Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

Pd-Catalyzed Aminocarbonylation of Alkynes with Amines using

Co₂(CO)₈ as a Carbonyl Source

Yaxi Dong,^a Suyan Sun,^a Fan Yang,^{*a} Yu Zhu,^a Weiguo Zhu,^a Huijie Qiao,^a Yusheng Wu,^{*b,c} and Yangjie Wu^{*a}

^a The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China. *E-mail: yangf@zzu.edu.cn, wyj@zzu.edu.cn.*^b Tetranov Biopharm, LLC., 75 Daxue Road, Zhengzhou, 450052, China. *E-mail: yusheng.wu@tetranovglobal.com.*^c Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China. *E-mail: yusheng.wu@tetranovglobal.com.*

Contents

General Information	S2
Preparation of Substrates	S2
Optimization of Reaction Conditions	S2
General Procedure for the Products	
Characterization Data of the Products	S4
References	S10
Copies of ¹ H and ¹³ C NMR Spectra for the Products	S12

General Information

¹H and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer or Bruker DPX-300 spectrometer with CDCl₃ as the solvent and TMS as an internal standard. Melting points were measured using a WC-1 microscopic apparatus and were uncorrected. GC analysis was performed on Agilent 4890D gas chromatograph. Mass spectra were measured on an LC-MSD-Trap-XCT instrument. High resolution mass spectra were ensured on a MALDI-FTMS. All solvents were used after further purification. Ethyl acetate and hexane were used for column chromatography. The commercials were obtained from commercial sources and used as-received without further purification unless otherwise noted.

Preparation of Substrates

Bromoalkynes and terminal alkynes were prepared from the corresponding aryl iodides with ethynyltrimethylsilane. Arylpropiolic acids were prepared from the corresponding arylboronic acids with ethyl propiolate according to the reported procedure.¹⁻²

Optimization of Reaction Conditions

A 25 mL sealed tube was equipped with a magnetic stir bar and charged with amine **1a** (0.3 mmol), alkyne **2a** (0.6 mmol), palladium catalyst (0.01 mmol Pd), ligand (0.02 mmol), $Co_2(CO)_8$ (0.075 mmol) and base (0.4 mmol) in solvent (1.0 ml). The resulting mixture was stirred at room temperature for 5 h. Upon completion, the resulting mixture was filtered through a pad of celite, washed with dichloromethane. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100–200 mesh) using hexane/ethyl acetate as an eluent (3:2, V/V) to afford the pure product **3aa**.

O NH + Br = Br							
1a	2a			- 3aa			
Entry	Catalyst	Ligand	Base	Solvent	Yield (%) ^b		
1	Pd(OAc) ₂	Xantphos	NEt ₃	dioxane	31		
2	Pd(OAc) ₂	DPEtphos	NEt ₃	dioxane	28		
3	Pd(OAc) ₂	PPh ₃	NEt ₃	dioxane	24		
4	Pd(OAc) ₂	dppf	NEt ₃	dioxane	21		
5	Pd(OAc) ₂	Ruphos	NEt ₃	dioxane	27		
6	Pd(OAc) ₂	1,10-phen	NEt ₃	dioxane	19		
7	Pd(OAc) ₂	bpy	NEt ₃	dioxane	13		

