Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Synthesis and Applications of Fluorous Phosphines

Chung-kay Edwin Law^a and István T. Horváth^{a*}

^aDepartment of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong Email: istvan.t.horvath@cityu.edu.hk.

Dedicated to Prof. Barry Trost on the occasion of his 75th birthday.

	Formula	M. W.	F (wt%)	P ^a	P _M ^r	m. p. (ºC)	b. p. (°C)	cone angle (°)	³¹ P NMR	Ref.
1a	C ₁₈ H ₁₂ F ₂₇ P	772	66.5	N/A	N/A	N/A	N/A	N/A	N/A	10a
1b	C ₂₄ H ₁₂ F ₃₉ P	1072	69.1	82.3	N/A	N/A	150 ^w	103.2	-25.5	12a
1c	$C_{30}H_{12}F_{51}P$	1372	70.6	>332	N/A	47.5	175×	104.1	-25.4	13
1d	C ₃₆ H ₁₂ F ₆₃ P	1672	71.6	>332	N/A	100.8	N/A	N/A	-25.5	13
2a	C ₂₁ H ₁₈ F ₂₇ P	814	63	N/A	N/A	N/A	N/A	N/A	-34.5	22
2b	C ₂₆ H ₁₈ F ₃₉ P	1102	67.2	N/A	713 ^s	N/A	N/A	N/A	-34.6	22
2c	C ₃₃ H ₁₈ F ₅₁ P	1414	68.5	82.3	832 ^s	67.1	N/A	N/A	-34.8	22
2d	C ₃₉ H ₁₈ F ₆₃ P	1714	69.8	N/A	N/A	N/A	N/A	N/A	N/A	13
3	C ₃₆ H ₂₄ F ₅₁ P	1456	66.6	89.9	N/A	40.2	N/A	N/A	-32.8	22
4	C ₃₉ H ₃₀ F ₅₁ P	1498	64.7	89.9	N/A	N/A	N/A	N/A	N/A	16
5	C ₂₅ H ₁₈ F ₃₅ P	1014	65.6	N/A	N/A	N/A	N/A	N/A	-33.5	15
6	C ₂₉ H ₁₄ F ₄₇ P	1286	69.4	N/A	N/A	N/A	N/A	N/A	-27.8	15
7	C ₃₁ H ₁₄ F ₅₁ P	1386	69.9	N/A	N/A	59.5-60	N/A	N/A	-28.2	16
8	C ₃₂ H ₁₆ F ₅₁ P	1400	69.2	N/A	N/A	68.5-69	N/A	N/A	-31.3	16

