Cobalt(III)-Catalyzed Efficient Synthesis of Indenones through

Carboannulation of Benzoates and Alkynes

Lingheng Kong, Xifa Yang, Xukai Zhou, Songjie Yu,* Xingwei Li*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

China

Table of Contents

I.	General	2
II.	General procedures for the synthesis of compound 3	2
III.	Mechanistic Studies	9
1	. KIE measurements of reaction for indenones	9
2	. Competitive Experiment	
IV.	References	
v.	NMR Spectra	12

I. General

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. Diphenylacetylenes¹ and $[CoCp^*(CO)I_2]^2$ were prepared by following literature reports. All reactions were carried out using Schlenk techniques or in an N₂-filled glovebox. NMR Spectra were recorded on a 400 MHz NMR spectrometer in the solvent indicated. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. HRMS data were obtained on a Thermo Scientific LTQ Orbitrap Discovery spectrometer (Bremen, Germany). Column chromatography was performed on silica gel (300-400 mesh) using dichloromethane (DCM)/petroleum ether (PE).

II. General procedures for the synthesis of compound 3

Benzoates (0.2 mmol), alkynes (0.24 mmol), $[Cp^*Co(CO)I_2]$ (10 mol %), AgNTf₂ (20 mol %), Zn(OAc)₂ (2.0 equiv), and HFIP (2.0 mL) were charged into the pressure tube. The reaction mixture was stirred under N₂ at 120 °C for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/DCM to afford the product **3**.

2,3-Diphenyl-1H-inden-1-one (3aa)

3aa was obtained according to the general procedure in 86% yield (48.5 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 6.8 Hz, 1H), 7.44 – 7.32 (m, 6H), 7.29 – 7.25 (m, 6H), 7.14 (d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 155.4, 145.3, 133.5, 132.8, 132.4, 130.8, 130.7, 130.0, 129.3, 129.0, 128.8, 128.5, 128.1, 127.8, 123.0, 121.3. The NMR data agree with those in a literature report.³

5-Methyl-2,3-diphenyl-1H-inden-1-one (3ba)

3ba was obtained according to the general procedure in 91% yield (53.9 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.2 Hz, 1H), 7.30 – 7.35 (m, 5H), 7.27 – 7.23 (m, 5H), 7.06 (d, J = 7.1 Hz, 1H), 6.93 (s, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 154.9, 145.6, 144.4, 132.8, 132.7, 130.8, 129.9, 129.1, 128.9, 128.7, 128.5, 128.3, 128.0, 127.6, 123.0, 122.5, 22.1. The NMR data agree with those in a literature report.³

5-Methoxy-2,3-diphenyl-1H-inden-1-one (3ca)

3ca was obtained according to the general procedure in 77% yield (47.8 mg). red solid; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.9 Hz, 1H), 7.40 – 7.34 (m, 5H), 7.30 – 7.20 (m, 5H), 6.73 – 6.63 (m, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 164.5, 153.2, 147.9, 133.9, 132.7, 130.9, 130.0, 129.2, 128.8, 128.6, 128.1, 127.8, 124.9, 123.5, 110.5, 110.3, 55.8. The NMR data agree with those in a literature report.³

5-Fluoro-2,3-diphenyl-1H-inden-1-one (3da)

3da was obtained according to the general procedure in 51% yield (30.3 mg). red solid; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 7.8, 5.2 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.37 – 7.34 (m, 2H), 7.26 – 7.24 (m, 5H), 6.96 – 6.89 (m, 1H), 6.86 (dd, J = 8.5, 1.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 166.5 (d, J_{C-F} = 252.9 Hz), 153.2 (d, J_{C-F} = 2.4 Hz), 148.6 (d, J_{C-F} = 9.3Hz), 133.7 (d, J_{C-F} = 1.0 Hz), 132.2, 130.4, 120.0, 129.5, 129.0, 128.4, 128.2, 128.1, 126.5 (d, J_{C-F} = 3.2 Hz), 124.8 (d, J_{C-F} = 9.7 Hz), 114.4 (d, J_{C-F} = 23.0 Hz), 110.2 (d, J_{C-F} = 25.7 Hz). The NMR data agree with those in a literature report.³

5-Chloro-2,3-diphenyl-1H-inden-1-one (3ea)