Table S1 Screening of reaction conditions^a

8	Pd(OAc) ₂	Xphos	NEt ₃	dioxane	41
9	Pd(OAc) ₂	Xphos	^{<i>i</i>} Pr ₂ NEt	dioxane	37
10	Pd(OAc) ₂	Xphos	DMAP	dioxane	14
11	Pd(OAc) ₂	Xphos	DBU	dioxane	29
12	Pd(OAc) ₂	Xphos	КОН	dioxane	42
13	Pd(OAc) ₂	Xphos	NaOH	dioxane	38
14	Pd(OAc) ₂	Xphos	^t BuOk	dioxane	35
15	Pd(OAc) ₂	Xphos	NaOAc	dioxane	49
16	Pd(OAc) ₂	Xphos	KOAc	dioxane	44
17	Pd(OAc) ₂	Xphos	K ₂ CO ₃	dioxane	51
18	Pd(OAc) ₂	Xphos	Na ₂ CO ₃	dioxane	47
19	Pd(OAc) ₂	Xphos	Cs ₂ CO ₃	dioxane	65(61)
20	Pd(OAc) ₂	Xphos	Cs ₂ CO ₃	DMF	29
21	Pd(OAc) ₂	Xphos	Cs ₂ CO ₃	DMSO	23
22	Pd(OAc) ₂	Xphos	Cs ₂ CO ₃	toluene	20
23	Pd(OAc) ₂	Xphos	Cs ₂ CO ₃	THF	51
24	Pd(OAc) ₂	Xphos	Cs ₂ CO ₃	1,2-DCE	46
25	Pd(OAc) ₂	Xphos	Cs ₂ CO ₃	CH ₃ CN	78 (73)
26	PdCl ₂	Xphos	Cs ₂ CO ₃	CH ₃ CN	52
27	Pd(PPh ₃) ₄	Xphos	Cs ₂ CO ₃	CH ₃ CN	53
28	Pd ₂ (dba) ₃	Xphos	Cs ₂ CO ₃	CH ₃ CN	92 (86)
29	Pd(PPh ₃) ₂ Cl ₂	Xphos	Cs ₂ CO ₃	CH ₃ CN	81(79)
30	Pd(CH ₃ CN) ₂ Cl ₂	Xphos	Cs ₂ CO ₃	CH ₃ CN	77(74)
31	Pd(PCy ₃) ₂ Cl ₂	Xphos	Cs ₂ CO ₃	CH ₃ CN	62(59)
32	CuI	Xphos	Cs ₂ CO ₃	CH ₃ CN	Trace
33	Cu(OAc) ₂ ·H ₂ O	Xphos	Cs ₂ CO ₃	CH ₃ CN	Trace
34	Cu(OAc) ₂	Xphos	Cs ₂ CO ₃	CH ₃ CN	Trace
35	NiCl ₂	Xphos	Cs ₂ CO ₃	CH ₃ CN	21
36	NiCl ₂ ·6H ₂ O	Xphos	Cs ₂ CO ₃	CH ₃ CN	13
37°	Pd ₂ (dba) ₃	Xphos	Cs ₂ CO ₃	CH ₃ CN	72 (68)
38 ^d	Pd ₂ (dba) ₃	Xphos	Cs ₂ CO ₃	CH ₃ CN	34

^a Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), palladium catalyst (0.01 mmol Pd), ligand (0.02 mmol), Co₂(CO)₈ (0.075 mmol) and base (0.4 mmol) in solvent (1.0 ml) under air for 5 h in a sealed tube. ^b GC yield (isolated yield) based on the amount of morpholine. ^c For 4 h. ^d For 3h.

General Procedure for the Products

A 25 mL sealed tube was equipped with a magnetic stir bar and charged with amine 1 (0.3 mmol), alkyne 2 (0.6 mmol), palladium catalyst (0.01 mmol Pd), ligand (0.02 mmol), $Co_2(CO)_8$ (0.075 mmol) and base (0.4 mmol) in solvent (1.0 ml). The resulting mixture was stirred at room

temperature for 5 h. Upon completion, the resulting mixture was filtered through a pad of celite, washed with dichloromethane. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100–200 mesh) using hexane/ethyl acetate as an eluent to afford the pure product **3**.

Characterization Data of the Products

1-morpholino-3-phenylprop-2-yn-1-one (3aa):³

yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.56-7.53 (m, 2H), 7.45-7.31 (m, 3H), 3.85-3.83 (m, 2H), 3.75-3.73 (m, 2H), 3.69 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.2, 132.4, 130.2, 128.6, 120.2, 91.2, 80.7, 66.9, 66.5, 47.3, 42.0.

