α -Regioselective [3 + 2] Annulations with Morita–Baylis–Hillman

Carbonates of Isatins and 2-Nitro-1,3-enynes

Guang-Yao Ran,^a Pan Wang,^a Wei Du,^a and Ying-Chun Chen*^{a,b}

^aKey Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China,

^bCollege of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China

E-mail: ycchen@scu.edu.cn

Supplementary Information

 Table of Contents

1. General methods	S2
2. Additional screening studies	S2
3. General procedure for [3 + 2] annulation reaction	S3
4. Synthetic transformations of product 3r	S11
5. Crystal data and structure refinement for enantiopure	S13
6. NMR spectra and HPLC chromatograms	S14

1. General methods

NMR data were obtained for ¹H at 400 MHz and for ¹³C at 100 MHz. Chemical shifts were given in parts per million (δ) from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak IA Column (250 × 4.6 mm), Chiralpak ID Column (250 × 4.6 mm), Chiralpak OD Column (250 × 4.6 mm) or Chiralpak AD Column (250 × 4.6 mm). UV detection was monitored at 220 nm or 254 nm. Optical rotation data were examined in CHCl₃ or EtOAc solution at 20 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I₂ were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. THF, ethyl acetate (EA), petroleum ether (PE), methylene chloride (CH₂Cl₂), toluene, and CH₃CN were distilled before use. Cinchona alkaloids catalysts β-ICD **C3**, **C4**, and α-IC **C5** were prepared according to the literature procedures.¹ 2-Nitro-1,3-enynes and α-phenyl- or styryl-nitroolefins were synthesized based on the reported method.²

- (a) Y. Iwabuchi, M. Nakatani, N. Yokoyama and S. Hatakeyama, J. Am. Chem. Soc., 1999, 121, 10219; (b) Y. Nakamoto, F. Urabe, K. Takahashi, J. Ishihara and S. Hatakeyama, Chem. Eur. J., 2013, 19, 12653.
- 2 (a) G. Bharathiraja, S. Sakthivel, M. Sengoden and T. Punniyamurthy, Org. Lett., 2013, 15, 4996;
 (b) M. Ganesh and I. N. N. Namboothiri, *Tetrahedron*, 2007, 63, 11973.

2. Additional screening studies^a

Entry	R^1	R^2	Solvent	<i>t</i> (min)	Yield $(\%)^b$	dr ^c	$ee(\%)^d$
1	Me	Ph	CHCl ₃	120	71	> 19:1	55
2	Me	BocOCH ₂ -	CHCl ₃	50	77	> 19:1	74
3	Bn	BnOCH ₂ -	CHCl ₃	25	88	> 19:1	86
4	Bn	BnOCH ₂ -	DCM	25	88	> 19:1	85
5	Bn	BnOCH ₂ -	Toluene	300	71	> 19:1	84

6	Bn	BnOCH ₂ -	EtOAc	60	68	> 19:1	85
7	Bn	BnOCH ₂ -	CH ₃ CN	40	43	> 19:1	83

^{*a*} Reactions were performed with 0.1 mmol of **1**, 0.11 mmol of **2**, 10 mol% of **C5** in 1 mL solvent. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR analysis. ^{*d*} Based on chiral HPLC analysis.

Scheme S1. The reactions of MBH carbonate and other α -substituted nitroalkenes

As shown in Scheme S1, α -phenyl and α -styryl nitroalkenes exhibited very poor reactivity with the MBH carbonate under the optimised conditions; while α -methyl nitroalkene did not provide the desired product even at low temperature (-20 °C or -50 °C). These results demonstrated that the α -alkynyl group is vital to the reaction. Actually, the alkynyl group had been proven to be more electron negative than vinyl group.³ It could stabilize the carboanion of the intermediate, resulting in higher reactivity than the phenyl, vinyl or methyl substituted nitroolefins. In addition, the α -alkynyl substituent provided extra steric hindrance, rendering the γ -selective transition state congested.⁴ Thus it led to α -selectivity for the [3 + 2] annulation.