3ea was obtained according to the general procedure in 58% yield (36.6 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.6 Hz, 1H), 7.43 – 7.41 (m, 3H), 7.38 – 7.34 (m, 2H), 7.28 – 7.24 (m, 6H), 7.11 (d, J = 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 154.0, 147.3, 139.8, 133.5, 132.2, 130.3, 130.0, 129.6, 129.0, 128.9, 128.5, 128.4, 128.2, 128.1, 123.9, 122.0. The NMR data agree with those in a literature report.³

5-Bromo-2,3-diphenyl-1H-inden-1-one (3fa)

3fa was obtained according to the general procedure in 54% yield (39.1 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 5H), 7.36 – 7.34 (m, 2H), 7.27 – 7.24 (m, 6H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 195.3, 154.3, 147.4, 133.5, 132.3, 131.8, 130.4, 130.1, 129.7, 129.5, 129.1, 128.5, 128.44, 128.3, 128.2, 124.8, 124.2. The NMR data agree with those in a literature report.³

5-Iodo-2,3-diphenyl-1H-inden-1-one (3ga)

3ga was obtained according to the general procedure in 55% yield (44.5 mg). red solid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 7.5, 1.1 Hz, 1H), 7.46 (d, J = 0.8 Hz, 1H), 7.43 – 7.41 (m, 3H), 7.36 – 7.33 (m, 2H), 7.30 (d, J = 7.5 Hz, 1H), 7.27 – 7.24 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 154.4, 146.9, 138.0, 133.1, 132.2, 130.2, 130.0, 129.6, 129.0, 128.4, 128.2, 128.1, 124.2, 100.9. HRMS: [M + H]⁺ calculated for C₂₁H₁₄IO⁺: 409.0084, found: 409.0084.

6-Methoxy-2,3-diphenyl-1H-inden-1-one (3ha), major : minor = 1.2:1

3ha was obtained according to the general procedure in 87% yield (54.6 mg). red solid; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 3H), 7.34 – 7.28 (m, 2H), 7.26 – 7.22 (m, 4H), 7.21 – 7.12 (m, 3H), 7.03 (d, *J* = 8.0 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 161.1, 154.0, 136.9, 131.1, 130.1, 129.9, 129.4, 128.8, 128.5, 128.1, 127.9, 127.6, 122.3, 119.7, 116.1, 110.7, 55.7. HRMS: [M + H]⁺ calculated for C₂₂H₁₇O₂⁺: 313.1223, found: 313.1222.

6-Fluoro-2,3-diphenyl-1H-inden-1-one (**3ia**), major : minor = 15:1

3ia was obtained according to the general procedure in 90% yield (54.0 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.32 (m, 6H), 7.30 – 7.15 (m, 6H), 7.06 (t, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 156.1 (d, $J_{C-F} = 255.9$ Hz), 154.4 (d, $J_{C-F} = 3.4$ Hz), 133.7 (d, $J_{C-F} = 2.6$ Hz), 133.5 (d, $J_{C-F} = 3.8$ Hz), 133.46, 133.4, 131.4 (d, $J_{C-F} = 6.8$ Hz), 130.3, 130.1, 129.3, 128.54 (d, $J_{C-F} = 2.7$ Hz), 128.3, 128.1, 127.9, 123.4 (d, $J_{C-F} = 23.1$ Hz), 119.2 (d, $J_{C-F} = 2.6$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.2. HRMS: [M + H]⁺ calculated for C₂₁H₁₄FO⁺: 301.1023, found: 301.1027.

6-Chloro-2,3-diphenyl-1H-inden-1-one (3ja), major : minor = 3.2:1

3ja was obtained according to the general procedure in 47% yield (30.0 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 1.8 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.39 – 7.34 (m, 3H), 7.27 – 7.24 (m, 5H), 7.08 (d, J = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 155.1, 143.3, 135.0, 132.6, 132.4, 130.4, 129.9, 129.6, 128.9, 128.4, 128.2, 128.0, 127.9, 123.6, 122.2. HRMS: [M + H]⁺ calculated for C₂₁H₁₄ClO⁺: 317.0728, found: 317.0730.