3-(4-chlorophenyl)-1-morpholinoprop-2-yn-1-one (3ab):

light red solid; mp 111-112 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.49-7.46 (m, 2H), 7.37-7.34 (m, 2H), 3.84-3.81 (m, 2H), 3.77-3.74 (m, 2H), 3.70 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 152.9, 136.5, 133.6, 129.0, 118.7, 89.9, 81.6, 66.9, 66.4, 47.3, 42.0; HRMS (ESI⁺) calcd for C₁₃H₁₂ClNO₂ [M+H]⁺: 250.0630, found: 250.0634.

3-(2-fluorophenyl)-1-morpholinoprop-2-yn-1-one (3ac):

reddish brown oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.59-7.54 (m, 1H), 7.46-7.40 (m, 1H), 7.19-7.10 (m, 2H), 3.89-3.86 (m, 2H), 3.77-3.75 (m, 2H), 3.71 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 163.3 (d, $J_{C-F} = 252.4$ Hz), 152.7, 134.1, 132.1 (d, $J_{C-F} = 8.1$ Hz), 124.2 (d, $J_{C-F} = 3.8$ Hz), 115.6 (d, $J_{C-F} = 20$ Hz), 109.0 (d, $J_{C-F} = 15$ Hz), 85.5 (d, $J_{C-F} = 3.2$ Hz), 84.3, 66.8, 66.3, 47.2, 41.9; HRMS (ESI⁺) calcd for C₁₃H₁₂FNO₂ [M+H]⁺: 234.0925, found: 234.0928.

1-morpholino-3-(3-nitrophenyl)prop-2-yn-1-one (3ad):

reddish brown solid; mp 161-162 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 8.39-8.38 (m, 1H), 8.30-8.27 (m, 1H), 7.89-7.86 (m, 1H), 7.62-7.58 (m, 1H), 3.87-3.82 (m, 2H), 3.80-3.77 (m, 2H), 3.72 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 152.3, 148.1, 137.9, 129.8, 127.0, 124.8, 122.2, 88.0, 82.6, 66.9, 66.4, 47.4, 42.1; HRMS (ESI⁺) calcd for C₁₃H₁₂N₂O₄ [M+H]⁺: 261.0871, found: 261.0868.

4-(3-morpholino-3-oxoprop-1-yn-1-yl)benzaldehyde (3ae)

yellow solid; mp 133-134 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 10.0 (s, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 3.86-3.83 (m, 2H), 3.79-3.76 (m, 2H), 3.72 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm]= 191.2, 152.6, 136.8, 132.9, 129.6, 126.2, 89.5, 83.6, 66.9, 66.4, 47.3, 42.1; HRMS (ESI⁺) calcd for C₁₄H₁₃NO₃ [M+H]⁺: 244.0968, found: 244.0969.

3-(3-morpholino-3-oxoprop-1-yn-1-yl)benzaldehyde (3af)

red solid; mp 85-86 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 10.0 (s, 1H), 8.0 (t, J = 1.3 Hz, 1H), 7.96-7.93 (m, 1H), 7.82-7.79 (m, 1H), 7.58 (t, J = 7.7 Hz, 1H), 3.87-3.84 (m, 2H), 3.78-3.76 (m, 2H), 3.72 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 191.0, 152.7, 137.7, 136.6, 133.3, 131.0, 129.4, 121.6, 89.3, 81.9, 66.9, 66.5, 47.4, 42.0; HRMS (ESI⁺) calcd for C₁₄H₁₃NO₃ [M+H]⁺: 244.0968, found: 244.0967.