3. S.-J. Min, G. O. Jones, K. N. Houk and S. J. Danishefsky, J. Am. Chem. Soc., 2007, 129, 10078.

4 (*a*) K.-K. Wang, T. Jin, X. Huang, Q. Ouyang, W. Du and Y.-C. Chen, *Org. Lett.*, 2016, 18, 872; (*b*)
G. Zhan, M.-L. Shi, Q. He, W.-J. Lin, Q. Ouyang, W. Du and Y.-C. Chen, *Angew. Chem., Int. Ed.*, 2016, 55, 2147.

3. General procedure for [3 + 2] annulation reaction

A solution of MBH carbonate **1** (0.1 mmol) and (*E*)-2-nitro-1,3-enyne **2** (0.11 mmol) in CHCl₃ (1.0 mL) was cooled to 0 °C and α -IC C5 (10 mol%) was added in one portion. The reaction was stirred for a few minutes at the same temperature. Upon workup, product **3** was obtained by flash

chromatography on silica gel (EtOAc/petroleum ether = 1:8).

3a, colorless oil, 36.2 mg, 74% yield; $[\alpha]_D^{20} = -183$ (c = 0.19 in CHCl₃); 80% ee, determined by HPLC analysis [Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.52 min, t (major) = 10.21 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.49 (d, J = 6.8 Hz, 2H), 7.44-7.29 (m, 7H), 7.25-7.19 (m, 3H), 7.14-7.07 (m, 2H), 6.86 (d, J = 8.0 Hz, 1H), 5.42 (d, J = 2.4 Hz, 1H), 4.08 (d, J = 1.6 Hz, 2H), 3.91, 3.90 (ABq, J = 16.8 H, 2H), 3.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 152.0, 144.9, 137.5, 135.4, 132.2, 130.9, 129.3, 128.9, 128.8, 128.7, 128.3, 124.5, 124.3, 122.5, 115.9, 113.1, 109.6, 100.1, 94.8, 71.5, 69.9, 61.1, 57.0, 27.42. ESI-HRMS: calcd. for C₃₀H₂₃N₃O₄+Na⁺ 512.1581, found 512.1580.

3b, white solid, 36.9 mg, 71% yield; $[\alpha]_D^{20} = -249$ (c = 0.13 in CHCl₃); 80% ee, determined by HPLC analysis [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 16.36 min, t (minor) = 27.98 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.48-7.09 (m, 15H), 5.53 (d, J = 2.0 Hz, 1H),

5.18, 5.09 (ABq, J = 11.2 Hz, 2H), 4.08 (s, 2H), 3.90 (s, 2H), 3.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.7, 151.2, 142.7, 137.0, 134.8, 131.8, 130.3, 128.9, 128.5, 128.3, 128.1, 127.9, 124.2, 124.0, 121.8, 115.6, 112.5, 110.7, 99.7, 94.5, 72.0, 71.1, 69.4, 60.1, 56.5, 56.3; ESI-HRMS: calcd. for C₃₁H₂₅N₃O₅+Na⁺ 542.1686, found 542.1680.

3c, white semisolid, 49.7 mg, 88% yield; $[\alpha]_{D}^{20} = -195$ (c = 0.12 in CHCl₃); 87% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 27.93 min, t (minor) = 40.32 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, J = 7.6 Hz,

2H), 7.37 (t, J = 7.2 Hz, 2H), 7.32-7.20 (m, 12H), 7.15 (d, J = 7.6 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.52 (d, J = 2.4 Hz, 1H), 5.04 (d, J = 16.0 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.06, 4.01 (ABq, $J_{AB} = 12.0$ Hz, 2H), 3.89, 3.79 (ABq, $J_{AB} = 16.8$ Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.5, 151.3, 143.7, 135.0, 134.6, 131.7, 130.4, 128.9, 128.9, 128.5, 128.3, 128.1, 127.8, 126.9, 124.1, 123.8, 115.8, 112.7, 110.2, 99.7, 94.5, 71.1, 69.2, 60.6, 56.5, 44.5; ESI-HRMS: calcd. for C₃₆H₂₇N₃O₄+Na⁺ 588.1894, found 588.1894. Enantiomer of **3c**, white semisolid, 40.1 mg, 71% yield; $[\alpha]_D^{20} = 203$ (c = 0.12 in CHCl₃); -92% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor)= 29.57 min, t (major) = 40.24 min].

