Supporting Information for

Straightforward regioselective construction of 3,4-dihydro-2H-1,4-

thiazine by rhodium catalysed [3+3] cycloaddition of thiirane with 1-

sulfonyl-1,2,3-triazole: a pronounced acid additive effect

Xiao-Long Lu, Ya-Ting Liu, Qing-Xia Wang, Mei-Hua Shen* and Hua-Dong Xu* Email: <u>shenmh@cczu.edu.cn</u>, huadongxu@gmail.com

Table of Contents

I.	General Information and Materialss	2
II.	Preparation of 1-sulfonyl-1,2,3-triazoles	s2
III.	Preparation of Substituted thiiranes	s2
IV.	Synthesis and Characterization of Substituted 3,4-dihydro-2H-1,4-thia:	zine
		s5
V.	References	s15
VI.	NMR Spectra of Compounds	s16

I. General Information and Materials

NMR spectra were recorded using Bruker AV - 300 / AV- 400 spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectra were acquired on an Agilent 6230 spectrometer and were obtained by peak matching. Gas Chromatography-Mass Spectra were acquired on an Agilent 7890A-5975C spectrometer. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator and/or by exposure to phosphormolybdic acid/cerium (IV) sulfate/ ninhydrine followed by brief heating with a heat gun. Liquid chromatography (flash chromatography) was performed on 60Å (40 - 60 μ m) mesh silica gel (SiO₂). All reactions were carried out under nitrogen or argon with anhydrous solvents in oven-dried glassware, unless otherwise noted. All reagents were commercially obtained and, where appropriate, purified prior to use.

III. Preparation of 1-sulfonyl-1,2,3-triazoles

1-Sulfonyl-1,2,3-triazoles were prepared from the corresponding alkynes and sulfonyl azides according to previously reported synthetic procedures^[1] and all data correspond to previously reported material.

$$R_1 \longrightarrow + R_2 - SO_2N_3 \longrightarrow \begin{array}{c} TcCu \\ toluene, rt \end{array} \xrightarrow{N=N, N=N=R_2} \\ R_1 \longrightarrow N=S=R_2 \\ 1 \end{array}$$

Following the reported procedure^[1], TcCu (0.3 mmol, 0.1 eq.), sulfonyl azide (3.6 mmol, 1.1 eq.), alkyne (3 mmol, 1 eq.) in wet toluene (10 mL) was stirred at room temperature under the protected of N_2 . After the total consumption of alkyne by TLC, solvent was removed in vacuum, the residue was purified by column chromatography on silica gel to give the desired product of **1**.

III. Preparation of Substituted thiiranes

$$\begin{array}{c} O \\ R_{1} \\ R_{2} \\ R_{2} \end{array}^{+} \\ R_{2} \end{array}^{+} \\ \begin{array}{c} N_{3} \\ R_{4} \\ R_{2} \end{array}^{+} \\ R_{4} \\ SCN \end{array} \xrightarrow{Pd(Ph_{3}P)_{4}} \\ \begin{array}{c} R_{1} \\ R_{2} \\ \hline R_{1} \\ R_{2} \end{array} \xrightarrow{S} \\ R_{1} \\ \hline R_{2} \\ R_{2} \end{array}$$

Following the reported procedure to obtain the epoxides^[2].To a flame – dried 100 mL flask was added dropwise trimethyl sulfonium iodide (4.08 g, 20 mmol,2 eq.), sodium hydride (60% dispersion in oil, 0.96 g, 22 mmol, 1.1 eq.), DMSO (15 mL), and THF (15 mL), The solution was evacuated three times with N₂ and stirred for about 30 minutes at room temperature. Then the solution was cooled to 0 °C, the aldehyde or ketone (10 mmol, 1 eq.) was added at 0 °C slowly and allowed to stir at room temperature until the total consumption of aldehyde or ketone by TLC. The reaction was diluted with water, extracted with EtOAc. The combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel to give the product of Epoxide.

Following the modification procedure to obtain thiiranes from the reported procedure^[3] and all data correspond to previously reported materials.

A flame dried 50 mL Schlenk tube was charged with $Pd(Ph_3P)_4$ (28mg, 0.025 mmol, 0.005 eq.), NH_4SCN (456 mg, 6 mmol, 1.2 eq.), epoxide (5mmol, 1 eq.) and THF (15 mL). Then the solution was evacuated three times with N_2 and stirred for 2.5 h at 80

°C. After the total consumption of epoxide by TLC, the solvent was removed in vacuum. Then the crude product was purified by column chromatography on silica gel to give the desired product of $2^{[3]}$.