2-(3-morpholino-3-oxoprop-1-yn-1-yl)benzonitrile (3ag):

light red solid; mp 108-109 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.77-7.71 (m, 2H), 7.67-7.62 (m, 1H), 7.58-7.53 (m, 1H), 4.00-3.98 (m, 2H), 3.80-3.77 (m, 2H), 3.72 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 152.2, 133.8, 132.8, 132.7, 130.4, 124.4, 117.3, 115.8, 86.0, 85.8, 67.0, 66.4, 47.5, 42.2; HRMS (ESI⁺) calcd for C₁₄H₁₂N₂O₂ [M+H]⁺: 241.0972, found: 241.0973.

1-morpholino-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (3ah):

red solid; mp 122-123 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.68-7.63 (m, 4H), 3.86-3.83 (m, 2H), 3.78-3.76 (m, 2H), 3.72 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 152.6, 132.6, 131.8 (q, J_{C-F} = 32.7 Hz), 125.5 (q, J = 3.7 Hz), 124.1, 123.6 (q, J = 271.0 Hz), 89.2, 82.5, 66.8, 66.4, 47.3, 42.0; HRMS (ESI⁺) calcd for C₁₄H₁₂F₃NO₂ [M+H]⁺: 284.0893, found: 284.0898.

1-morpholino-3-(naphthalen-1-yl)prop-2-yn-1-one (3ai):4

yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 8.28-8.26 (m, 1H), 7.93-7.87 (m, 2H), 7.81-7.79 (m, 1H), 7.63-7.59 (m, 1H), 7.57-7.53 (m, 1H), 7.48-7.44 (m, 1H), 3.96-3.94 (m, 2H), 3.80-3.78 (m, 2H), 3.76-3.74 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.3, 133.3, 133.1, 132.2, 130.8, 128.5, 127.5, 126.9, 125.7, 125.1, 117.9, 89.6, 85.4, 66.9, 66.5, 47.4, 42.1.

1-morpholino-3-(p-tolyl)prop-2-yn-1-one (3aj):4

red solid; mp 90-91 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.43 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 3.84 (t, J = 4.7 Hz, 2H), 3.74 (t, J = 4.8 Hz, 2H), 3.69 (s, 4H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.3, 140.7, 132.3, 129.3, 117.1, 91.6, 80.4, 66.9, 66.5, 47.3, 41.9, 21.6.

1-morpholino-3-(m-tolyl)prop-2-yn-1-one (3ak):4

3ak

yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.36-7.34 (m, 2H), 7.28-7.23 (m, 2H), 3.85 (t, J = 4.8 Hz, 2H), 3.75 (t, J = 4.7 Hz, 2H), 3.71 (s, 4H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.3, 138.4, 132.9, 131.1, 129.5, 128.5, 120.1, 91.5, 80.5, 66.9, 66.5, 47.3, 42.0, 21.2.

1-morpholino-3-(o-tolyl)prop-2-yn-1-one (3al):4

3al

yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.52-7.51 (m, 1H), 7.34-7.30 (m, 1H), 7.25-7.23 (m, 1H), 7.21-7.17 (m, 1H), 3.86 (t, *J* = 4.8 Hz, 2H), 3.75 (t, *J* = 4.8 Hz, 2H), 3.72 (s, 4H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.3, 141.3, 132.9, 130.2, 129.7, 125.8, 120.2, 90.3, 84.6, 66.9, 66.5, 47.3, 42.0, 20.8.

3-(3,5-dimethylphenyl)-1-morpholinoprop-2-yn-1-one (3am):

yellow solid; mp 85-86 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.17 (s, 2H), 7.06 (s, 1H), 3.86-3.83 (m, 2H), 3.76-3.74 (m, 2H), 3.70 (s, 4H), 2.31 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.4, 138.2, 132.2, 130.1, 119.9, 91.8, 80.2, 66.9, 66.5, 47.3, 42.0, 21.1; HRMS (ESI⁺) calcd for C₁₅H₁₇NO₂ [M+H]⁺: 244.1332, found: 244.1334.