7-Methyl-2,3-diphenyl-1H-inden-1-one (3ka)

3ka was obtained according to the general procedure in 85% yield (50.3 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.32 (m, 5H), 7.28 – 7.17 (m, 6H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 7.2 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 154.3, 145.7, 138.0, 133.0, 132.6, 132.4, 132.2, 131.0, 130.1, 129.1, 128.8, 128.6, 128.0, 127.6, 127.1, 119.3, 17.4. The NMR data agree with those in a literature report.³

7-Fluoro-2,3-diphenyl-1H-inden-1-one (3la)

3la was obtained according to the general procedure in 29% yield (17.4 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 3H), 7.30 – 7.24 (m, 3H), 7.20 – 7.15 (m, 5H), 6.88 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6 (d, *J*_{*C-F*} = 1.4 Hz), 157.9 (d, *J*_{*C-F*} = 262.3 Hz), 154.5 (d, *J*_{*C-F*} = 4.7 Hz), 147.4 (d, *J*_{*C-F*} = 3.5 Hz), 135.8 (d, *J*_{*C-F*} = 8.3 Hz), 133.0 (d, *J*_{*C-F*} = 1.3 Hz), 132.5, 130.2, 130.1, 129.4, 128.9, 128.5, 128.1, 128.0, 118.3 (d, *J*_{*C-F*} = 21.5 Hz), 117.7 (d, *J*_{*C-F*} = 2.4 Hz), 115.6 (d, *J*_{*C-F*} = 12.4 Hz). HRMS: [M + H]⁺ calculated for C₂₁H₁₄FO⁺: 301.1023, found: 301.1021.

7-Bromo-2,3-diphenyl-1H-inden-1-one (3ma)

3ma was obtained according to the general procedure in 42% yield (30.3 mg). red solid; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.32 (m, 6H), 7.30 – 7.18 (m, 6H), 7.09 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 153.4, 148.2, 134.1, 134.0, 132.9, 132.2, 130.1, 129.4, 128.9, 128.5, 128.1, 128.0, 127.6, 120.5, 119.1. HRMS: [M + H]⁺ calculated for C₂₁H₁₄BrO⁺: 361.0223, found: 361.0227.

2,3-Diphenyl-1H-cyclopenta[a]naphthalen-1-one (3na)

3na was obtained according to the general procedure in 70% yield (46.8 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 8.5 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.47 – 7.41 (m, 5H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.33 – 7.23 (m, 6H) ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 153.8, 146.7, 134.7, 134.2, 132.8, 131.2, 130.8, 130.1, 129.4, 129.3, 129.2, 128.9, 128.6, 128.4, 128.1, 127.7, 126.0, 123.9, 122.4, 119.3. HRMS: [M + H]⁺ calculated for C₂₅H₁₇O⁺: 333.1274, found: 333.1277.

2,3-Di-p-tolyl-1H-inden-1-one (3ab)

3ab was obtained according to the general procedure in 38% yield (23.6 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 6.9 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.30 – 7.18 (m, 6H), 7.17 – 7.13 (m, 2H), 7.09 – 7.07 (m, 2H), 2.40 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 154.8, 145.5, 139.4, 137.5, 133.3, 132.1, 130.9, 129.9, 129.8, 129.5, 128.9, 128.7, 128.5, 128.0, 122.8, 121.1, 21.5, 21.4. The NMR data agree with those in a literature report.³

2,3-Bis(4-(tert-butyl)phenyl)-1H-inden-1-one (3ac)

3ac was obtained according to the general procedure in 45% yield (35.5 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 6.9 Hz, 1H), 7.44 – 7.41 (m, 2H), 7.36 – 7.33 (m, 3H), 7.30 – 7.22 (m, 5H), 7.16 (d, J = 7.2 Hz, 1H), 1.36 (s, 9H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 154.7, 152.5, 150.6, 145.6, 133.3, 131.8, 130.9, 129.9, 129.6, 128.7, 128.3, 127.9, 125.6, 125.0, 122.8, 121.3, 34.9, 34.6, 31.3. The NMR data agree with those in a literature report.⁵

2,3-Bis(4-fluorophenyl)-1H-inden-1-one (3ad)

3ad was obtained according to the general procedure in 90% yield (57.6 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.0 Hz, 1H), 7.40 – 7.35 (m, 3H), 7.31 – 7.27 (m, 1H), 7.25 – 7.21 (m, 2H), 7.14 – 7.10 (m, 3H), 7.00 – 6.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 163.2 (d, J_{C-F} = 248.7 Hz), 162.4 (d, J_{C-F} = 247.0 Hz), 154.2, 144.9, 133.6, 131.8 (d, J_{C-F} = 8.0 Hz), 131.5, 130.6, 130.5 (d, J_{C-F} = 8.2 Hz), 129.2, 128.5 (d, J_{C-F} = 3.4 Hz), 126.6 (d, J_{C-F} = 3.4 Hz), 123.2, 121.1, 116.2 (d, J_{C-F} = 21.6 Hz), 115.4 (d, J_{C-F} = 21.4 Hz). HRMS: [M + H]⁺ calculated for C₂₁H₁₃F₂O⁺: 319.0929, found: 319.0929.

