α-Regioselective [3 + 2] Annulations with Morita-Baylis-Hillman Carbonates of Isatins and 2-Nitro-1,3-enynes
 Guang-Yao Ran, ${ }^{\text {a }}$ Pan Wang, ${ }^{\text {a }}$ Wei Du, ${ }^{\text {a }}$ and Ying-Chun Chen ${ }^{*, \mathrm{~b}}$
 ${ }^{a}$ Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China,
 ${ }^{b}$ College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China E-mail: ycchen@scu.edu.cn

Supplementary Information

Table of Contents

1. General methods .. $\mathbf{S} 2$
2. Additional screening studies...S2
3. General procedure for [3+2] annulation reaction ...S3
4. Synthetic transformations of product 3 r ...S11
5. Crystal data and structure refinement for enantiopureS13
6. NMR spectra and HPLC chromatograms ...S14

1. General methods

NMR data were obtained for ${ }^{1} \mathrm{H}$ at 400 MHz and for ${ }^{13} \mathrm{C}$ at 100 MHz . Chemical shifts were given in parts per million (δ) from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak IA Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak ID Column $(250 \times 4.6 \mathrm{~mm})$, Chiralpak OD Column ($250 \times 4.6 \mathrm{~mm}$) or Chiralpak AD Column $(250 \times 4.6 \mathrm{~mm})$. UV detection was monitored at 220 nm or 254 nm . Optical rotation data were examined in CHCl_{3} or EtOAc solution at $20^{\circ} \mathrm{C}$. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I_{2} were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. THF, ethyl acetate (EA), petroleum ether (PE), methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, toluene, and $\mathrm{CH}_{3} \mathrm{CN}$ were distilled before use. Cinchona alkaloids catalysts β-ICD C3, C4, and α-IC $\mathbf{C 5}$ were prepared according to the literature procedures. ${ }^{1}$ 2-Nitro-1,3-enynes and α-phenyl- or styryl-nitroolefins were synthesized based on the reported method. ${ }^{2}$

1 (a) Y. Iwabuchi, M. Nakatani, N. Yokoyama and S. Hatakeyama, J. Am. Chem. Soc., 1999, 121, 10219; (b) Y. Nakamoto, F. Urabe, K. Takahashi, J. Ishihara and S. Hatakeyama, Chem. Eur. J., 2013, 19, 12653.

2 (a) G. Bharathiraja, S. Sakthivel, M. Sengoden and T. Punniyamurthy, Org. Lett., 2013, 15, 4996;
(b) M. Ganesh and I. N. N. Namboothiri, Tetrahedron, 2007, 63, 11973.

2. Additional screening studies ${ }^{a}$

Entry	R^{1}	R^{2}	Solvent	$t(\mathrm{~min})$	$\mathrm{Yield}(\%)^{b}$	dr^{c}	ee (\%) ${ }^{d}$
1	Me	Ph	CHCl_{3}	120	71	$>19: 1$	55
2	Me	$\mathrm{BocOCH}_{2-}-$	CHCl_{3}	50	77	$>19: 1$	74
3	Bn	BnOCH_{2-}	CHCl_{3}	25	88	$>19: 1$	86
4	Bn	$\mathrm{BnOCH}_{2-}-$	DCM	25	88	$>19: 1$	85
5	Bn	BnOCH_{2-}	Toluene	300	71	$>19: 1$	84

6	Bn	$\mathrm{BnOCH}_{2}-$	EtOAc	60	68	$>19: 1$	85
7	Bn	$\mathrm{BnOCH}_{2}-$	$\mathrm{CH}_{3} \mathrm{CN}$	40	43	$>19: 1$	83

${ }^{a}$ Reactions were performed with 0.1 mmol of $\mathbf{1}, 0.11 \mathrm{mmol}$ of $\mathbf{2}, 10 \mathrm{~mol} \%$ of $\mathbf{C} 5 \mathrm{in} 1 \mathrm{~mL}$ solvent. ${ }^{b}$ Isolated yield.
${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{d}$ Based on chiral HPLC analysis.