2d: Light yellow oil (yield 58%):¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 3.83 (t, J = 6.0 Hz, 1H), 2.87 (dd, J = 6.5, 0.9 Hz, 1H), 2.58 (t, J = 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 131.7, 128.4, 121.4, 35.4, 27.4. GC-MS: m/z Calculated for C₈H₇BrS 213.9, found 213.9.

2e: Light yellow oil (yield 54%):¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.22 - 7.14 (m, 2H), 3.82 (t, J = 6.0 Hz, 1H), 2.86 (dd, J = 6.5, 1.1 Hz, 1H), 2.59 (dd, J = 5.4, 1.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 130.7, 130.1, 129.8, 125.6, 122.7, 35.2, 27.5. GC-MS: m/z Calculated for C₈H₇BrS 213.9, found 213.9.

2f: Light yellow oil (yield 51%):¹H NMR (300 MHz, CDCl₃) δ 7.56 (dd, J = 7.8, 1.2 Hz, 1H), 7.29 – 7.22 (m, 1H), 7.19 (dd, J = 7.8, 2.1 Hz, 1H), 7.16 – 7.09 (m, 1H), 4.19 (t, J = 6.1 Hz, 1H), 2.90 (dd, J = 6.6, 1.4 Hz, 1H), 2.58 (dd, J = 5.6, 1.4 Hz, 1H).¹³C NMR (75 MHz, CDCl₃) δ 138.3, 132.5, 128.9, 127.8, 127.7, 125.6, 36.2, 26.8. GC-MS: m/z Calculated for C₈H₇BrS 213.9, found 213.9.

2g: Colorless oil (yield 62%): ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.09 – 7.01 (m, 2H), 4.14 (t, *J* = 6.1 Hz, 1H), 2.86 (d, *J* = 6.5 Hz, 1H), 2.64 (d, *J* = 5.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 161,9 (d, *J*_{CF} = 245 Hz) 129.0 (d, *J*_{CF} = 8 Hz), 127.0 (d, *J*_{CF} = 3 Hz), 126.3 ,(d, *J*_{CF} = 13 Hz) 124.4 (d, *J*_{CF} = 4 Hz), 115.3 (d, *J*_{CF} = 21 Hz), 29.3 (d, *J*_{CF} = 6 Hz), 26.2(d, *J*_{CF} = 1 Hz). GC-MS: m/z Calculated for C₈H₇FS ,154.0, found 154.0.

2h: Light yellow oil (yield 56%): ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.1 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 4.43 (t, J = 6.1 Hz, 1H), 2.96 (d, J = 6.7 Hz, 1H), 2.50 (d, J = 5.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 134.4, 133.4, 129.9, 128.4, 124.5, 33.5, 27.2. GC-MS: m/z Calculated for C₈H₇NO₂S 181.0, found 181.0.

2i: Colorless oil (yield 72%): ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.56 (dd, *J* = 7.8, 7.1 Hz, 1H), 7.46 - 7.40 (m, 2H), 4.51 (t, *J* = 6.1 Hz, 1H), 3.02 (d, *J* = 6.4 Hz, 1H), 2.89 (d, *J* = 5.8 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 134.8, 133.5, 132.7, 128.8, 128.5, 126.6, 126.0, 125.4, 123.9, 123.4, 34.6, 25.4. GC-MS: m/z Calculated for C₁₂H₁₀S 186.0, found 186.0.

IV. Synthesis and Characterization of Substituted 3,4-dihydro-2H-1,4-thiazine

A, Conditions optimization for the reaction of 1-tosyl-1,2,3-triazole and 2-phenylthiirane.

To a solution of 1-tosyl-1,2,3-triazole **1a** (0.5 mmol, 1 eq.) in 2mL toluene in a flame dried Schlenk tube was added dropwise 2-phenylthiirane **2a** (1 mmol, 2 eq.), additive and catalyst. Then the solution was evacuated three times with N_2 and stirred at 110

[°]Cuntil the total consumption of **1a** by TLC. After cooling to room temperature, solvent was removed in vacuum, the residue was purified by column chromatography on silica gel to give the product of **3aa**.