3d, white solid, 48.1 mg, 83% yield; $[\alpha]_D^{20} = -256$ (c = 1.12 in CHCl₃); 86% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 16.20 min, t (minor) = 27.06 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 6.8 Hz,

2H), 7.32-7.15 (m, 12H), 7.09 (d, J = 8.0 Hz, 1H), 6.95 (s, 1H), 6.60 (d, J = 8.0 Hz, 1H), 5.52 (d, J = 2.4 Hz, 1H), 5.02 (d, J = 16.0 Hz, 1H), 4.81 (d, J = 16.0 Hz, 1H), 4.09, 4.00 (ABq, J = 11.6 Hz, 2H), 3.90, 3.80 (ABq, J = 16.4 Hz, 2H). 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.4, 151.1, 141.2, 134.9, 132.0, 130.4, 128.9, 128.5, 128.3, 128.1, 127.8, 127.7, 126.8, 124.7, 115.9, 112.7, 109.9, 99.8, 94.4, 71.1, 69.3, 60.4, 56.6, 44.5, 21.1; ESI-HRMS: calcd. for C₃₇H₂₉N₃O₄+Na⁺ 602.2050, found 602.2048.

Ph BnO MeO N Bn

3e, white semisolid, 52.4 mg, 88% yield; $[\alpha]_D^{20} = -246$ (c = 0.29 in CHCl₃); 95% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 11.13 min, t (major) = 24.96 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, J = 7.2

Hz, 2H), 7.37 (t, J = 7.2 Hz, 2H), 7.32-7.15 (m, 12H), 6.80 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 3.75 (d, J = 2.4 Hz, 1H), 6.61 (d, J = 8.8 Hz, 1H), 5.49 (d, J = 2.8 Hz, 1H), 5.01 (d, J = 16.0 Hz, 1H), 4.80 (d, J = 16.0 Hz, 1H), 4.06, 4.01 (ABq, J = 11.6 Hz, 2H), 3.90, 3.80 (ABq, J = 16.4 Hz, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.3, 156.5, 151.4, 137.0, 136.8, 134.9, 134.7, 130.5, 128.9, 128.5, 128.3, 128.2, 126.9, 116.0, 115.8, 112.7, 111.5, 110.6, 99.8, 94.5, 71.1, 69.5, 60.7, 56.5, 55.9, 44.5; ESI-HRMS: calcd. for C₃₇H₂₉N₃O₅+Na⁺ 618.1999, found 618.1998.

3f, white solid, 42.0 mg, 72% yield; $[\alpha]_D^{20} = -201$ (c = 0.24 in CHCl₃); 86% ee, determined by HPLC analysis: [Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.91 min, t (major) = 17.67 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.50 (d, J = 7.6 Hz, 2H), 7.37 (t, J = 7.2 Hz,

2H), 7.33-7.15 (m, 12H), 7.01 (td, J = 8.4 Hz, 2.4 Hz, 1H), 6.92 (dd, J = 8.0 Hz, 2.8 Hz, 1H), 6.64

(dd, J = 8.4 Hz, 4.0 Hz, 1H), 5.47 (d, J = 2.4 Hz, 1H), 5.02 (d, J = 16.4 Hz, 1H), 4.80 (d, J = 16.0 Hz, 1H), 4.06, 4.01 (ABq, J = 11.6 Hz ,2H), 3.90, 3.81 (ABq, J = 16.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.4, 160.6, 158.2, 151.9, 139.7, 139.7, 137.0, 134.7, 134.2, 130.5, 129.0, 128.5, 128.4, 128.2, 128.0, 127.9, 126.9, 123.7, 118.4, 118.2, 115.3, 112.6, 112.5, 112.4, 110.9, 110.9, 99.6, 94.8, 71.1, 69.3, 60.8, 56.5, 44.6; ESI-HRMS: calcd. for C₃₆H₂₆FN₃O₄+Na⁺ 606.1800, found 606.1804.