Scheme S1. The reactions of MBH carbonate and other α-substituted nitroalkenes

As shown in Scheme S1, α-phenyl and α-styryl nitroalkenes exhibited very poor reactivity with the MBH carbonate under the optimised conditions; while α-methyl nitroalkene did not provide the desired product even at low temperature $\left(-20^{\circ} \mathrm{C}\right.$ or $\left.-50^{\circ} \mathrm{C}\right)$. These results demonstrated that the α-alkynyl group is vital to the reaction. Actually, the alkynyl group had been proven to be more electron negative than vinyl group. ${ }^{3}$ It could stabilize the carboanion of the intermediate, resulting in higher reactivity than the phenyl, vinyl or methyl substituted nitroolefins. In addition, the α-alkynyl substituent provided extra steric hindrance, rendering the γ-selective transition state congested. ${ }^{4}$ Thus it led to α-selectivity for the $[3+2]$ annulation.
3. S.-J. Min, G. O. Jones, K. N. Houk and S. J. Danishefsky, J. Am. Chem. Soc., 2007, 129, 10078.

4 (a) K.-K. Wang, T. Jin, X. Huang, Q. Ouyang, W. Du and Y.-C. Chen, Org. Lett., 2016, 18, 872; (b)
G. Zhan, M.-L. Shi, Q. He, W.-J. Lin, Q. Ouyang, W. Du and Y.-C. Chen, Angew. Chem., Int. Ed., 2016, 55, 2147.

3. General procedure for $[3+2]$ annulation reaction

A solution of MBH carbonate $1(0.1 \mathrm{mmol})$ and (E)-2-nitro-1,3-enyne $2(0.11 \mathrm{mmol})$ in CHCl_{3} $(1.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and $\alpha-\mathrm{IC} \mathbf{C 5}(10 \mathrm{~mol} \%)$ was added in one portion. The reaction was stirred for a few minutes at the same temperature. Upon workup, product $\mathbf{3}$ was obtained by flash
chromatography on silica gel (EtOAc/petroleum ether $=1: 8$).

3a, colorless oil, 36.2 mg , 74\% yield; $[\alpha]_{\mathrm{D}}^{20}=-183\left(c=0.19\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 80 \%$ ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=6.52 \mathrm{~min}, \mathrm{t}($ major $)=10.21 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H})$, 7.14-7.07 (m, 2H), $6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$, $3.90(\mathrm{ABq}, J=16.8 \mathrm{H}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,152.0,144.9,137.5,135.4,132.2,130.9,129.3,128.9,128.8,128.7,128.3$, 124.5, 124.3, 122.5, 115.9, 113.1, 109.6, 100.1, 94.8, 71.5, 69.9, 61.1, 57.0, 27.42. ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 512.1581$, found 512.1580.

3b, white solid, $36.9 \mathrm{mg}, 71 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-249\left(c=0.13\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 80 \%$ ee, determined by HPLC analysis [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=16.36 \mathrm{~min}, \mathrm{t}($ minor $)=27.98 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.48-7.09(\mathrm{~m}, 15 \mathrm{H}), 5.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.18, $5.09(\mathrm{ABq}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 171.7,151.2,142.7,137.0,134.8,131.8,130.3,128.9,128.5,128.3,128.1,127.9$, 124.2, 124.0, 121.8, 115.6, 112.5, 110.7, 99.7, 94.5, 72.0, 71.1, 69.4, 60.1, 56.5, 56.3; ESI-HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{Na}^{+} 542.1686$, found 542.1680.

3c, white semisolid, $49.7 \mathrm{mg}, 88 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-195\left(c=0.12\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 87% ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=27.93 \mathrm{~min}, \mathrm{t}$ $($ minor $)=40.32 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 12 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06,4.01\left(\mathrm{ABq}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.89,3.79\left(\mathrm{ABq}, J_{\mathrm{AB}}=16.8 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 171.5,151.3,143.7,135.0,134.6,131.7,130.4,128.9,128.9,128.5,128.3$, $128.1,127.8,126.9,124.1,123.8,115.8,112.7,110.2,99.7,94.5,71.1,69.2,60.6,56.5,44.5$; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 588.1894$, found 588.1894.

Enantiomer of 3c, white semisolid, $40.1 \mathrm{mg}, 71 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=203\left(c=0.12\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;-92 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i$ - $\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ minor $)=29.57 \mathrm{~min}, \mathrm{t}($ major $)=40.24 \mathrm{~min}]$.