3-(3-methoxyphenyl)-1-morpholinoprop-2-yn-1-one (3an):

yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.29-7.25 (m, 1H), 7.16-7.11 (m, 1H), 7.07-7.06 (m, 1H), 6.99-6.96 (m, 1H), 3.87-3.83 (m, 2H), 3.81 (s, 3H), 3.78-3.74 (m, 2H), 3.70 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 159.4, 153.2, 129.7, 124.8, 121.2, 117.1, 116.9, 91.1,

80.5, 66.9, 66.5, 55.4, 47.3, 42.0; HRMS (ESI⁺) calcd for $C_{14}H_{15}NO_3$ [M+H]⁺: 246.1125, found: 246.1129.

3-(2-methoxyphenyl)-1-morpholinoprop-2-yn-1-one (3ao):4

yellow solid; mp 94-95 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.52-7.50 (m, 1H), 7.41-7.37 (m, 1H), 6.96-6.89 (m, 2H), 3.92 (t, *J* = 4.8 Hz, 2H), 3.87 (s, 3H), 3.75 (t, *J* = 3.7 Hz, 2H), 3.70 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 161.1, 153.4, 134.3, 131.9, 120.6, 110.7, 109.5, 87.8, 85.0, 67.0, 66.5, 55.8, 47.3, 41.9.

1-morpholino-3-(thiophen-2-yl)prop-2-yn-1-one (3ap):

reddish brown oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.44-7.42 (m, 2H), 7.06-7.04 (m, 1H), 3.82-3.80 (m, 2H), 3.77-3.74 (m, 2H), 3.70 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.0, 135.3, 130.2, 127.5, 119.9, 85.0, 84.8, 66.9, 66.5, 47.3, 42.0; HRMS (ESI⁺) calcd for C₁₁H₁₁NO₂S [M+H]⁺: 222.0583, found: 222.0585.

3-(4-(tert-butyl)phenyl)-1-morpholinoprop-2-yn-1-one (3as):

yellow solid; mp 149-150 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.49-7.45 (m, 2H), 7.42-7.34 (m,2H), 3.84 (t, *J* = 4.7 Hz, 2H), 3.75 (t, *J* = 4.7 Hz, 2H), 3.70 (s, 4H), 1.32 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.8, 153.4, 132.2, 125.6, 117.2, 91.6, 80.3, 66.9, 66.5, 47.3, 42.0, 35.0, 31.1; HRMS (ESI⁺) calcd for C₁₇H₂₁NO₂ [M+H]⁺: 272.1645, found: 272.1650.

N-methyl-*N*,3-diphenylpropiolamide (3ba):⁵

red oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.47-7.43 (m, 2H), 7.40-7.30 (m, 3H), 7.26-7.21 (m, 3H), 7.15-7.13 (m, 2H), 3.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 154.4, 143.3, 132.4, 129.9, 129.2, 128.3, 127.9, 127.4, 120.4, 90.9, 82.6, 36.4.

N,*N*-diethyl-3-phenylpropiolamide (3ca):⁶

reddish brown oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.55-7.53 (m, 2H), 7.43-7.34 (m, 3H), 3.66 (dd, J = 3.6 Hz, J = 10.7 Hz, 2H), 3.48 (dd, J = 3.6 Hz, J = 10.7 Hz, 2H), 1.30-1.24 (m, 3H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 154.0, 132.3, 129.9, 128.5, 120.8, 89.0, 82.0, 43.6, 39.3, 14.4, 12.9.

3-phenyl-1-(piperidin-1-yl)prop-2-yn-1-one (3da):⁶

red solid; mp 96-97 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.56-7.53 (m, 2H), 7.43-7.33 (m, 3H), 3.77 (t, J = 5.2 Hz, 2H), 3.62 (t, J = 5.6 Hz, 2H), 1.72-1.55 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 152.9, 132.3, 129.9, 128.5, 120.7, 90.2, 81.5, 48.2, 42.4, 26.4, 25.4, 24.5.