B, General Procedure for the synthesis of the Substituted 3,4-dihydro-2H-1,4-thiazine

To a solution of 1,2,3-triazole **1** (0.5 mmol, 1 eq.) in 2mL toluene in a flame dried Schlenk tube was added dropwise thiirane **2** (1 mmol, 2 eq.), AcOH (0.1 mmol, 0.2 eq.) and $Rh_2(esp)_2$ (0.01 mmol, 0.02 eq.). Then the solution was evacuated three times with N₂ and stirred for 1.5 h at 110 °C. After cooling to room temperature, solvent was removed in vacuum, the residue was purified by column chromatography on silica gel to give the product of **3**.

3aa: White solid, mp: 137 °C, (yield 85%): ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.56 (s, 1H), 7.49 – 7.46 (m, 2H), 7.37 – 7.19 (m, 10H), 5.58 (t, *J* = 3.0 Hz, 1H), 2.98 (dd, *J* = 13.1, 3.2 Hz, 1H), 2.63 (dd, *J* = 13.1, 3.2 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 139.0, 137.8, 135.2, 129.9, 128.6, 128.4, 127.8, 127.7, 127.1, 126.2, 126.0, 117.6, 115.7, 54.5, 31.1, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₂NO₂S₂⁺ [M + H]⁺ 408.1086, found 408.1083.

3ba: Light yellow solid, mp: 109 °C, (yield 93%): ¹H NMR (300 MHz, CDCl₃) δ 7.67 – 7.63 (m, 2H), 7.56 (s, 1H), 7.49 – 7.45 (m, 2H), 7.37 – 7.19 (m, 8H), 6.92 – 6.87 (m, 2H), 5.57 (t, *J* = 3.0 Hz, 1H), 3.83 (s, 3H), 2.98 (dd, *J* = 13.1, 3.2 Hz, 1H), 2.66 (dd, *J* = 13.1, 3.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 139.0, 137.8, 129.7, 129.3, 128.6, 128.4, 127.8, 127.7, 126.2, 126.0, 117.6, 115.5, 114.4, 55.7, 54.4, 31.2. HRMS (ESI) *m/z* Calculated for C₂₃H₂₁NNaO₃S₂⁺ [M + Na]⁺ 446.0855, found 446.0852.

3ca: Brown solid, mp: 151 °C, (yield 31%): ¹H NMR (300 MHz, CDCl₃) δ 8.23 – 8.19 (m, 2H), 7.84 – 7.79 (m, 2H), 7.50 – 7.46 (m, 3H), 7.40 – 7.32 (m, 3H), 7.25 –

7.18 (m, 3H), 7.16 – 7.12 (m, 2H), 5.67 (t, J = 3.1 Hz, 1H), 3.03 (dd, J = 13.2, 3.2 Hz, 1H), 2.91 (dd, J = 13.2, 3.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 143.8, 138.2, 137.3, 128.7, 128.4, 128.3, 128.2, 128.1, 126.3, 126.1, 124.3, 117.5, 116.6, 55.1, 31.8. HRMS (ESI) *m/z* Calculated for C₂₂H₁₈N₂NaO₄S₂⁺ [M + Na]⁺ 461.0600, found 461.0596.

3da: Yellow viscous oil, (yield 79%): ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, J = 1.5 Hz, 1H), 7.51 (s, 1H), 7.40 – 7.29 (m, 9H), 5.73 (t, J = 3.2 Hz, 1H), 3.31 (dd, J = 13.2, 3.3 Hz, 1H), 3.14 (dd, J = 13.2, 3.1 Hz, 1H), 2.80 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.4, 137.7, 128.7, 128.2, 127.8, 126.4, 126.0, 117.4, 114.5, 54.6, 40.4, 32.3. HRMS (ESI) *m/z* Calculated for C₁₇H₁₇NNaO₂S₂⁺ [M + Na]⁺ 354.0593, found 354.0592.

3ea: White solid, mp: 134 °C, (yield 73%): ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 2H), 7.44 (s, 1H), 7.42 – 7.37 (m, 2H), 7.28 – 7.21 (m, 7H), 6.89 – 6.86 (m, 2H), 5.56 (t, J = 3.0 Hz, 1H), 3.81 (s, 3H), 2.96 (dd, J = 13.1, 3.2 Hz, 1H), 2.62 (dd, J = 13.1, 3.2 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 144.1, 139.0, 135.1, 130.3, 129.9, 128.3, 127.6, 127.3, 127.1, 126.1, 116.3, 115.7, 114.0, 55.4, 54.3, 31.1, 21.6. HRMS (ESI) *m/z* Calculated for C₂₄H₂₄NO₃S₂⁺ [M + H]⁺ 438.1192, found 438.1184.