3d, white solid, $48.1 \mathrm{mg}, 83 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-256\left(c=1.12\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 86 \% \mathrm{ee}$, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=16.20 \mathrm{~min}, \mathrm{t}($ minor $)=27.06 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 12 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09,4.00(\mathrm{ABq}, J=11.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.90,3.80(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}) .2 .31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.4$, $151.1,141.2,134.9,132.0,130.4,128.9,128.5,128.3,128.1,127.8,127.7,126.8,124.7,115.9$, 112.7, 109.9, 99.8, 94.4, 71.1, 69.3, 60.4, 56.6, 44.5, 21.1; ESI-HRMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+}$ 602.2050, found 602.2048.

3e, white semisolid, $52.4 \mathrm{mg}, 88 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-246\left(c=0.29\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 95\% ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i$ - $\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=11.13 \mathrm{~min}, \mathrm{t}$ (major) $=24.96 \mathrm{~min}] ; \quad{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.51(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 12 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06,4.01(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90,3.80(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.3,156.5,151.4,137.0,136.8,134.9,134.7,130.5,128.9$, $128.5,128.3,128.2,126.9,116.0,115.8,112.7,111.5,110.6,99.8,94.5,71.1,69.5,60.7,56.5,55.9$, 44.5; ESI-HRMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{Na}^{+}$618.1999, found 618.1998.

3f, white solid, $42.0 \mathrm{mg}, 72 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-201\left(c=0.24\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 86 \% \mathrm{ee}$, determined by HPLC analysis: [Daicel Chiralpak AD, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (minor) $=5.91 \mathrm{~min}, \mathrm{t}$ (major) $=17.67 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2H), 7.33-7.15 (m, 12H), 7.01 (td, $J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$
(dd, $J=8.4 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06,4.01(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90,3.81(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 171.4,160.6,158.2,151.9,139.7,139.7,137.0,134.7,134.2,130.5,129.0$, $128.5,128.4,128.2,128.0,127.9,126.9,123.7,118.4,118.2,115.3,112.6,112.5,112.4,110.9$, 110.9, 99.6, 94.8, 71.1, 69.3, 60.8, 56.5, 44.6; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 606.1800$, found 606.1804.

$3 \mathbf{g}$, white solid, $48.6 \mathrm{mg}, 81 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-250\left(c=0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 84 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak AD, n-hexane $/ i-\operatorname{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=5.51 \mathrm{~min}, \mathrm{t}$ (major) $=15.82 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 2H), 7.33-7.13 (m, 14H), $6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07,4.03(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89,3.82(\mathrm{ABq}, J=16.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.0,151.8,142.2,134.1,131.7,130.4,129.3,129.0$, $128.5,128.3,128.1,128.0,127.9,126.9,124.5,115.2,112.5,111.2,99.7,94.9,71.2,68.9,60.4$, 56.5, 44.6; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+}$622.1504, found 622.1504 .

3h, white solid, $55.4 \mathrm{mg}, 86 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-199\left(c=0.60\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 82 \% \mathrm{ee}$, determined by HPLC analysis: [Daicel Chiralpak AD, n-hexane $/ i-\mathrm{PrOH}=$ $60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=7.22 \mathrm{~min}, \mathrm{t}($ major $)=15.30 \mathrm{~min}]$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 11 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05,3.99(\mathrm{ABq}, J=$ $11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88,3.78(\mathrm{ABq}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.4$, $151.8,145.0,130.4,129.1,129.0,128.5,128.4,128.1,128.1,127.9,126.9,126.8,125.3,121.1$, 115.1, 113.6, 112.4, $99.5, ~ 94.9, ~ 71.1, ~ 68.9, ~ 60.8, ~ 56.5, ~ 44.6 ;$ ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 666.0999$, found 666.0996

3i, white solid, $48.6 \mathrm{mg}, 81 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-153\left(c=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 86 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak IA, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (minor) $=7.07 \mathrm{~min}, \mathrm{t}($ major $)=31.25 \mathrm{~min}] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$,

7.37-7.01 (m, 17H), $5.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.02$, $3.92(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84,3.68(\mathrm{ABq}, J=16.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 172.1,151.8,137.0,136.4,134.7,134.4,130.4$, $129.0,128.7,128.6,128.3,128.1127 .8,127.2,126.1,125.2,124.6,122.6$, $116.3,115.2,112.5,100.0,95.0,71.1,68.8,60.5,56.5,45.8$; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 622.1504$, found 622.1506 .

