Electronic Supplementary Information (ESI) for:

Tetramethoxy-bay-substituted perylene bisimides by copper-mediated cross-coupling

Pawaret Leowanawat,^a Agnieszka Nowak-Król,^a and Frank Würthner^{*,a}

^a Universität Würzburg, Institut für Organische Chemie & Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany

E-mail: wuerthner@chemie.uni-wuerzburg.de

Table of Contents

1. Synthesis	S1
2. Single Crystal X-ray Analysis	
3. DFT calculations	
4. Absorption and emission spectra	
5. Electrochemistry	
6. References	
7. NMR spectra	

1. Synthesis

Synthesis of compound 7c via Route A

To a solution of PBI **3** (200 mg, 0.22 mmol) in anhydrous toluene (6.0 mL), anhydrous EtOAc (0.3 mL), CuBr (20 mg, 0.14 mmol), and 25% w/v NaOMe (4.0 mL, 18.5 mmol) in dry MeOH were added. The reaction mixture was refluxed under nitrogen for 30 min. Then the mixture was cooled to room temperature and the reaction was quenched by addition of water and extracted with CH_2Cl_2 . The organic layer was dried over anhydrous MgSO₄, filtered and evaporated. The crude product was purified by column chromatography (silica, Et₂O then hexane to hexane/acetone 4:1) to give **7c** (32 mg, 20%). Characterization data are given in the main text.

2. Single Crystal X-ray Analysis

Single crystal X-ray diffraction data for **5** were collected at 100 K on a Bruker D8 Quest Kappa Diffractometer with a Photon100 CMOS detector and multi-layered mirror monochromated $Cu_{K\alpha}$ radiation. The structures were solved using direct methods, expanded with Fourier techniques and refined with the Shelx software package.^{S1} All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the structure factor calculation on geometrically idealized positions.

Crystal data for **5** (2 C₃₂H₂₈O₁₂· C₇H₈): *M*r = 1301.22, orange plate, 0.52x0.38x0.05 mm³, monoclinic space group *P*2₁/*c*, *a* = 19.7803(6) Å, $\alpha = 90^{\circ}$, *b* = 8.9250(3) Å, $\beta = 93.0620(10)^{\circ}$, *c* = 17.1219(5) Å, $\gamma = 90^{\circ}$, *V* = 3018.37(16) Å³, *Z* = 2, $\rho(calcd.) = 1.432$ g·cm⁻³, $\mu = 0.909$ mm⁻¹, *F*₍₀₀₀₎ = 1364, *GooF*(*F*²) = 1.081, *R*₁ = 0.0448, *wR*² = 0.1018 for I>2 σ (I), *R*₁ = 0.0541, *wR*² = 0.1080 for all data, 5877 unique reflections [$\theta \le 72.265^{\circ}$] with a completeness of 98.9% and 446 parameters, 0 restraints.

Crystallographic data for the crystal structure of **5** have been deposited in the Cambridge Crystallographic Data Center with CCDC no. 1438126. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Fig. S1 Molecular packing of compound 5 in the solid state characterized by CH- π interactions. C, grey; O, red. Hydrogen atoms and solvent molecules were omitted for clarity.

3. DFT calculations

DFT calculations were performed for a simplified model compound of **7** (imide substituents were replaced by methyl groups) by using the Gaussian 09 program package^{S2} with B3-LYP^{S3} as a functional and def2-SVP^{S4} as a basis set. The structures were geometry optimized, followed by frequency calculations on the optimized structures which confirmed the existence of a minimum. For the starting geometry of **5**, the coordinates of the single crystal structure analysis were used.

Fig. S2 Geometry optimized structure (with B3LYP/def2-SVP) of a) **5** and b) **7**. Imide substituents were replaced with methyl groups for simplicity.

4. Absorption and emission spectra

Fig. S3 Normalized absorption and fluorescence emission spectra of 3 in CH₂Cl₂.

Fig. S4 Normalized absorption and fluorescence emission spectra of 4 in CH₂Cl₂.

Fig. S5 Normalized absorption and fluorescence emission spectra of 7b in CH₂Cl₂.

Fig. S6 Normalized absorption and fluorescence emission spectra of 7c in CH₂Cl₂.

Fig. S7 Absorption and emission spectra of **7a** in CH_2Cl_2 (black lines), MeCN (red lines), THF (green lines), and toluene (orange lines) normalized to the 0-0 transition. Solid and dashed lines depict absorption and emission spectra, respectively.

5. Electrochemistry

Table S1.	Reduction	and oxidati	on potential	ls of investigate	d molecules	measured in	CH_2Cl_2
by square-v	wave voltar	nmetry (SV	V) and diff	ferential pulse v	oltammetry	(DPV).	

7 1			1		
Compound	Method	<i>E</i> (Red2) [V]	<i>E</i> (Red1) [V]	<i>E</i> (Ox1) [V]	<i>E</i> (Ox2) [V]
7a	SWV	-1.40	-1.24	+0.66	+1.07
	DPV	-1.40	-1.24	+0.66	+1.06
7b	SWV	-1.44	-1.31	+0.60	+1.05
	DPV	-1.44	-1.30	+0.60	+1.05
9	SWV	-1.35	-1.14	+0.90	+1.22
	DPV	-1.37	-1.15	+0.94	+1.25
8	SWV	-1.27	-1.02	+1.32	_
	DPV	-1.27	-1.03	+1.32	_

^{*a*} Redox potentials *vs.* ferrocene/ferrocenium (Fc/Fc⁺) in CH₂Cl₂ solutions, using Bu₄NPF₆ (0.1 M) as a supporting electrolyte.

Fig. S8 Cyclic voltammogram of **7b** $(3.2 \times 10^{-4} \text{ M})$ in CH₂Cl₂ solution of Bu₄NPF₆ (0.1 M) at a scan rate of 100 mV s⁻¹. The measurement was calibrated with an internal standard (ferrocene/ferrocenium).

6. References

^{S1} G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112.

^{S2} Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

^{S3} a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789; c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.

^{S4} F. Weigand and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297.

7. NMR spectra

Fig. S10 ¹³C NMR spectrum of **4** (101 MHz, CDCl₃, 25 °C).

Fig. S12 13 C NMR spectrum of 5 (101 MHz, CDCl₃, 25 °C).

Fig. S13 ^1H NMR spectrum of 5' (400 MHz, CDCl₃, 25 °C).

Fig. S14 ¹³C NMR spectrum of **5'** (101 MHz, CDCl₃, 25 °C).

S11

Fig. S17 ¹H NMR spectrum of 7a (400 MHz, CDCl₃, 25 °C).

Fig. S18 13 C NMR spectrum of 7a (101 MHz, CDCl₃, 25 °C).

Fig. S20 13 C NMR spectrum of 7b (101 MHz, CDCl₃, 25 °C).

Fig. S22 13 C NMR spectrum of 7c (101 MHz, CDCl₃, 25 °C).