2,3-Bis(4-chlorophenyl)-1H-inden-1-one (3ae)

3ae was obtained according to the general procedure in 86% yield (60.4 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 6.9 Hz, 1H), 7.42 – 7.36 (m, 3H), 7.33 – 7.27 (m, 3H), 7.27 – 7.23 (m, 2H), 7.19 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 154.3, 144.6, 135.6, 134.1, 133.7, 131.5, 131.2, 130.9, 130.5, 129.9, 129.4, 129.3, 128.9, 128.6 123.3, 121.2. The NMR data agree with those in a literature report.⁴

2,3-Bis(4-bromophenyl)-1H-inden-1-one (3af)

3af was obtained according to the general procedure in 73% yield (64.4 mg). red solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 3H), 7.41 – 7.38 (m, 3H), 7.33 – 7.22 (m, 3H), 7.13 – 7.09 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 154.4, 144.6, 133.7, 132.3, 131.5, 131.4, 131.3, 130.5, 130.1, 129.4, 129.3, 123.9, 123.3, 122.4, 121.2. The NMR data agree with those in a literature report.⁵

2,3-Di-m-tolyl-1H-inden-1-one (3ag)

3ag was obtained according to the general procedure in 56% yield (35.0 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.0 Hz, 1H), 7.36 (t, *J* = 7.0 Hz, 1H), 7.29 – 7.24 (m, *J* = 8.2, 4.3 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.17 – 7.09 (m, 4H), 7.05 (d, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 155.4, 145.4, 138.4, 137.5, 133.4, 132.8, 132.4, 130.8, 130.7, 130.6, 130.0, 128.9, 128.7, 128.5, 127.9, 127.1, 125.7, 122.9, 121.3, 21.5, 21.4. The NMR data agree with those in a literature report.³

2,3-Bis(3-fluorophenyl)-1H-inden-1-one (3ah)

3ah was obtained according to the general procedure in 88% yield (56.0 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 6.8 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.25 – 7.22 (m, 1H), 7.17 – 7.12 (m, 1H), 7.09 – 6.97 (m, 4H), 6.97 – 6.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 162.9 (d, $J_{C-F} = 246.4$ Hz), 162.5 (d, $J_{C-F} = 243.9$ Hz), 154.7 (d, $J_{C-F} = 1.9$ Hz), 144.6, 134.5 (d, $J_{C-F} = 8.0$ Hz), 133.8, 132.4 (d, $J_{C-F} = 8.4$ Hz), 131.7 (d, $J_{C-F} = 2.1$ Hz), 130.8 (d, $J_{C-F} = 8.2$ Hz), 130.4, 129.7 (d, $J_{C-F} = 8.3$ Hz), 129.5, 125.7 (d, $J_{C-F} = 2.7$ Hz), 124.2 (d, $J_{C-F} = 2.9$ Hz), 123.4, 121.4, 116.8 (d, $J_{C-F} = 22.2$ Hz), 116.6 (d, $J_{C-F} = 21.0$ Hz), 115.4 (d, $J_{C-F} = 22.3$ Hz), 115.0 (d, $J_{C-F} = 20.8$ Hz). The NMR data agree with those in a literature report.⁶

2,3-Bis(3-chlorophenyl)-1H-inden-1-one (3ai)

3ai was obtained according to the general procedure in 84% yield (59.1 mg). red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 6.4 Hz, 1H), 7.32 – 7.22 (m, 6H), 7.18 – 7.08 (m, 3H), 7.04 – 6.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 154.5, 144.5, 135.0, 134.1, 134.12, 133.8, 132.08, 131.6, 130.4, 130.3, 129.9, 129.7, 129.5, 129.4, 128.2, 128.19, 128.1, 126.8, 123.4, 121.4. The NMR data agree with those in a literature report.³

2,3-Bis(3-bromophenyl)-1H-inden-1-one (3aj)

3aj was obtained according to the general procedure in 83% yield (73.0 mg). red solid; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.53 (m, 3H), 7.46 (s, 1H), 7.43 – 7.37 (m, 2H), 7.34 – 7.22 (m, 3H), 7.16 – 7.08 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 154.4, 144.4, 134.4, 133.8, 132.7, 132.6, 132.3, 131.5, 131.1, 131.0, 130.6, 130.3, 129.7, 129.6, 128.5, 127.2, 123.4, 123.0, 122.3, 121.4. HRMS: [M + H]⁺ calculated for C₂₁H₁₃Br₂O⁺: 438.9328, found: 438.9326.