Enantiomer of 3i, white solid, $37.8 \mathrm{mg}, 63 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=146\left(c=0.23\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;-84 \% \mathrm{ee}$, determined by HPLC analysis: [Daicel Chiralpak IA, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ minor $)=7.07 \mathrm{~min}, \mathrm{t}($ major $)=39.98 \mathrm{~min}]$.

3j, white solid, 49.3 mg , 85% yield; $[\alpha]_{\mathrm{D}}^{20}=-209\left(c=0.22\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 86 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i-\operatorname{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=25.12 \mathrm{~min}, \mathrm{t}($ major $)=34.64 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 15 \mathrm{H})$, $7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ $(\mathrm{d}, ~ J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05,4.00(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93,3.81(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 171.6, 151.7, 143.7, 138.8, 134.6, 131.8, 131.7, 130.3, 129.2, 128.9, 128.3, 128.1, 127.8, 126.9, 124.1, 123.8, 115.4, 112.7, 110.2, 99.7, 94.3, 71.0, 69.2, 60.3, 56.6, 44.5, 21.1; ESI-HRMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+}$602.2050, found 602.2051.

$B n$

3k, white semisolid, 54.2 mg , 91% yield; $[\alpha]_{\mathrm{D}}^{20}=-84\left(c=0.39\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=$ $60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=8.78 \mathrm{~min}, \mathrm{t}($ major $)=16.81 \mathrm{~min}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.13(\mathrm{~m}, 14 \mathrm{H})$, $7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00,3.81(\mathrm{ABq}, J=$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82,3.63(\mathrm{ABq}, J=19.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 172.4, 157.4, 152.5, 144.0, 137.1, 131.6, 130.5, 130.1, 128.9, 128.3, 128.1, 127.8, 127.7, $126.8,124.5,124.4,120.4,115.4,112.8,110.1,110.0,98.3,91.6,70.8,70.5,56.4,55.5,44.4 ;$ ESI-HRMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{Na}^{+} 618.1999$, found 618.2002.

Enantiomer of $\mathbf{3 k}$, white semisolid, $41.7 \mathrm{mg}, 70 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=88\left(c=0.13\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;-94 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i$ - $\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}$ (major $)=8.62 \mathrm{~min}, \mathrm{t}($ minor $)=17.14 \mathrm{~min}]$.

31, white solid, $48.2 \mathrm{mg}, 81 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-379\left(c=0.21\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 85 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (minor) $=29.07 \mathrm{~min}, \mathrm{t}$ (major) $=60.68 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 13 \mathrm{H})$, $7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09,4.03\left(\mathrm{ABq}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.98,3.78$ (ABq, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.7,156.0,151.8$, 143.7, 137.1, 134.6, 131.7, 128.9, 128.3, 128.1, 127.8, 126.9, 124.1, 123.9, 115.3, 113.8, 112.8, $110.2,99.8,94.4,71.1,69.2,60.2,56.7,55.2,44.5$; ESI-HRMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{Na}^{+}$ 618.1999, found 618.9998.

3m, white semisolid, 46.1 mg , 79% yield; $[\alpha]_{\mathrm{D}}^{20}=-154\left(c=0.23\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 72% ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}$ $=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=10.93 \mathrm{~min}, \mathrm{t}($ major $)=16.15 \mathrm{~min}] ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 7.51-7.48 (m, 2H), 7.32-7.21 (m, 10H), 7.17-7.13 (m, 4H), 7.09-7.03 (m, 3H), $6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15,4.08(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.90, 3.81 (ABq, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.6,164.3,161.8$, $151.0,143.7,134.5,132.3,132.2$, $131.8,130.7,129.0,128.4,128.0,127.8,126.9,124.1,123.9$, $115.9,115.6,115.3,112.6,110.3,99.5,94.7,71.2,69.3,60.1,56.5,44.5$; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 606.1800$, found 606.1798.