	Formula	M. W.	F (wt%)	P ^a	P _M r	m. p. (°C)	b. p. (°C)	cone angle (°)	³¹ P NMR	Ref.
9	$C_{35}H_{22}F_{51}P$	1442	67.2	N/A	N/A	N/A	N/A	N/A	-34.7	16
10	$C_{35}H_{22}F_{51}P$	1442	67.2	N/A	N/A	49-49.5	N/A	N/A	-33.6	16
11	C ₃₂ H ₂₀ F ₄₇ P	1328	67.2	N/A	N/A	N/A	N/A	N/A	-34	22
12	$C_{30}H_{12}F_{51}P$	1372	70.6	>332	N/A	43.4-50	215 ^y	N/A	-25.3	14a
13a	C ₁₂ H ₁₄ F ₁₃ P	436	56.7	N/A	N/A	N/A	N/A	N/A	N/A	18
13b	C ₁₄ H ₁₈ F ₁₃ P	464	53.2	N/A	N/A	N/A	N/A	N/A	5.16	17
13c	$C_{20}H_{26}F_{13}P$	544	45.4	N/A	N/A	N/A	N/A	N/A	-0.71	17
14	$C_{34}H_{20}F_{52}P_2$	1478	66.8	N/A	N/A	N/A	N/A	N/A	-24.1	18
15a	$C_{37}H_{26}F_{52}P_2$	1520	65	20.3	37.5 ^t	N/A	N/A	N/A	-26.8	19
15b	$C_{45}H_{26}F_{68}P_2$	1920	67.3	82.3	141.9 ^t	42	N/A	108.1	-26.7	19
15c	$C_{56}H_{26}F_{84}P_2$	2356	67.7	142	332.3 ^t	73	N/A	N/A	-26.6	19
16a	$C_{40}H_{24}F_{42}P_2$	1555	63.5	N/A	N/A	N/A	N/A	105.5	-21.5	20
16b	$C_{48}H_{24}F_{68}P_2$	1954	66.1	N/A	N/A	63	N/A	105.7	-19.4	20
17a	$C_{26}H_{26}F_{26}P$	864	57.2	3.63	N/A	N/A	N/A	N/A	-24.1	21
17b	C ₃₀ H ₂₆ F ₃₄ P	1064	60.7	14.9	N/A	N/A	157-160 ^z	N/A	-24	21
18	$C_{30}H_{48}F_{16}P_2$	774	39.3	N/A	N/A	52-54	N/A	N/A	-25.5	23
19a	$C_6F_{15}P$	388	73.5	N/A	N/A	N/A	N/A	N/A	13.7	24
19b	$C_9F_{21}P$	538	74.2	N/A	N/A	N/A	N/A	N/A	23.3	24
19c	$C_{12}F_{27}P$	688	74.6	N/A	N/A	N/A	N/A	N/A	23.7	24
19d	$C_{15}F_{33}P$	838	74.8	N/A	N/A	N/A	N/A	N/A	26.8	24
19e	C ₁₈ F ₃₉ P	988	75	N/A	N/A	N/A	N/A	N/A	25	24
19f	C ₈ F ₁₉ P	488	74	N/A	N/A	N/A	N/A	N/A	7.6	24
20a	C ₁₈ H ₁₈ F ₂₁ P	664	60.1	N/A	N/A	N/A	N/A	N/A	N/A	26
20b	C ₁₄ H ₁₀ F ₂₁ P	608	65.6	N/A	N/A	N/A	N/A	N/A	N/A	27