3fa: White solid, mp: 124 °C, (yield 33%): ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.1 Hz, 2H), 7.51 (s, 1H), 7.28 – 7.21 (m, 9H), 6.92 (t, J = 8.9 Hz, 2H), 5.56 (s, 1H), 3.85 (s, 3H), 2.88 (dd, J = 13.1, 2.9 Hz, 1H), 2.75 (dd, J = 13.0, 3.0 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 143.8, 139.3, 135.6, 130.1, 129.7, 128.9, 128.2, 127.5, 127.2, 127.0, 126.7, 126.5, 120.6, 111.5, 111.0, 55.8, 54.3, 31.5, 21.6. HRMS (ESI) *m/z* Calculated for C₂₄H₂₄NO₃S₂⁺ [M + H]⁺ 438.1192, found 438.1189.

3ga: White solid, mp: 52 °C, (yield 64%): ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.1 Hz, 2H), 7.57 (s, 1H), 7.26 – 7.20 (m, 8H), 7.08 (d, J = 7.7 Hz, 1H), 7.01 (s, 1H), 6.83 (dd, J = 8.1, 1.9 Hz, 1H), 5.57 (s, 1H), 3.82 (s, 3H), 2.96 (dd, J = 13.1, 3.0 Hz, 1H), 2.64 (dd, J = 13.1, 3.0 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 144.2, 139.3, 139.0, 135.1, 129.9, 129.6, 128.4, 127.7, 127.1, 126.1, 118.5, 117.7, 115.5, 113.2, 111.9, 55.4, 54.6, 31.1, 21.6. HRMS (ESI) *m/z* Calculated for C₂₄H₂₄NO₃S₂⁺ [M + H]⁺ 438.1192, found 438.1190.

3ha: White solid, mp: 131 °C, (yield 72%): ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.52 (s, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.28 – 7.23 (m, 7H), 7.15 (d, *J* = 8.0 Hz, 2H), 5.57 (t, *J* = 2.8 Hz, 1H), 2.96 (dd, *J* = 13.1, 3.2 Hz, 1H), 2.64 (dd, *J* = 13.1, 3.1 Hz, 1H), 2.40 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 139.0, 137.7, 135.2, 135.0, 129.9, 129.3, 128.4, 127.6, 127.1, 126.2, 125.9, 116.9, 115.9, 54.4, 31.1, 21.6, 21.1. HRMS (ESI) *m/z* Calculated for C₂₄H₂₃NNaO₂S₂⁺ [M + Na]⁺ 444.1062, found 444.1063.

3ia: White solid, mp: 167 °C, (yield 81%): ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.53 (s, 1H), 7.39 (d, J = 8.5 Hz, 2H), 7.31 – 7.23 (m, 7H), 7.20 – 7.18 (m, 2H), 5.58 (s, 1H), 2.98 (dd, J = 13.1, 3.1 Hz, 1H), 2.64 (dd, J = 13.1, 3.1 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 138.8, 136.3, 135.1, 133.5, 129.9, 128.7, 128.4, 127.7, 127.2, 127.1, 126.1, 117.9, 114.4, 54.5, 31.2, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₁CINO₂S₂⁺ [M + H]⁺ 442.0697, found 442.0692.

3ja: White solid, mp: 158 °C, (yield 83%): ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.69 (s, 1H), 7.60 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.29 – 7.22 (m, 5H), 7.19 – 7.16 (m, 2H), 5.60 (t, J = 2.8 Hz, 1H), 3.91 (s, 3H), 3.00 (dd, J = 13.1, 3.1 Hz, 1H), 2.66 (dd, J = 13.1, 3.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 144.4, 142.3, 138.8, 135.0, 130.0, 129.9, 129.1, 128.4, 127.8, 127.1, 126.1, 125.6, 119.3, 114.2, 54.7, 52.2, 31.2, 21.6. HRMS (ESI) *m/z* Calculated for C₂₅H₂₄NO₄S₂⁺ [M + H]⁺ 466.1141, found 466.1143.