3n, white solid, 46.8 mg , 78% yield; $[\alpha]_{\mathrm{D}}^{20}=-91\left(c=0.36\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 87 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=$ $60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=16.38 \mathrm{~min}, \mathrm{t}($ minor $)=29.07 \mathrm{~min}] ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.13 (m, 15H), $7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J$
$=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93$, 3.84 (ABq, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.4,150.4,143.7,131.8$, 130.6, 129.7, 129.1, 128.9, 128.6, 128.3, 128.1, 127.8, 126.8, 124.0, 123.9, 116.4, 112.5, 110.3, 99.4, 94.9, 71.2, 69.1, 60.1, 56.6, 44.5; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 622.1504$, found 622.1503 .

3o, white solid, $51.0 \mathrm{mg}, 85 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-202\left(c=0.23\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 74 \% \mathrm{ee}$, determined by HPLC analysis: [Daicel Chiralpak OD, n-hexane $/ i$-PrOH $=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=15.59 \mathrm{~min}, \mathrm{t}($ major $)=23.81 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 11 \mathrm{H})$, 7.18-7.13 (m, 3H), $7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14,4.06(\mathrm{ABq}, J=12.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.91,3.82(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.6,150.8,143.7$, $134.5,131.9,131.8,128.9,128.7,128.4,128.1,127.8,128.8,126.8,124.1,124.0,116.2,112.5$, $110.2,99.3,94.8,71.2,69.3,60.1,56.5,44.5$; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 622.1504$, found 622.1508 .

3p, colorless oil, $45.0 \mathrm{mg}, 71 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=-210\left(c=0.14\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 79 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak ID, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=6.38 \mathrm{~min}, \mathrm{t}($ major $)=12.05 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.13(\mathrm{~m}, 13 \mathrm{H}), 7.08(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.84(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.0,150.0,143.6$, $134.3,133.8,131.8,129.0,128.9,128.3,128.3,127.9,127.8,127.8,126.8,123.9,123.9,116.7$, $112.2,110.3,99.0,95.0,71.1,69.1,60.1,56.4,44.4$; ESI-HRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+}$ 656.1768, found 656.1765.

3q, white solid, 52.3 mg , 85% yield; $[\alpha]_{\mathrm{D}}^{20}=-75\left(c=0.23\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 90 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak AD, n-hexane $/ i$-PrOH $=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=$ $9.70 \mathrm{~min}, \mathrm{t}($ major $)=21.99 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$,

$7.83(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 10 \mathrm{~Hz}), 7.13(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, 16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $172.3,152.6,144.0,136.9,129.6,129.3,128.9,128.1,128.1,127.7$, 126.9, 125.9, 125.3, 124.3, 124.3, 115.6, 112.7, 110.1, 98.9, 93.1, 70.7, 70.5, 57.7, 56.0, 44.5; ESI-HRMS: calcd. for $\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 638.2050$, found 638.2090 .

Enantiomer of $\mathbf{3 q}$, white solid, $40.0 \mathrm{mg}, 65 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=72\left(c=0.12\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; -90% ee, determined by HPLC analysis: [Daicel Chiralpak AD, n-hexane $/ i$ - $\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}$ (major $)=9.42 \mathrm{~min}, \mathrm{t}($ minor $)=21.52 \mathrm{~min}]$.

3r, white solid, 43.8 mg , 84% yield; $[\alpha]_{\mathrm{D}}^{20}=-326\left(c=0.62\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 88 \%$ ee, determined by HPLC analysis [Daicel Chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=12.35 \mathrm{~min}, \mathrm{t}($ minor $)=21.09 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.54-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.05(\mathrm{~m}$, $11 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 171.4, 151.3, 143.7, 134.7, 132.0, 131.6, 130.4, 129.6, 128.9, 128.7, 128.4, 128.1, 127.7, 127.1, 124.1, 123.7, 115.9, 112.8, 110.2, 100.5, 97.6, 79.2, 69.0, 60.6, 44.6; ESI-HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{Na}^{+} 544.1632$, found 544.1624.

3 s , white solid, $28.3 \mathrm{mg}, 54 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=327\left(c=0.52\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; -98% ee, determined by HPLC analysis: [Daicel Chiralpak ID, n-hexane $/ i-\operatorname{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=8.89 \mathrm{~min}, \mathrm{t}$ $($ minor $)=11.55 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.50(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24,4.16(\mathrm{ABq}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64$ (s, 3H), 3.27 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 172.6,162.0,145.9,144.6,137.2$, $135.7,135.4,130.6,130.2,128.5,128.3,128.2,127.8,125.1,123.2,122.7,108.6,100.8,93.7,71.0$, 66.9, 58.4, 56.6, 52.2, 26.9; ESI-HRMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+} 545.1683$, found 545.1683.