	Formula	M. W.	F (wt%)	P ^a	P _M r	m. p. (°C)	b. p. (°C)	cone angle (°)	³¹ P NMR	Ref.
20c	$C_{22}H_{22}F_{21}P$	716	55.7	N/A	N/A	N/A	N/A	N/A	N/A	27
21	C ₁₀ F ₂₄ P ₂	638	71.5	N/A	N/A	N/A	N/A	N/A	4.7	24
22	C ₂₀ H ₁₄ F ₁₃ P	532	46.4	N/A	N/A	42-44	N/A	N/A	N/A	12a
23	C ₂₂ H ₁₃ F ₂₆ P	802	61.6	N/A	N/A	35-37	N/A	N/A	N/A	12a
24a	C ₁₅ H ₁₀ F ₇ P	354	37.6	N/A	N/A	N/A	N/A	N/A	N/A	26
24b	C ₁₆ H ₁₀ F ₉ P	404	42.3	N/A	N/A	N/A	N/A	N/A	N/A	26
24c	C ₁₈ H ₁₁ F ₁₂ P	486	46.9	N/A	N/A	N/A	N/A	N/A	N/A	10a
24d	C ₁₈ H ₁₀ F ₁₃ P	504	49	N/A	N/A	N/A	N/A	N/A	1.07-2.25	25, 26
24e	C ₁₈ H ₁₀ F ₁₁ P	466	44.8	N/A	N/A	N/A	N/A	N/A	N/A	26
24f	C ₂₀ H ₁₀ F ₁₇ P	604	53.5	N/A	N/A	N/A	N/A	N/A	1.29-2.39	26
24g	$C_{22}H_{11}F_{21}P$	705	56.6	1.17 ^b , 0.28 ^c	N/A	52-52.9	N/A	N/A	1.15-2.41	26
				0.16 ^d , 0.27 ^e , 0.4 ^f						
24h	C ₂₄ H ₁₁ F ₂₅ P	805	59	N/A	N/A	80.2-81.8	N/A	N/A	1.45-2.55	26
25a	C ₃₀ H ₂₆ F ₂₁ P	817	48.8	N/A	N/A	76-77	N/A	N/A	-0.8	27
25b	C ₂₄ H ₁₄ F ₂₁ O ₂ P	764	52.2	N/A	N/A	176-177	N/A	N/A	-0.91	27
25c	C ₂₄ H ₁₄ F ₂₁ O ₂ P	764	52.2	N/A	N/A	N/A	N/A	N/A	3.65	27
25d	C ₂₂ H ₈ F ₂₃ P	740	59.1	N/A	N/A	63-64	N/A	N/A	-0.38	27
26	$C_{50}H_{20}F_{52}P_2$	1703	58	N/A	N/A	88-90	N/A	N/A	N/A	12a
27	C ₆₄ H ₄₀ F ₅₂ P ₂	1834	53.9	N/A	N/A	80-82	N/A	N/A	-11.5	45
28a	$C_{66}H_{60}F_{52}Si_4P_2$	2014	49.1	0.4 ^g	1.6 ^u	N/A	N/A	N/A	-11.3	46a
28b	C ₇₄ H ₆₀ F ₆₈ Si ₄ P ₂	1938	66.7	N/A	3.7 ^u	N/A	N/A	N/A	-11.3	46a
29	C ₉₄ H ₆₄ F ₁₀₄ Si ₄ P ₂	3342	59.1	12 ^g	8 ^u	N/A	N/A	N/A	-11.4	46a
30	$C_{122}H_{68}F_{156}Si_4P_2$	4670	63.5	>50 ^g	23 ^u	N/A	N/A	N/A	-11.4	46a
31a	$C_{42}H_{40}F_{16}P_2$	910	33.4	N/A	N/A	60-63	N/A	N/A	-18.9	23

	Formula	M. W.	F (wt%)	P ^a	P _M r	m. p. (°C)	b. p. (°C)	cone angle (°)	³¹ P NMR	Ref.
31b	$C_{42}H_{40}F_{16}P_2$	910	33.4	N/A	N/A	94-96	N/A	N/A	-39.3	23
32	$C_{28}H_{20}F_8P_2$	570	26.7	N/A	N/A	N/A	N/A	N/A	N/A	26, 27
33	$C_{30}H_{20}F_{12}P_2$	670	34	N/A	N/A	N/A	N/A	N/A	N/A	26, 27
34	$C_{42}F_{63}P$	1732	69.1	N/A	N/A	117	N/A	N/A	N/A	47
35a	$C_{24}H_{14}F_{13}P$	580	42.6	N/A	N/A	N/A	120-124*	103.4	-6.7	12a
35b	$C_{24}H_{14}F_{13}P$	580	42.6	N/A	N/A	76-78	N/A	N/A	N/A	12a
36a	C ₃₀ H ₁₃ F ₂₆ P	898	55	1.56 ^h	N/A	54-56	N/A	N/A	-4	48a
36b	C ₃₄ H ₁₃ F ₃₄ P	1098	58.8	3.17 ^h	N/A	53-55	N/A	N/A	-4.4	48a
37	C ₂₆ H ₁₈ F ₁₃ P	608	40.6	0.12 ^b , 0.02 ⁱ , 0.05 ^j	N/A	N/A	N/A	N/A	-5.11	49
38	C ₂₅ H ₁₆ F ₁₃ P	594	41.6	0.09 ^b , 0.01 ⁱ , 0.12 ^j	N/A	N/A	N/A	N/A	-5.39	49
39	C ₃₀ H ₁₃ F ₂₆ P	898	55	N/A	N/A	N/A	N/A	N/A	N/A	12a
40a	$C_{41}H_{11}F_{52}P$	1534	64.4	9 ^h	N/A	56-58	N/A	N/A	-5.3	48a
40b	C ₅₀ H ₁₁ F ₆₈ P	1934	66.8	N/A	N/A	N/A	N/A	N/A	N/A	48a
41	$C_{34}H_{21}F_{26}P$	954	51.8	1.86 ^b , 0.05 ⁱ , 0.05 ^j	N/A	N/A	N/A	N/A	-5.91	49
42	C ₃₂ H ₁₇ F ₂₆ P	926	53.3	3.34 ^b , 1.05 ⁱ , 0.18 ^j	N/A	N/A	N/A	N/A	-6.29	49
43	C ₃₆ H ₁₂ F ₃₉ P	1216	60.9	2.2 ⁱ , 4.4 ^j	N/A	65-67	N/A	105.8	N/A	12a
44a	$C_{41}H_{11}F_{52}P$	1534	64.4	99 ^h	N/A	N/A	N/A	N/A	-6.3	48a
44b	C ₅₆ H ₁₀ F ₈₁ P	2252	68.3	N/A	N/A	N/A	N/A	N/A	N/A	48a
45a	C ₄₂ H ₂₄ F ₃₉ P	1300	57	30.03 ^b , 0.08 ⁱ , 0.75 ^j	N/A	N/A	N/A	N/A	-6.65	49
45b	$C_{48}H_{24}F_{51}P$	1600	60.6	N/A	>999∘	N/A	N/A	N/A	N/A	49, 63
46	C ₃₉ H ₁₈ F ₃₉ P	1258	58.9	18.48 ^b , 0.51 ⁱ , 6.84 ^j	N/A	N/A	N/A	N/A	-7.12	49
47a	C ₄₅ H ₃₀ F ₃₉ P	1342	55.2	0.242	N/A	91.5-92.7	N/A	N/A	-7.3	50
47b	$C_{51}H_{30}F_{51}P$	1642	59	1.99	>999	120-121	N/A	N/A	-7.4	50, 63
47c	C ₅₇ H ₃₀ F ₆₃ P	1882	63.6	N/A	N/A	139.7-140.5	N/A	N/A	-7.1	50