3g, white solid, 48.6 mg, 81% yield; $[\alpha]_D^{20} = -250$ (c = 0.28 in CHCl₃); 84% ee, determined by HPLC analysis: [Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.51 min, t (major) = 15.82 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.49 (d, J = 6.8 Hz, 2H), 7.38 (t, J = 6.8 Hz,

2H), 7.33-7.13 (m, 14H), 6.64 (d, J = 8.4 Hz, 1H), 5.51 (d, J = 2.8 Hz, 1H), 5.02 (d, J = 16.0 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.07, 4.03 (ABq, J = 12.0 Hz , 2H), 3.89, 3.82 (ABq, J = 16.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.0, 151.8, 142.2, 134.1, 131.7, 130.4, 129.3, 129.0, 128.5, 128.3, 128.1, 128.0, 127.9, 126.9, 124.5, 115.2, 112.5, 111.2, 99.7, 94.9, 71.2, 68.9, 60.4, 56.5, 44.6; ESI-HRMS: calcd. for C₃₆H₂₆ClN₃O₄+Na⁺ 622.1504, found 622.1504.

3h, white solid, 55.4 mg, 86% yield; $[\alpha]_{D}^{20} = -199$ (c = 0.60 in CHCl₃); 82% ee, determined by HPLC analysis: [Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 7.22 min, t (major) = 15.30 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.49 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 7.2

Hz, 2H), 7.33-7.21 (m, 11H), 7.17-7.15 (m, 2H), 7.01 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 1.6 Hz, 1H), 5.47 (d, J = 2.4 Hz, 1H), 5.01 (d, J = 16.0 Hz, 1H), 4.80 (d, J = 8.0 Hz, 1H), 4.05, 3.99 (ABq, J = 11.6 Hz, 2H), 3.88, 3.78 (ABq, J = 16.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.4, 151.8, 145.0, 130.4, 129.1, 129.0, 128.5, 128.4, 128.1, 128.1, 127.9, 126.9, 126.8, 125.3, 121.1, 115.1, 113.6, 112.4, 99.5, 94.9, 71.1, 68.9, 60.8, 56.5, 44.6; ESI-HRMS: calcd. for C₃₆H₂₆BrN₃O₄+Na⁺ 666.0999, found 666.0996

3i, white solid, 48.6 mg, 81% yield; $[\alpha]_{D}^{20} = -153$ (c = 0.25 in CHCl₃); 86% ee, determined by HPLC analysis: [Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 7.07 min, t (major) = 31.25 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.47 (d, J = 7.2 Hz, 2H),

7.37-7.01 (m, 17H), 5.52 (d, J = 2.4 Hz, 1H), 5.35 (d, J = 2.4 Hz, 2H), 4.02, 3.92 (ABq, J = 11.6 Hz, 2H), 3.84, 3.68 (ABq, J = 16.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.1, 151.8, 137.0, 136.4, 134.7, 134.4, 130.4, 129.0, 128.7, 128.6, 128.3, 128.1 127.8, 127.2, 126.1, 125.2, 124.6, 122.6,

116.3, 115.2, 112.5, 100.0, 95.0, 71.1, 68.8, 60.5, 56.5, 45.8; ESI-HRMS: calcd. for $C_{36}H_{26}ClN_3O_4+Na^+$ 622.1504, found 622.1506.

Enantiomer of **3i**, white solid, 37.8 mg, 63% yield; $[\alpha]_D^{20} = 146$ (c = 0.23 in CHCl₃); -84% ee, determined by HPLC analysis: [Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor)= 7.07 min, t (major) = 39.98 min].

