tert-butanesulfinamide, (R_S)-6h

Yield: 94%. Colorless oil. $[\alpha]_D{}^{20}$ –229.5 (*c* 1.0, CHCl₃) {lit.⁴ $[\alpha]_D{}^{20}$ –232.5 (*c* 0.98, CHCl₃)}. The spectral data of **6h** are identical with those reported in the literature.⁴

(R,E)-(-)-N-Benzylidene-tert-butanesulfinamide, (R_S)-6i

Yield: 95%. Pale yellow oil. $[\alpha]_D^{20}$ –120.8 (*c* 1.1, CHCl₃) {lit.^{2b} $[\alpha]_D^{23}$ –122 (*c* 1.1, CHCl₃)}. The spectral data of **6i** are identical with those reported in the literature.^{2b}

(R,E)-(-)-N-(4-Isopropylbenzylidene)-tert-butanesulfinamide, (R_S)-6j

Following the general procedure B, the condensation between (R_s)-*t*-butanesulfinamide **13** (667 mg, 5.5 mmol) and benzaldehyde **14j** (741 mg, 5.0 mmol) produced, after flash column chromatography on silica gel (eluent: EtOAc/ Hexane = 1/10), (Rs)-*t*-butanesulfinimine **6j** (1.18 g, yield: 94%) as a pale yellow oil. [α]_D²⁰ –68.8 (*c* 1.0, CHCl₃); IR (film) v_{max} : 2960, 2926, 1595, 1564, 1456, 1418, 1363, 1196, 1180, 1132, 1084, 1054, 832, 751; ¹H NMR (400 MHz, CDCl₃): δ 1.26 (s, 9H), 1.28 (d, J = 6.8 Hz, 6H), 2.97 (sept, J = 6.8 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 8.57 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 22.6 (3C), 23.67, 23.70, 34.3, 57.6, 127.1 (2C), 129.5 (2C), 132.0, 153.9, 162.5; HRMS calcd for C₁₄H₂₁NOSNa [M+Na]⁺: 274.1231; found: 274.1235.

(*R*,*E*)-(-)-*N*-([1,1'-Biphenyl]-4-ylmethylene)-*tert*-butanesulfinamide, (*R*_S)-6k

2H), 8.63 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 22.7 (3C), 57.8, 127.2 (2C), 127.6 (2C), 128.2, 129.0 (2C), 130.0 (2C), 133.1, 140.0, 145.2, 162.3; HRMS calcd for C₁₇H₁₉NOSNa [M+Na]⁺: 308.1075; found: 308.1079.

(R,E)-(-)-N-(4-Methoxybenzylidene)-tert-butanesulfinamide, (R_S)-6l

Yield: 94%. White solid. Mp: 90–92 °C. {lit.⁹ mp: 91–93 °C} $[\alpha]_D^{20}$ –67.5 (*c* 1.0, CHCl₃) {lit.⁸ $[\alpha]_D^{20}$ –70.2 (*c* 1.1, CHCl₃)}. The spectral data of **61** are identical with those reported in the literature.⁸

(R,E)-(-)-N-(4-Chlorobenzylidene)-tert-butanesulfinamide, (R_S)-6m

Yield: 91%. Pale yellow solid. Mp: 40–42 °C {lit.^{9,10} mp: 41–42 °C}; $[\alpha]_D^{20}$ –92.2 (*c* 1.0, CHCl₃) {lit.^{9,10} $[\alpha]_D^{20}$ –93.1 (*c* 1.0, CHCl₃)}. The spectral data of **6m** are identical with those reported in the literature.^{9,10}

(R,E)-(-)-N-(4-Nitrobenzylidene)-tert-butanesulfinamide, (R_S)-6n

Yield: 90%. Pale yellow solid. Mp: 142–144 °C {lit.¹¹ mp: 142–144 °C}; $[\alpha]_D^{20}$ –57.1 (*c* 1.0, CHCl₃) {lit.¹¹ $[\alpha]_D^{20}$ –58.0 (*c* 1.0, CHCl₃)}. The spectral data of **6n** are identical with those reported in the literature.¹¹

(R,E)-(-)-N-(Naphthalen-2-ylmethylene)-tert-butanesulfinamide, (R_S)-60

Yield: 93%. Pale yellow solid. Mp: 53–54 °C {lit.¹⁰ mp: 52–54 °C}; $[\alpha]_D^{20}$ –3.4 (*c* 1.0, CHCl₃) {lit.¹⁰ $[\alpha]_D^{20}$ –4.5 (*c* 1.0, CHCl₃)}. The spectral data of **60** are identical with those reported in the literature.¹⁰

References

- 1. S.-T. Ruan, J.-M. Luo, Y. Du and P.-Q. Huang, Org. Lett., 2011, 13, 4938-4941.
- (a) G. Liu, D. A. Cogan, T. D. Owens, T. P. Tang and J. A. Ellman, *J. Org. Chem.*, 1999, 64, 1278-1284. (b) G.-C. Liu, D. A. Cogan and J. A. Ellman, *J. Am. Chem. Soc.*, 1997, 119, 9913-9914.
- S. J. Villadsen, H. M. Stephansen, A. R. Maolanon, P. Harris and C. A. Olsen, J. Med. Chem., 2013, 56, 6512-6520.
- 4. F. Chemla and F. Ferreira, J. Org. Chem., 2004, 69, 8244-8250.
- (a) D. Morton, D. Pearson, R. A. Field and R. A. Stockman, Synlett, 2003, 1985-1988; (b) K. W. Kells and J. M. Chong, *Org. Lett.*, 2003, 22, 4215-4218.
- 6. L. B. Schenkel and J. A. Ellman, Org. Lett., 2004, 6, 3621-3624.
- 7. L. R. Reddy and M. Prashad, Chem. Commun., 2010, 46, 222-224.
- A. Chelouan, R. Recio, A. Alcudia, N. Khiar and I. Fernández, *Eur. J. Org. Chem.*, 2014, 6935-6944.
- 9. N. Plobeck and D. Powell, *Tetrahedron: Asymmetry*, 2002, 13, 303-310.
- 10. K. W. Kells and J. M. Chong, J. Am. Chem. Soc., 2004, 126, 15666-15667.
- 11. L. Cheng, L. Liu, Y. Sui, D. Wang and Y.-J. Chen, *Tetrahedron: Asymmetry*, 2007, 18, 1833-1843.

¹H and ¹³C NMR spectra of compound 6k

¹H and ¹³C NMR spectra of compound 8b

¹H and ¹³C NMR spectra of compound 8c

¹H and ¹³C NMR spectra of compound 8f

¹H and ¹³C NMR spectra of compound 8g

¹H and ¹³C NMR spectra of compound 8h

¹H and ¹³C NMR spectra of compound 8i

¹H and ¹³C NMR spectra of compound *anti*-8k

¹H and ¹³C NMR spectra of compound *anti*-8l

¹H and ¹³C NMR spectra of compound *anti*-8m

¹H and ¹³C NMR spectra of compound 80

1H and ^{13}C NMR spectra of compound 16 at 80 $^{\circ}C$