	Formula	M. W.	F (wt%)	P ^a	P _M r	m. p. (°C)	b. p. (°C)	cone angle (°)	³¹ P NMR	Ref.
48	C ₈₄ H ₄₅ F ₁₀₂ P	3022	64.1	N/A	N/A	N/A	N/A	N/A	N/A	51
49a	C ₄₈ H ₄₂ F ₃₉ Si ₃ P	1474	50.3	0.26ª, 1.1 ^k , 1.5 ^l	293 ^{g,s} , 76 ^s	89	N/A	N/A	-4.66	52a
49b	C ₅₄ H ₄₂ F ₅₁ Si ₃ P	1774	54.6	2.2 ^a , 4.6 ^k , 2.2 ^l	887 ^{g,s}	101	N/A	N/A	-4.67	52a
50a	C ₆₉ H ₄₅ F ₇₈ Si ₃ P	2470	60	7.8ª, 17 ^k , 5.7 ⁱ	N/A	67	N/A	N/A	-4.62	52a
50b	C ₈₁ H ₄₅ F ₁₀₂ Si ₃ P	3070	63.1	7.8 ^a , 28 ^k , 9.2 ^l	N/A	72	N/A	N/A	-4.7	52a
51a	C ₉₀ H ₄₈ F ₁₁₇ Si ₃ P	3466	64.1	4.3 ^a , 9.4 ^k , 15 ^l	N/A	50-55	N/A	N/A	-4.49	52a
51b	C ₁₀₈ H ₄₈ F ₁₅₃ Si ₃ P	4894	59.4	2.1ª, 12 ^k , 20 ^l	N/A	124	N/A	N/A	-4.49	52a
52a	C ₇₆ H ₂₈ F ₆₈ P ₂	2294	56.3	N/A	N/A	N/A	N/A	N/A	-15.4	54a
52b	$C_{92}H_{26}F_{102}P_2$	3130	61.9	N/A	N/A	N/A	N/A	N/A	-15.85	54a
52c	C ₆₀ H ₃₀ F ₃₄ P ₂	1459	44.3	N/A	N/A	N/A	N/A	N/A	-14.2	54a
52d	$C_{56}H_{30}F_{26}P_2$	1259	39.2	N/A	N/A	N/A	N/A	N/A	-13.5	54c
52e	C ₆₀ H ₃₈ F ₂₆ P ₂	1315	37.6	N/A	N/A	N/A	N/A	N/A	-15.4	54c
53	C ₇₆ H ₃₆ F ₆₀ O ₄ P ₂	2215	51.5	N/A	N/A	49-50	N/A	N/A	-17.3	56c
54	C ₉₂ H ₅₄ F ₇₈ Si ₂ P ₂	2759	53.7	3.8 ^m , 49 ⁿ , 49 ^o	N/A	N/A	N/A	N/A	-14.1	55
55	C ₅₆ H ₂₆ F ₄₅ O ₃ P	1633	52.4	N/A	N/A	49	N/A	N/A	-15.5	56a
56	C ₅₆ H ₂₂ F ₄₉ OP	1672	55.7	N/A	N/A	39-41	N/A	N/A	-11.2	56d
57	C ₈₁ H ₄₇ F ₇₈ OSi ₂ P	2605	56.9	N/A	N/A	N/A	N/A	N/A	-12.2	56d
58	C ₄₂ H ₁₈ F ₄₅ O ₃ P	1457	58.7	24.6 ^p , 10.4 ^q	N/A	N/A	N/A	N/A	-9.5	58c