3j, white solid, 49.3 mg, 85% yield; $[\alpha]_{D}^{20} = -209$ (c = 0.22 in CHCl₃); 86% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 25.12 min, t (major) = 34.64 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39 (d, J = 8.0 Hz, 2H), 7.32-7.15 (m, 15H), 7.07 (t, J = 7.6 Hz, 1H), 5.46 (d, J = 1.6 Hz, 1H), 5.05 (d, J = 16.0 Hz, 1H), 4.82

(d, J = 16.0 Hz, 1H), 4.05, 4.00 (ABq, J = 12.0 Hz, 2H), 3.93, 3.81 (ABq, J = 16.4 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.6, 151.7, 143.7, 138.8, 134.6, 131.8, 131.7, 130.3, 129.2, 128.9, 128.3, 128.1, 127.8, 126.9, 124.1, 123.8, 115.4, 112.7, 110.2, 99.7, 94.3, 71.0, 69.2, 60.3, 56.6, 44.5, 21.1; ESI-HRMS: calcd. for C₃₇H₂₉N₃O₄+Na⁺ 602.2050, found 602.2051.

3k, white semisolid, 54.2 mg, 91% yield; $[\alpha]_D^{20} = -84$ (c = 0.39 in CHCl₃); 93% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 8.78 min, t (major) = 16.81 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (d, J = 7.2 Hz, 1H), 7.32-7.13 (m, 14H),

7.08 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 7.6 Hz, 1H), 5.71 (d, J = 6.8 Hz, 1H), 4.94 (d, J = 8.0 Hz, 1H), 4.74 (d, J = 8.0 Hz, 1H), 4.00, 3.81 (ABq, J = 12.0 Hz, 2H), 3.82, 3.63 (ABq, J = 19.6 Hz, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.4, 157.4, 152.5, 144.0, 137.1, 131.6, 130.5, 130.1, 128.9, 128.3, 128.1, 127.8, 127.7, 126.8, 124.5, 124.4, 120.4, 115.4, 112.8, 110.1, 110.0, 98.3, 91.6, 70.8, 70.5, 56.4, 55.5, 44.4; ESI-HRMS: calcd. for C₃₇H₂₉N₃O₅+Na⁺ 618.1999, found 618.2002. Enantiomer of **3k**, white semisolid, 41.7 mg, 70% yield; $[\alpha]_D^{20} = 88$ (c = 0.13 in CHCl₃); -94% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major)= 8.62 min, t (minor) = 17.14 min].

BnQ

 O_2N

31, white solid, 48.2 mg, 81% yield; $[\alpha]_D^{20} = -379$ (c = 0.21 in CHCl₃); 85% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 29.07 min, t (major) = 60.68 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.43 (d, J = 8.8 Hz, 2H), 7.32-7.14 (m, 13H), 7.07 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 2.8 Hz, 1H), 5.05

(d, J = 16.0 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.09, 4.03 (ABq, $J_{AB} = 11.6$ Hz, 2H), 3.98, 3.78 (ABq, J = 11.6 Hz, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.7, 156.0, 151.8, 143.7, 137.1, 134.6, 131.7, 128.9, 128.3, 128.1, 127.8, 126.9, 124.1, 123.9, 115.3, 113.8, 112.8, 110.2, 99.8, 94.4, 71.1, 69.2, 60.2, 56.7, 55.2, 44.5; ESI-HRMS: calcd. for C₃₇H₂₉N₃O₅+Na⁺ 618.1999, found 618.9998.