4. Synthetic transformations of product $3 \mathbf{r}$

To a stirred solution of $\mathbf{3 r}(26 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 1 mL of CHCl_{3} was added DBU (0.1 mmol) at room temperature. The mixture was stirred until $\mathbf{3 r}$ was consumed $(1 \mathrm{~h})$. Then evaporation of solvent under reduced pressure followed by purification by silica gel column chromatography using EtOAc/petroleum ether ($1: 8$) afforded the compound 4 in a quantitative yield (99%). light yellow oil, $23.7 \mathrm{mg}, 99 \%$ yield; $[\alpha]_{\mathrm{D}}^{20}=20(c=0.12$ in EtOAc $) ; 86 \%$ ee, determined by HPLC analysis: [Daicel Chiralpak ID, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=14.78 \mathrm{~min}, \mathrm{t}($ minor $)=$ $29.86 \mathrm{~min}]$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 6 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.78 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 169.6,150.3,147.1,144.2,131.8$, 130.1, 129.7, 129.2, 128.9, 128.8, 128.4, 127.7, 127.4, 127.1, 124.1, 123.7, 117.8, 114.1, 110.2, 102.4, 83.8, 73.3, 44.7; ESI-HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}+\mathrm{Na}^{+}$497.1624, found 497.1628.

To a stirred suspension of product $\mathbf{3 r}(70 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{COOH}(1 \mathrm{~mL})$ was added Zn dust ($87 \mathrm{mg}, 1.3 \mathrm{mmol}, 10$ equiv) in one portion at room temperature. The mixture was stirred for 1.5 hours. Upon completion, the mixture was diluted by EtOAc and saturated NaHCO_{3} was added carefully. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography (petroleum ether/EtOAc $=4: 1$) to afford bridged heterocycle 5 as a diastereomeric mixture (59.1 mg , 87% yield). 1:0.9 dr, determined by ${ }^{1} \mathrm{H}$ NMR analysis. The diastereomeric mixture could not be isolated very well on a chiral column by HPLC analysis, the enantioselectivity almost remained unchanged compared with 3r. 86% ee, determined by HPLC analysis: [Daicel Chiralpak ID,
n-hexane $/ i-\operatorname{PrOH}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{1}($ major $)=9.66 \mathrm{~min}, \mathrm{t}_{1}($ minor $\left.)=14.62 \mathrm{~min}\right] ;$ 86% ee, determined by HPLC analysis: $\left[\mathrm{t}_{2}(\right.$ minor $)=20.47 \mathrm{~min}, \mathrm{t}_{2}$ (major) $\left.=32.43 \mathrm{~min}\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.37-9.16(\mathrm{~m}, 1.66 \mathrm{H}), 7.50-7.28(\mathrm{~m}, 33.91 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 5.93 \mathrm{H})$, $7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.81 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.18 \mathrm{H}), 6.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2.40 \mathrm{H}), 6.57(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 0.93 \mathrm{H}), 5.25(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1.11 \mathrm{H}), 5.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1.00 \mathrm{H}), 5.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.08 \mathrm{H})$, 4.99 (d, $J=6.0 \mathrm{~Hz}, 1.33 \mathrm{H}$), 4.88-4.78 (m, 4.49H), 4.67 (s, 0.96 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 173.1, 172.9, 149.7, 149.5, 143.4, 143.4, 142.8, 142.2, 138.4, 136.8, 134.9, 132.2, 132.1, $123.0,129.8,129.5,129.3,129.0,128.9,128.8,128.4,128.4,128.3,128.2,128.1,128.0,127.8$, $127.2,127.2,124.9,124.6,124.5,124.4,123.5,123.3,121.1,120.9,116.7,116.7,112.6,112.4$, $109.8,103.2,102.8,78.6,78.5,49.2,48.7,46.3,46.1,44.3$; ESI-HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{Na}^{+} 530.1839$, found 530.1847.