Footnotes:

- a. Partition Coefficient in Perfluoro(methyl)cyclohexane (PFMCH)/Toluene bi-phase at ambient condition, unless stated otherwise.
 b. FC-72/MeOH.
 c. FC-72/Acetone

- d. FC-72/EtOAc
- e. FC-72/CHCl₃
- f. FC-72/Benzene
- g. Measured at 0°C.
- h. 1,3-dimethylperfluorocyclohexane/Toluene.
- i. FC-72/THF
- j. FC-72/Toluene
- k. PFMCH/Octane
- I. PFMCH/Pentane
- m. C_6F_{14} /Benzene
- n. C₆F₁₄/MeCN
- o. C₆F₁₄/DMF
- p. Galden D-100/Methanol
- q. Galden D-100/Toluene
- r. Partition Coefficient of the metal complex at ambient temperature (PFMCH: Toluene).
- s. Measured as the RhP_3Cl complex.
- t. Measured as the $(P^P)PdO_2CCF_3$ complex.
- u. Measured as the $(P^P)NiCl_2$ complex.
- v. Measured as the nickel salicylaldiminato phosphine complex.
- w. 0.05 mmHg
- x. 5 x 10⁻⁵ mmHg
- y. 0.009 Torr
- z. 0.02 mmHg
- * 0.04 mmHg

The reference numbers listed here are the same as in the main text of the paper:

10a D. Y. Mikhaylov, T. V. Gryaznova, Y. B. Dudkina, F. M. Polyancev, S. K. Latypov, O. G. Sinyashin and Y. Budnikova, *J. Fluorine Chem.*, 2013, **153**, 178. 12a P. Battacharyya, D. Gudmunsen, E. G. Hope, R. D. W. Kemmitt, D. R. Paige and A. M. Stuart, *J. Chem. Soc., Perkin Trans.*, 1997, **1**, 3609.

13 L. J. Alvey, D. Rutherford, J. J. J. Juliette, and J. A. Gladysz, J. Org. Chem., 1998, 63, 6302.

- 14a C. Emnet, R. Tuba and J. A. Gladysz, Adv. Synth. Catal., 2005, 347, 1819.
- 15 G. Vlád, F. U. Richter and I. T. Horváth, Tet. Lett., 2005, 46, 8605.
- 16 L. J. Alvey, R. Meier, T. Soós, P. Bernatis and J. A. Gladysz, Eur. J. Inorg. Chem., 2000, 1975.
- 17 D. C. Smith, Jr., E. D. Stevens and S. P. Nolan, Inorg. Chem., 1999, 38, 5277.
- 18 M. F. Sellin, I. Bach, J. M. Webster, F. Montilla, V. Rosa, T. Avilés, M. Poliakoff and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans., 2002, 4569.
- 19 C. S. Consorti, F. Hampel and J.A. Gladysz, Inorg. Chim. Acta, 2006, 359, 4874.