3m, white semisolid, 46.1 mg, 79% yield; $[\alpha]_D^{20} = -154$ (c = 0.23 in CHCl₃); 72% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.93 min, t (major) = 16.15 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51-7.48 (m, 2H), 7.32-7.21 (m, 10H), 7.17-7.13 (m, 4H), 7.09-7.03 (m, 3H), 6.73 (d, J = 8.0 Hz, 1H), 4.46 (d, J = 2.8

Hz, 1H), 5.03 (d, J = 12.0 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.15, 4.08 (ABq, J = 11.6 Hz, 2H), 3.90, 3.81 (ABq, J = 12.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.6, 164.3, 161.8, 151.0, 143.7, 134.5, 132.3, 132.2, 131.8, 130.7, 129.0, 128.4, 128.0, 127.8, 126.9, 124.1, 123.9, 115.9, 115.6, 115.3, 112.6, 110.3, 99.5, 94.7, 71.2, 69.3, 60.1, 56.5, 44.5; ESI-HRMS: calcd. for C₃₆H₂₆FN₃O₄+Na⁺ 606.1800, found 606.1798.

Bno O_2N N $Bno O_2N$ O_2N O_2N

3n, white solid, 46.8 mg, 78% yield; $[\alpha]_D^{20} = -91$ (*c* =0.36 in CHCl₃); 87% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 16.38 min, t (minor) = 29.07 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.55 (s, 1H), 7.42-7.41 (m, 1H), 7.33-7.13 (m, 15H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 5.46 (d, *J*

= 2.4 Hz, 1H), 5.04 (d, J = 16.0 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.10 (d, J = 2.4 Hz, 2H), 3.93, 3.84 (ABq, J = 16.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.4, 150.4, 143.7, 131.8, 130.6, 129.7, 129.1, 128.9, 128.6, 128.3, 128.1, 127.8, 126.8, 124.0, 123.9, 116.4, 112.5, 110.3, 99.4, 94.9, 71.2, 69.1, 60.1, 56.6, 44.5; ESI-HRMS: calcd. for C₃₆H₂₆ClN₃O₄+Na⁺ 622.1504, found 622.1503.

30, white solid, 51.0 mg, 85% yield; $[\alpha]_{D}^{20} = -202$ (c = 0.23 in CHCl₃); 74% ee, determined by HPLC analysis: [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 15.59 min, t (major) = 23.81 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.46 (d, J = 8.4 Hz, 2H), 7.36-7.21 (m, 11H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.4 Hz, 2H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.4 Hz, 2H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.4 Hz, 2H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.4 Hz, 2H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.4 Hz, 2H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.4 Hz, 2H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.44 (d,

= 2.8 Hz, 1H), 5.02 (d, J = 16.0 Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.14, 4.06 (ABq, J = 12.0 Hz, 2H), 3.91, 3.82 (ABq, J = 16.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.6, 150.8, 143.7, 134.5, 131.9, 131.8, 128.9, 128.7, 128.4, 128.1, 127.8, 128.8, 126.8, 124.1, 124.0, 116.2, 112.5, 110.2, 99.3, 94.8, 71.2, 69.3, 60.1, 56.5, 44.5; ESI-HRMS: calcd. for C₃₆H₂₆ClN₃O₄+Na⁺ 622.1504, found 622.1508.

3p, colorless oil, 45.0 mg, 71% yield; $[\alpha]_{D}^{20} = -210$ (c = 0.14 in CHCl₃); 79% ee, determined by HPLC analysis: [Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.38 min, t (major) = 12.05 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77 (d, J = 6.4 Hz, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.33-7.13 (m, 13H), 7.08 (t, J = 3.6 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.33-7.13 (m, 13H), 7.08 (t, J = 3.6 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.33-7.13 (m, 13H), 7.08 (t, J = 3.6 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.33-7.13 (m, 13H), 7.08 (t, J = 3.6 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.33-7.13 (m, 13H), 7.08 (t, J = 3.6 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 5.0 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 5.0 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 5.0 Hz, 1H), 6.73 (d, J = 5.0 Hz, 1H), 7.50 (t, J = 5.0 Hz, 1H), 7.50 (

8.0 Hz, 1H), 5.53 (d, J = 2.4 Hz, 1H), 5.03 (d, 8.0 Hz, 1H), 4.82 (d, J = 8.0 Hz, 1H), 4.05 (d, J = 3.6 Hz, 2H), 3.84 (d, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.0 , 150.0, 143.6, 134.3, 133.8, 131.8, 129.0, 128.9, 128.3, 128.3, 127.9, 127.8, 127.8, 126.8, 123.9, 123.9, 116.7, 112.2, 110.3, 99.0, 95.0, 71.1, 69.1, 60.1, 56.4, 44.4; ESI-HRMS: calcd. for C₃₆H₂₆F₃N₃O₄+Na⁺ 656.1768, found 656.1765.