3ka: Brown solid, mp: 137 °C, (yield 89%):. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.33 – 7.27 (m, 5H), 7.11 (d, *J* = 6.9 Hz, 2H), 6.97 (d, *J* = 5.2 Hz, 1H), 6.86 (d, *J* = 10.9 Hz, 1H), 6.54 (d, *J* = 10.7 Hz, 1H), 6.46 (d, *J* = 5.2 Hz, 1H), 4.31 (dd, *J* = 7.6, 4.2 Hz, 1H), 3.14 (dd, *J* = 13.0, 4.2 Hz, 1H), 2.97 (dd, *J* = 13.0, 7.7 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 142.3, 137.8, 137.0, 132.3, 130.0, 129.1, 128.6, 128.4, 127.3, 126.8, 121.5, 117.2, 110.4, 44.1, 34.9, 21.6. HRMS (ESI) *m/z* Calculated for C₂₁H₁₉NNaO₂S₃⁺ [M + Na]⁺ 436.0470, found 436.0472.

3la: Light yellow solid, mp: 132 °C, (yield 62%): ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 4.7 Hz, 1H), 8.28 (s, 1H), 7.66 – 7.61 (m, 3H), 7.48 (d, J = 8.1 Hz, 1H), 7.20 (m, 7H), 7.13 (dd, J = 7.3, 5.0 Hz, 1H), 5.61 (t, J = 2.9 Hz, 1H), 3.00 (dd, J = 13.2, 3.1 Hz, 1H), 2.71 (dd, J = 13.2, 3.2 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 149.1, 144.2, 138.9, 136.4, 135.2, 129.9, 128.3, 127.7, 127.2, 126.2, 121.8, 120.9, 118.4, 114.4, 55.0, 30.9, 21.6. HRMS (ESI) *m/z* Calculated for C₂₂H₂₁N₂O₂S₂⁺ [M + H]⁺ 409.1039, found 409.1040.

3ma: Yellow viscous oil, (yield 24%): ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.1 Hz, 2H), 7.31 – 7.23 (m, 5H), 7.19 – 7.18 (m, 2H), 7.11 (s, 1H), 5.45 (s, 1H), 3.47 – 3.44 (m, 2H), 2.85 (dd, J = 13.1, 3.0 Hz, 1H), 2.68 (t, J = 6.7 Hz, 2H), 2.47 (dd, J = 13.0, 2.7 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 138.7, 135.1, 129.8, 128.3, 127.6, 127.2, 126.1, 118.3, 112.4, 53.9, 38.8, 32.0, 30.1, 21.6. HRMS (ESI) *m/z* Calculated for C₁₉H₂₁BrNO₂S₂⁺ [M + H]⁺ 438.0192, found 438.0190.

3ab: White solid, mp: 51 °C, (yield 88%): ¹H NMR (300 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.55 (s, 1H), 7.49 – 7.45 (m, 2H), 7.36 – 7.23 (m, 5H), 7.12 – 7.05 (m, 4H), 5.53 (t, *J* = 3.0 Hz, 1H), 2.95 (dd, *J* = 13.1, 3.2 Hz, 1H), 2.60 (dd, *J* = 13.1, 3.2 Hz, 1H), 2.40 (s, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 144.1, 137.8, 137.4, 136.0, 135.1, 129.9, 129.1, 128.6, 127.8, 127.1, 126.03, 126.02, 117.6, 115.7, 54.3, 31.1, 21.6, 21.1. HRMS (ESI) *m/z* Calculated for C₂₄H₂₄NO₂S₂⁺ [M + H]⁺ 422.1243, found 422.1238.

3ac: White solid, mp: 55 °C, (yield 97%): ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.2 Hz, 2H), 7.55 (s, 1H), 7.48 (d, J = 7.3 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.31 (d, J = 7.1 Hz, 1H), 7.27 – 7.23 (m, 4H), 7.16 (d, J = 8.5 Hz, 2H), 5.55 (s, 1H), 2.95 (dd, J = 13.2, 3.1 Hz, 1H), 2.65 (dd, J = 13.2, 3.1 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 137.6, 137.5, 135.0, 133.6, 130.0, 128.7, 128.5, 128.0, 127.7, 127.1, 126.0, 117.4, 115.8, 54.0, 30.9, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₁CINO₂S₂⁺ [M + H]⁺ 442.0697, found 442.0694.