5. Crystal data and structure refinement for enantiopure 3s

Identification code
Empirical formula
Formula weight
$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$

Temperature/K
Crystal system
Space group
a/Å
521.53

293(2)
orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
9.02156(13)
b/Å
9.44417(11)
c/Å
30.9480(4)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ} \quad 90$
$\gamma /{ }^{\circ} 90$
Volume $/$ A 3
2636.81(6)

Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
1.314
$\mu / \mathrm{mm}^{-1} \quad 0.754$
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
1092.0
$0.14 \times 0.13 \times 0.13$
$\operatorname{CuK} \alpha(\lambda=1.54184)$
9.792 to 142.754
$-7 \leq \mathrm{h} \leq 10,-11 \leq \mathrm{k} \leq 11,-33 \leq 1 \leq 37$
13769
$4592\left[\mathrm{R}_{\text {int }}=0.0290, \mathrm{R}_{\text {sigma }}=0.0224\right]$
4592/0/354
1.055

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
$\mathrm{R}_{1}=0.0494, \mathrm{wR}_{2}=0.1341$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{R}_{1}=0.0498, \mathrm{wR}_{2}=0.1347$

Flack parameter
0.47/-0.28
-0.09(10)
6. NMR spectra and HPLC chromatograms

Peak	RetTime	Type	Width	Area		Height		Area
\#	[min]		[min]	mAU	*s	[mAU]	\%
1	6.263	VV	0.2207	1.97	51 4	1419.	51978	86.0286
2	9.580	vV	0.2957	3209	94116	170.	23338	13.9714

N

3b

CnO
3c ${ }^{\mathrm{Bn}}$

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

3d ${ }^{\mathrm{Bn}}$

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
30	170	160	150	140	130	120	110	100	${ }^{90}$		70	60	50	40	30	20	10	0

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height ()	\% Height
1	5.505	492946	8.01	41442	18.67
2	15.821	5661250	91.99	180484	81.33

Peak RetTime Type Width Area Height Area

$\begin{array}{llllll}2 & 30.979 & \mathrm{BB} & 1.1953 & 4388.57910 & 57.37062\end{array} \quad 8.1640$

	Peak Name	RT $($ min $)$	Area $\left({ }^{*}\right.$ sec $)$	\% Area	Height (\quad)	$\%$ Height
1	Peak1	24.786	68355933	49.97	669626	59.28
2	Peak2	34.440	68443851	50.03	459927	40.72

	Peak Name	RT (min)	Area $\left({ }^{*}\right.$ sec)	\% Area	Height ()	\% Height
1	Peak1	25.119	1301768	6.95	12277	9.30
2	Peak2	34.639	17424820	93.05	119736	90.70

$3 k^{\mathrm{Bn}}$

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Peak RetTime Type Width Area Height Area

$2 \quad 56.953 \mathrm{BB} \quad 4.02241 .24063 \mathrm{e} 4 \quad 44.88697 \quad 49.6944$

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	16.380	3490405	93.47	60091	96.35
2	29.065	243822	6.53	2275	3.65

BnO

${ }_{3 p}{ }^{\mathrm{Bn}}$

BnO

	RT (min)	Area $($ *sec $)$	\% Area	Height (r)	$\%$ Height
1	6.384	1197374	10.67	96185	18.93
2	12.051	10027796	89.33	411957	81.07

幺	3	8		\%	9	\%is\%	9\%
$\stackrel{\sim}{1}$	$\stackrel{\text { Y }}{\text { ¢ }}$	\%		¢	\%	FEV O	17

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	$\%$ Height
1	12.416	10606392	50.33	285491	66.52
2	21.027	10467560	49.67	143684	33.48

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	12.352	8643170	93.77	237211	96.74
2	21.094	574192	6.23	8006	3.26

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Signal 1: VWD1 A, Wavelength=254 nm

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & {[m i n]} \end{aligned}$	Area		Height		Area
				maU	*s	[maU	,	\%
1	8.891		0.2765	2.97	-4	1679	918	99.22
2	11.553		0.7938	233	64839		9496	0.77

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	$\%$ Height
1	14.856	5869992	49.88	202889	69.29
2	29.655	5898840	50.12	89912	30.71

	RT (min)	Area (*sec)	\% Area	Height (\quad)	\% Height
1	14.786	40609924	93.17	1366951	96.62
2	29.864	2975102	6.83	47873	3.38

禺 ㄷ․․․․
$8 \pm$
$\%$
$\%$