3q, white solid, 52.3 mg, 85% yield; $[\alpha]_{D}^{20} = -75$ (c = 0.23 in CHCl₃); 90% ee, determined by HPLC analysis: [Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 9.70 min, t (major) = 21.99 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.92 (d, J = 6.8 Hz, 1H),

172.3, 152.6, 144.0, 136.9, 129.6, 129.3, 128.9, 128.1, 128.1, 127.7, 126.9, 125.9, 125.3, 124.3, 124.3, 115.6, 112.7, 110.1, 98.9, 93.1, 70.7, 70.5, 57.7, 56.0, 44.5; ESI-HRMS: calcd. for $C_{40}H_{29}N_3O_4+Na^+$ 638.2050, found 638.2090.

Enantiomer of **3q**, white solid, 40.0 mg, 65% yield; $[\alpha]_{D}^{20} = 72$ (c = 0.12 in CHCl₃); -90% ee, determined by HPLC analysis: [Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major)= 9.42 min, t (minor) = 21.52 min].

3r, white solid, 43.8 mg, 84% yield; $[\alpha]_D^{20} = -326$ (c = 0.62 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.35 min, t (minor) = 21.09 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.54-7.55 (m, 2H), 7.42-7.41 (m, 3H), 7.31-7.05 (m,

11H), 7.07 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 7.2 Hz, 2H), 6.73 (d, J = 8.0 Hz, 1H), 5.61 (d, J = 2.4 Hz, 1H), 5.15 (d, J = 15.6 Hz, 1H), 4.77 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.4, 151.3, 143.7, 134.7, 132.0, 131.6, 130.4, 129.6, 128.9, 128.7, 128.4, 128.1, 127.7, 127.1, 124.1, 123.7, 115.9, 112.8, 110.2, 100.5, 97.6, 79.2, 69.0, 60.6, 44.6; ESI-HRMS: calcd. for C₃₄H₂₃N₃O₃+Na⁺ 544.1632, found 544.1624.

3s, white solid, 28.3 mg , 54% yield; $[\alpha]_{D}^{20} = 327$ (c = 0.52 in CHCl₃); -98% ee, determined by HPLC analysis: [Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.89 min, t (minor) = 11.55 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.50 (d, J =

7.2 Hz, 2H), 7.38-7.22 (m, 10H), 7.10 (d, J = 6.8 Hz, 1H), 7.02 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 5.61 (d, J = 2.0 Hz, 1H), 4.24, 4.16 (ABq, J = 5.2 Hz, 2H), 3.98 (d, J = 1.2 Hz, 2H), 3.64 (s, 3H), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.6, 162.0, 145.9, 144.6, 137.2, 135.7, 135.4, 130.6, 130.2, 128.5, 128.3, 128.2, 127.8, 125.1, 123.2, 122.7, 108.6, 100.8, 93.7, 71.0, 66.9, 58.4, 56.6, 52.2, 26.9; ESI-HRMS: calcd. for C₃₇H₃₀N₂O₆+Na⁺ 545.1683, found 545.1683.