3ad: White solid, mp: 80 °C, (yield 85%): ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.53 (s, 1H), 7.46 (d, J = 7.3 Hz, 2H), 7.38 – 7.24 (m, 7H), 7.09 (d, J = 8.4 Hz, 2H), 5.52 (s, 1H), 2.93 (dd, J = 13.2, 3.1 Hz, 1H), 2.65 (dd, J = 13.2, 3.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 138.1, 137.6, 135.0, 131.5, 130.0, 128.7, 128.0, 127.9, 127.1, 126.0, 121.7, 117.4, 115.7, 54.0, 30.9, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₁BrNO₂S₂⁺ [M + H]⁺ 486.0192, found 486.0194.

3ae: White solid, mp: 151 °C, (yield 76%): ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.53 (s, 1H), 7.47 (d, J = 7.4 Hz, 2H), 7.39 – 7.35 (m, 3H), 7.30 (d, J = 7.2 Hz, 1H), 7.25 (dd, J = 7.9, 6.2 Hz, 3H), 7.17 – 7.11 (m, 2H), 5.55 (s, 1H), 2.95 (dd, J = 13.2, 3.1 Hz, 1H), 2.66 (dd, J = 13.2, 3.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 141.1, 137.6, 136.0, 130.8, 130.0, 129.9, 129.3, 128.7, 127.9, 126.9, 126.1, 125.0, 122.5, 117.4, 115.8, 54.0, 31.0, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₁BrNO₂S₂⁺ [M + H]⁺ 486.0192, found 486.0189.

3af: White solid, mp: 161 °C, (yield 33%): ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 5.4 Hz, 2H), 7.64 (s, 1H), 7.52 (t, J = 8.0 Hz, 3H), 7.36 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.26 – 7.23 (m, 2H), 7.13 – 7.08 (m, 3H), 5.87 (t, J = 3.0 Hz, 1H), 3.10 (dd, J = 13.3, 2.9 Hz, 1H), 2.59 (dd, J = 13.3, 3.4 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 144.3, 138.2, 137.6, 134.7, 132.5, 130.0, 129.3, 129.1, 128.7, 127.8, 127.3, 127.2, 126.0, 120.8, 118.3, 114.4, 54.9, 29.5, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₁BrNO₂S₂⁺ [M + H]⁺ 486.0192, found 486.0191.

3ag: Brown solid, mp: 167 °C, (yield 44%): ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.62 (s, 1H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.31 – 7.16 (m, 5H), 7.05 – 6.99 (m, 2H), 5.82 (s, 1H), 3.06 (dd, *J* = 13.2, 3.0 Hz, 1H), 2.53 (dd, *J* = 13.2, 3.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 137.7, 134.8, 130.1, 129.5, 129.4, 128.8 (d, *J*_{CF} = 3 Hz), 128.7, 127.9, 127.2, 126.1, 124.1 (d, *J*_{CF} = 3 Hz), 117.7, 115.5, 115.3, 115.0, 49.8, 30.1, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₀FNNaO₂S₂⁺ [M + Na]⁺ 448.0812, found 448.0805.

3ah: Light yellow solid, mp: 49 °C, (yield 38%): ¹H NMR (300 MHz, CDCl₃) δ 8.07 (dd, J = 7.4, 2.4 Hz, 1H), 7.71 (s, 1H), 7.66 – 7.63 (m, 2H), 7.57 – 7.51 (m, 3H), 7.47 – 7.39 (m, 4H), 7.37 – 7.32 (m, 3H), 6.27 (t, J = 3.1 Hz, 1H), 3.11 (dd, J = 13.6, 2.7 Hz, 1H), 2.62 (dd, J = 13.6, 3.7 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 144.6, 137.4, 135.2, 134.3, 133.6, 130.3, 130.2, 128.8, 128.2, 128.0, 127.2, 126.0, 124.9, 118.5, 115.0, 51.7, 30.4, 21.6. HRMS (ESI) *m/z* Calculated for C₂₃H₂₁N₂O₄S₂⁺ [M + H]⁺ 453.0937, found 453.0939.