3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-one (3ea):6

reddish brown solid; mp 71-72 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.56-7.53 (m, 2H), 7.43-7.33 (m, 3H), 3.73 (t, J = 6.4 Hz, 2H), 3.53 (t, J = 6.5 Hz, 2H), 2.00-1.91 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 152.7, 132.4, 129.9, 128.5, 120.6, 88.7, 82.7, 48.1, 45.4, 25.4, 24.7.

N-butyl-3-phenylpropiolamide (3fa):

yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.53-7.51 (m, 2H), 7.40-7.32 (m, 3H), 6.08 (s, 1H), 3.38-3.32 (m, 2H), 1.57-1.53 (m, 2H), 1.42-1.36 (m, 2H), 0.96-0.92 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 153.5, 132.5, 130.0, 128.5, 120.3, 84.4, 83.2, 39.7, 31.4, 20.0, 13.7; HRMS (ESI⁺) calcd for C₁₃H₁₅NO [M+H]⁺: 202.1227, found: 202.1227.

N-cyclohexyl-3-phenylpropiolamide (3ga):

red solid; mp 97-98 °C; ¹H NMR (CDCl₃, 400 MHz): δ [ppm] = 7.53-7.51 (m, 2H), 7.40-7.32 (m, 3H), 5.94 (d, *J* = 6.8 Hz, 1H), 3.91-3.84 (m, 1H), 2.00-1.96 (m, 2H), 1.76-1.60 (m, 3H), 1.43-1.32 (m, 2H), 1.26-1.16 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ [ppm] = 152.5, 132.4, 129.9, 128.5, 120.4, 84.2, 83.4, 48.9, 32.9, 25.4, 24.8; HRMS (ESI⁺) calcd for C₁₅H₁₇NO [M+H]⁺: 228.1383, found: 228.1385.

N,*N*-diisopropyl-3-phenylpropiolamide (3ha):

yellow oil; ¹H NMR (CDCl₃, 300 MHz): δ [ppm] = 7.56-7.52 (m, 2H), 7.41-7.36 (m, 3H), 4.46-4.57 (m, 1H), 3.75-3.68 (m, 1H), 1.42 (d, *J* = 6.9 Hz, 6H), 1.32 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (CDCl₃, 75 MHz): δ [ppm] = 153.6, 132.2, 129.7, 128.4, 121.0, 88.5, 83.1, 46.1, 45.8, 21.1, 20.1; HRMS (ESI⁺) calcd for C₁₅H₁₉NO [M+H]⁺: 230.1540, found: 230.1543.

References

- For selected papers on the synthesis of bromoalkynes and terminal alkynes, see: (a) U. Dutta, S. Maity, R. Kancherla and D. Maiti, *Org. Lett.*, 2014, 16, 6302-6305; (b) P. P. Tian, S. H. Cai, Q. J. Liang, X. Y. Zhou, Y. H. Xu, and T. P. Loh, *Org. Lett.*, 2015, 17, 1636-1639.
- 2. For selected papers on the synthesis of arylpropiolic acids, see: F. Yang and Y. J. Wu, *Eur. J. Org. Chem.*, 2007, 3476-3479.
- 3. B. Gabriele, G. Salerno, L. Veltri and M. Costa, J. Organomet. Chem., 2001, 622, 84-88.
- 4. J. Hwang, J. Choi, K. Park, W. Kim, K. H. Song and S. Lee, *Eur. J. Org. Chem.*, 2015, 2235-2243.

- 5. M. B. Zhou, W. T. Wei, Y. X. Xie, Y. Lei and J. H. Li, J. Org. Chem., 2010, 75, 5635-5642.
- 6. S. T. Gadge, M. V. Khedkar, S. R. Lanke and B. M. Bhanage, *Adv. Synth. Catal.*, 2012, **354**, 2049-2056.

Copies of ¹H and ¹³C NMR Spectra for the Products