4. Synthetic transformations of product 3r

To a stirred solution of **3r** (26 mg, 0.05 mmol) in 1 mL of CHCl₃ was added DBU (0.1 mmol) at room temperature. The mixture was stirred until **3r** was consumed (1 h). Then evaporation of solvent under reduced pressure followed by purification by silica gel column chromatography using EtOAc/petroleum ether (1:8) afforded the compound **4** in a quantitative yield (99%). light yellow oil, 23.7 mg, 99% yield; $[\alpha]_{D}^{20} = 20$ (c = 0.12 in EtOAc); 86% ee, determined by HPLC analysis: [Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.78 min, t (minor) = 29.86 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.98 (d, J = 7.2 Hz, 2H), 7.90 (s, 1H), 7.49 (t, J = 7.2 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 7.37 (d, J = 7.2 Hz, 2H), 7.32-7.27 (m, 2H), 7.22 (t, J = 7.2 Hz, 2H), 7.15 (t, J = 7.2 Hz, 1H), 7.10-7.01 (m, 6H), 6.85 (d, J = 8.0 Hz, 1H), 5.30 (d, J = 15.6 Hz, 1H), 4.78 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 169.6, 150.3, 147.1, 144.2, 131.8, 130.1, 129.7, 129.2, 128.9, 128.8, 128.4, 127.7, 127.4, 127.1, 124.1, 123.7, 117.8, 114.1, 110.2, 102.4, 83.8, 73.3, 44.7; ESI-HRMS: calcd. for C₃₄H₂₂N₂O+Na⁺ 497.1624, found 497.1628.

To a stirred suspension of product **3r** (70 mg, 0.13 mmol) in CH₃COOH (1 mL) was added Zn dust (87 mg, 1.3 mmol, 10 equiv) in one portion at room temperature. The mixture was stirred for 1.5 hours. Upon completion, the mixture was diluted by EtOAc and saturated NaHCO₃ was added carefully. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography (petroleum ether/EtOAc = 4:1) to afford bridged heterocycle **5** as a diastereomeric mixture (59.1 mg, 87% yield). 1:0.9 dr, determined by ¹H NMR analysis. The diastereomeric mixture could not be isolated very well on a chiral column by HPLC analysis, the enantioselectivity almost remained unchanged compared with **3r**. 86% ee, determined by HPLC analysis: [Daicel Chiralpak ID,

n-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t₁ (major) = 9.66 min, t₁ (minor) = 14.62 min]; 86% ee, determined by HPLC analysis: [t₂ (minor) = 20.47 min, t₂ (major) = 32.43 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.37-9.16 (m, 1.66H), 7.50-7.28 (m, 33.91H), 7.22-7.14 (m, 5.93H), 7.00 (t, J = 7.6 Hz, 1.81H), 6.91 (t, J = 7.6 Hz, 1.18H), 6.70 (t, J = 7.6 Hz, 2.40H), 6.57 (d, J = 7.2Hz, 0.93H), 5.25 (d, J = 9.6 Hz, 1.11H), 5.12 (d, J = 8.8 Hz, 1.00H), 5.03 (d, J = 6.4 Hz, 1.08H), 4.99 (d, J = 6.0 Hz, 1.33H), 4.88- 4.78 (m, 4.49H), 4.67 (s, 0.96H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 173.1, 172.9, 149.7, 149.5, 143.4, 143.4, 142.8, 142.2, 138.4, 136.8, 134.9, 132.2, 132.1, 123.0, 129.8, 129.5, 129.3, 129.0, 128.9, 128.8, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 127.2, 127.2, 124.9, 124.6, 124.5, 124.4, 123.5, 123.3, 121.1, 120.9, 116.7, 116.7, 112.6, 112.4, 109.8, 103.2, 102.8, 78.6, 78.5, 49.2, 48.7, 46.3, 46.1, 44.3; ESI-HRMS: calcd. for C₃₄H₂₅N₃O₂+Na⁺ 530.1839, found 530.1847.

5. Crystal data and structure refinement for enantiopure 3s

6. NMR spectra and HPLC chromatograms

1	11.126 VB	0.8008	317.86523	6.03598	2.3134
2	24.962 BB	1.6371	1.34221e4	126.17245	97.6866

Bno O₂N Cl 3i

S48

S50

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	8.891	VV	0.2765	2.97280e4	1679.03918	99.2202
2	11.553	VV	0.7938	233.64839	4.09496	0.7798