20 R. Tuba, V. Tesevic, L. V. Dinh, F. Hampel and J. A. Gladysz, Dalton Trans., 2005, 2275. 21 A. Klose and J. A. Gladysz, Tetrahedron: Asymmetry, 1999, 10, 2665. 22 G. Vlád, F. U. Richter and I. T. Horváth, Org. Lett., 2004, 6, 4559. 23 L. de Quadras, J. Stahl, F. Zhuravlev and J. A. Gladysz, J. Organometallic Chem., 2007, 692, 1859. 24 J. J. Kampa, J. W. Nail and R. J. Lagow, Angew. Chem. Int. Ed., 1995, 34, 1241. 26 S. Kawaguchi, Y. Minamida, T. Ohe, A. Nomoto, M. Sonoda and A. Ogawa, Angew. Chem. Int. Ed., 2013, 52, 1748. 27 Y. Sato, S.-I. Kawaguchi and A. Ogawa, *Chem. Commun.*, 2015, 51, 10385. 45 D. Duncan, E. G. Hope, K. Singh and A. M. Stuart, *Dalton Trans.*, 2011, 40, 1998. 46a E. de Wolf, B. Richter, B.-J. Deelman and G. van Koten, J. Org. Chem., 2000, 65, 5424. 47 H. Gopal, C.E. Snyder Jr. and C. Tamborski, J. Fluorine Chem., 1979, 14, 511. 48a D. J. Adams, J. A. Bennett, D. J. Cole-Hamilton, E. G. Hope, J. Hopewell, J. Kight, P. Pogorzelec and A. M. Stuart, Dalton Trans., 2005, 3862. 49 Q. Zhang, Z. Luo and D. P. Curran, J. Org. Chem., 2000, 65, 8866. 50 T. Soós, B. L. Bennett, D. Rutherford, L. P. Barthel-Rosa and J. A. Gladysz, Organometallics, 2001, 20, 3079. 51 M. Wende, F. Seidel, J.A. Gladysz, J. Fluorine Chem., 2003, 124, 45. 52a B. Richter, E. de Wolf, G. van Koten and B.-J. Deelman, J. Org. Chem., 2000, 65, 3885. 54a H. Altinel, G. Avsarb, M.K. Yilmaza and B. Guzel, J. of Supercritical Fluids, 2009, 51, 202, 54c Y. Hu, D. J. Birdsall, A. M. Stuart, E. G. Hope et. Al., J. Mol. Catal. A. Chem., 2004, 219, 57. 51 Y. Nakamura, S. Takeuchi, S. Zhang, K. Okumura and Y. Ohgo, Tetrahedron Lett., 2002, 43, 3053. 56a M. Cavazzini, S. Quici, G. Pozzi, D. Maillard and D. Sinou, Chem. Commun., 2001, 1220. 56c J. Bavardon, M. Cavazzini, D. Maillard, G. Pozzi S. Quici and D. Sinou, *Tetrahedron: Asymmetry*, 2003, **14**, 2215. 56d D. Maillard, J. Bayardon, J. D. Kurichiparambil, C. Nguefack-Fournier and D. Sinou, Tetrahedron: Asymmetry, 2002, 13, 1449. 58c A. Aghmiz, C. Claver, A. M. Masdeu-Bulto, D. Maillard et. Al., J. Mol. Catal. A Chem., 2004, 208, 97.

63 Z. Xi, H. S. Bazzi and J. A. Gladysz, J. Am. Chem. Soc., 2015, 137, 10930.