3ai: White solid, mp: 129 °C, (yield 83%): ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 7.8 Hz, 2H), 7.62 – 7.48 (m, 6H), 7.37 (t, J = 7.5 Hz, 2H), 7.31 – 7.20 (m, 5H), 6.38 (s, 1H), 3.12 (dd, J = 13.0, 2.8 Hz, 1H), 2.82 (dd, J = 13.0, 3.3 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 137.8, 135.2, 133.8, 133.7, 129.9, 129.5, 128.9, 128.7, 128.4, 127.7, 127.2, 126.7, 126.0, 125.5, 125.2, 125.1, 121.6, 118.4, 114.1, 52.0, 30.9, 21.6. HRMS (ESI) *m/z* Calculated for C₂₇H₂₄NO₂S₂⁺ [M + H]⁺ 458.1243, found 458.1241.

3aj: Light yellow viscous oil, (yield 49%): ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.7 Hz, 3H), 7.45 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 7.9 Hz, 2H), 7.35 – 7.31 (m, 3H), 7.29 – 7.25 (m, 5H), 3.17 (d, J = 13.5 Hz, 1H), 2.84 (d, J = 13.5 Hz, 1H), 2.42 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 143.6, 138.7, 137.8, 129.7, 128.6, 128.3, 127.7, 127.4, 127.0, 126.0, 125.7, 122.1, 115.9, 63.6, 42.4, 26.8, 21.6. HRMS (ESI) *m/z* Calculated for C₂₄H₂₄NO₂S₂⁺ [M + H]⁺ 422.1243, found 422.1239.

3ak: White solid, mp: 127 °C, (yield 38%): ¹H NMR (300 MHz, CDCl₃) δ 7.52 (s, 1H), 7.46 – 7.40(m, 3H), 7.37 – 7.35 (m,1H), 7.33 – 7.28 (m, 4H), 7.27 – 7.24 (m, 1H), 7.22 – 7.15 (m, 5H), 3.20 (d, *J* = 13.6 Hz, 1H), 3.01 (d, *J* = 13.6 Hz, 1H), 2.80 – 2.68 (m, 1H), 2.55 – 2.42 (m, 1H), 2.40 (s, 3H), 0.97 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 140.0, 138.4, 137.8, 129.4, 128.6, 127.7, 127.6, 127.5, 127.1, 125.9, 122.2, 116.7, 66.3, 36.9, 30.5, 21.6, 8.9. HRMS (ESI) *m/z* Calculated for C₂₅H₂₅NNaO₂S₂⁺ [M + Na]⁺ 458.1219, found 458.1219.

References.

1. (a) Jun He, Zeng-ming Man, Yin-ping Shi, Chuan-Ying Li. J. Org. Chem. 2015, 80, 4816–4823. (b) Rui-Qiao Ran, Shi-Dong Xiu, and Chuan-Ying Li. Org. Lett. 2014,

16, 6394-6396. (c) Forian Medina, Céline Besnard, Jérôme Lacour. Org. Lett. 2014,

16, 3232–3235. (d) Kai Wang, Xi-he Bi, Shuang-xi Xing, Pei-qiu Liao, Zhong-xue Fang, Xian-yu Meng, Qian Zhang, Qun Liu, Yu Ji. *Green Chem.* 2011, 13, 562-565.
2. Xue-ji Ma, Shan-fei Pan, Hang-xiang Wang, Wan-zhi Chen. *Org. Lett.* 2014, 16, 4554-4557.

3. (a)Hashem Sharghi, Alireza Salimi Beni, Reza Khalifeh. *Helvetica Chimica Acta*. 2007, 90, 1373-1385. (b) Hao Yu, Shengli Cao, Lei-lei Zhang ,Gang Liu, Jia-xi Xu.

Synthesis. 2009, 13, 2205 - 2209.(c) Batool Akhlaghinia, Mohammad Rahimizadeh,

Hosein Eshghi, Sara Zhaleh, Soodabeh Rezazadeh. *Journal of Sulfur Chemistry*. 2012, 33(3), 351-361.

NMR Spectra of compounds

¹H NMR (400 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

-138.28 138.28 138.28 128.35 128.35 128.35 128.35

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃)

 $^1\mathrm{H}\,\mathrm{NMR}$ (400 MHz, $\mathrm{CDCl}_3)$

€5.614 5.607 5.600

 $^1\mathrm{H}\,\mathrm{NMR}$ (400 MHz, CDCl_3)

2 392 2 392

¹H NMR (300 MHz, CDCl₃)