III. Mechanistic Studies

1. KIE measurements of reaction for indenones

A mixture of ethyl benzoate **1a** (0.2 mmol, 30.0 mg), diphenylacetylene **2a** (0.24 mmol, 42.8 mg), [Cp*Co(CO)I₂] (10 mol %, 9.5 mg), AgNTf₂ (20 mol %, 16.0 mg), Zn(OAc)₂ (2.0 equiv, 73.4 mg), and HFIP (2.0 mL) were charged into a pressure tube under N₂. In another tube were added a mixture of ethyl benzoate- d_5 **1a**' (0.2 mmol, 31.0 mg), diphenylacetylene **2a** (0.24 mmol, 42.8 mg), [Cp*Co(CO)I₂] (10 mol %, 9.5 mg), AgNTf₂ (20 mol %, 16.0 mg), Zn(OAc)₂ (2.0 equiv, 73.4 mg), and HFIP (2.0 mL) were charged into a pressure tube under N₂ These two reaction mixtures were stirred side-by-side in the same oil bath at 100 °C for 20 min. These two mixtures were rapidly combined and all the volatiles were rapidly removed under reduced pressure. The residue was purified by silica gel chromatography using PE/DCM to afford the mixed product. KIE value ($k_{\rm H}/k_{\rm D} = 4.5$) was estimated on the basis of ¹H NMR analysis. No H/D exchanged in the reaction product was observed.³ If the relative amount of D is x and 1*14 + 10*x = 16.23, then x = 0.223. KIE = 1/x = 4.5.

An equimolar mixture of acetanilide **1b** (0.2 mmol, 32.0 mg) and **1e** (0.2 mmol, 37.0 mg), diphenylacetylene **2a** (0.2 mmol, 36.0 mg), $[Cp*Co(CO)I_2]$ (10 mol %, 9.5 mg), AgNTf₂ (20 mol %, 16.0 mg), Zn(OAc)₂ (2.0 equiv, 73.4 mg), and HFIP (2.0 mL) were charged into a pressure tube under N₂. The reaction mixture was stirred at 120 °C for 6 h. The solvent was rapidly removed under reduced pressure and the residue was purified by silica gel chromatography using PE/DCM to afford the mixed product. The yield ratio (**3ba/3ea** = 2.3:1) was determined on the basis of ¹H NMR analysis.

IV. References

- M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, *Org. Lett.*, 2002, 4, 3199.
- (2) T. Yoshino, H. Ikemoto, S. Matsunaga and M. Kanai, Angew. Chem., Int. Ed., 2013, 52, 2207.
- (3) B.-J. Li, H.-Y. Wang, Q.-L. Zhu and Z.-J. Shi, Angew. Chem., Int. Ed., 2012, 51, 3948.
- (4) A. A. Pletnev, Q. Tian and R. C. Larock, J. Org. Chem., 2002, 67, 9276.
- (5) Z. Qi, M. Wang and X. Li, Org. Lett., 2013, 15, 5440.
- (6) S. Chen, J. Yu, Y. Jiang, F. Chen and J. Cheng, Org. Lett., 2013, 15, 4754.

V. NMR Spectra

3aa

3ba

3da

Ph 1.03<u>∓</u> 0.99∕ 1.00 2.95 1.99 7.0 6.5 6.0 5.5 5.0 4.5 4.0 fl (ppm) 9.0 8.5 8.0 7.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 \sim 167.7459 \sim 165.2188 \perp 153.1634 \perp 153.1390 \top 148.6669 \top 148.5740 (129.9894 129.5432 128.9891 128.4071 128.4071 128.4071 128.5625 114.35665 114.3296 110.3216 110.3216 - 194.7452 Ph Ρh 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm) 0 -10

7.5702 7.5636 7.5636 7.4186 7.4186 7.4186 7.34186 7.3421 7

3fa

3ha

3ia

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -1.0 f1 (ppm)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

3ma

7 4070 7 3501 7 2553 7 2553 7 2254 7 2036 7 1840 7 0974 7 0794

-1.0

8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.6 fl (ppm)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

3af

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.1 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)