Supplementary information: *"Click-fluors"*: Triazole-linked saccharide sensors

Wenlei Zhai,^a Brette Chapin,^b Akina Yoshizawa,^a Hui-Chen Wang,^a Stephen A. Hodges,^c Tony D. James,^c Eric V. Anslyn^b and John S. Fossey*^a

^a School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
^b Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
^c Department of Chemistry, University of Bath, Bath, Claverton Down, BA2 7AY, UK

Supplem	entary inf	ormation: "Click-fluors": Triazole-linked saccharide sensors	.1
1.	Genera	l information	. 2
2.	Fluores	cence studies	. 3
	2.1	Fluorescence of first generation "click-fluors" with monosaccharides	. 3
	2.2	Fluorescence of second generation "click-fluors"	.7
3.	Isother	mal titration calorimetry (ITC) study	.8
4.	¹ H and	¹¹ B NMR spectroscopy titrations	10
5.	Synthet	tic procedures and characterisation data: First generation "click-fluors"	15
	5.1	Pinacol protection	15
	5.2	Bromination	15
	5.3	TMS deprotection	16
	5.4	CuAAC reaction (1 st generation " <i>click-fluors</i> ")	16
	5.5	Pinacol deprotection step 1: Trifluoroborate salts	18
	5.6	Pinacol deprotection step 2: Boronic acids	19
6.	Synthet	tic procedures and characterisation data: Second generation "click-fluors"	21
	6.1	Synthesis of acetylene-modified fluorophores	21
	6.2	Azido substitution	23
	6.3	CuAAC reaction (second generation "click-fluors")	23
	6.4	Pinacol deprotection step 1: Trifluoroborate salts	25
	6.5	Pinacol deprotection step 2: Boronic acids	27
7.	NMR sp	pectra of the synthesised compounds	29
8.	X-Ray c	rystallographic information1	37
	8.1	Compound 8a1	37
	8.2	Compound 13a14	43
9.	Referer	nces for ESI1	51

1. General information

Commercially available solvents and reagents were purchased and used without further purification. ¹H NMR spectra were recorded at 300 MHz on a Bruker AVIII300 NMR spectrometer, ¹¹B NMR spectra at 128 MHz on a Varian DirectDrive NMR spectrometer with AUTOXPFG and TRIPLE RESONANCE PFG probes, and also at 128 MHz on a Bruker AVIII400 NMR spectrometer. ¹³C NMR spectra at 101 MHz on a Bruker AVIII400 NMR spectrometer, ¹⁹F NMR spectra at 282 MHz on a Bruker AVIII300 NMR spectrometer were proton decoupled and were recorded at room temperature unless otherwise stated. Data was processed with Mestrec version 5.2.5-4731 and Topspin 2.0 (Version of: Nov 9th 2006). Chemical shifts (δ) are reported in ppm relative to TMS (δ 0.00) for the ¹H NMR and to chloroform (δ 77.0) for the ¹³C NMR spectral assignment, spectrums thus obtained are shown later. Mass spectra were recorded with electrospray MS Waters LCT Time of Flight Mass Spectrometer and with EI (GC/MS) Waters GCT Premier Time of Flight Mass Spectrometer. Infrared Spectra were recorded on a PerkinElmer 100FT-IR spectrometer at room temperature.

2. Fluorescence studies

Fluorescence spectra were recorded on both Shimadzu RF-5301PC (Shimadzu) and FluoroSENS (Gilden Photonics) fluorimeters. All the measurements were carried out in pH 8.21 methanolic buffer. The buffer was prepared in a 1 L volumetric flask according to a literature procedure¹ and consisted of: 52.1 wt% HPLC grade methanol, in deionised water with KCl (0.7456 g, 10.00 mM), KH₂PO₄ (0.3745 g, 2.752 mM) and Na₂HPO₄ (0.3914g, 2.757 mM).

A quartz cuvette with 10 mm path lengths, with four faces polished, was used for fluorescence test. All pH measurements taken during fluorescence experiments were on a pH meter which was calibrated using standard buffer solutions. All solvents used in fluorescence measurements were HPLC or fluorescent grade. All saccharides used in fluorescent measurements were certified as \geq 99% pure.

A 1 mM stock solution of the synthesised compound **1a** was prepared in methanol and stored protected from light before spectroscopy measurements. An aliquot of **1a** (50 μ L of a 100 μ M solution) was added to 2.95 mL of methanolic buffer to give a concentration of 1.67 μ M. A known amount of saccharides were added to this solution, ensuring complete dissolution before the fluorescence spectrum was recorded. The saccharide solution was stirred at room temperature for no more than 10 min before each measurement.²

2.1 Fluorescence of first generation "click-fluors" with monosaccharides

Figure S1. Fluorescence study of "*click-fluors*" **1a-c** binding with D-fructose in pH 8.21 methanolic buffer. Excitation wavelength: 276 nm.

Figure S2. Fluorescence spectra of different concentrations of D-fructose in deionised water. Excitation wavelength: 276 nm.

Figure S3. Excitation (left) and emission (right) spectra of 1 M L-arabinose, D-fructose, D-mannose and L-rhamnose in deionised water.

Figure S4. Excitation (left) and emission (right) spectra of 1 M D-glucose, D-xylose, D-melibiose and sucrose in deionised water.

Table S1. Excitation and emission	on wavelengths of recor	ded saccharide samples.
-----------------------------------	-------------------------	-------------------------

Saccharide	Excitation wavelength (nm)	Emission wavelength (nm)
L-arabinose	342	460
D-fructose	295	425
D-mannose	344	434
L-rhamnose	343	421
D-glucose	-	-
D-xylose	-	-
D-melibiose	-	-
sucrose	-	-

2.2 Fluorescence of second generation "click-fluors"

Figure S5. Fluorescence spectra of **15a,b** (top) and **16a,b** (bottom) in the presence of increasing concentration of D-fructose (0-6 mM; black curve: 0 mM, dark yellow curve: 6mM). Excitation wavelength: 339 nm (**15a,b**); 358 nm (**16a,b**).

Figure S6. Fluorescence spectra of **14a** (left) and **17a** (right) in the presence of increasing concentration of D-glucose (0-6 mM; black curve: 0 mM, dark yellow curve: 6mM). Excitation wavelength: 290 nm (**14a**); 330 nm (**17a**).

3. Isothermal titration calorimetry (ITC) study

ITC study was carried out with a MicroCal VP-ITC instrument (MicroCal). All the experiments were conducted in pH 8.21 methanolic buffer. The same batch of buffer stock solution was used for preparing all boronic acids and D-fructose samples in all experiments. The concentrations of each boronic acid compound and fructose were optimised for each individual experiment. The ITC cell volume was 1.474 mL. Experiments were performed at a constant cell temperature of 25 °C. The reference power was set to 30 μ Cal·s⁻¹. Each titration comprised 49 separate injections of concentrated D-fructose solution at time intervals of 180 s. Data was analysed using Origin 7E (OriginLab). The first injection point was routinely discarded. Data were fit using "One Sites" model.

Figure S7. ITC study of phenylboronic acid (PBA) and D-fructose in pH 8.21 methanolic buffer.

Figure S8. ITC data of 1-benzyl-4-phenyl-1H-1,2,3-triazole titrating with D-fructose in pH 8.21 methanolic buffer as a negative control.

4. ¹H and ¹¹B NMR spectroscopy titrations

¹H NMR titration was carried out by the following the procedures, introduced by Mulla *et al.*³ In detail, 3.8 mg compound **1a** (or **1c**) was dissolved in 500 μ L DMSO-*d6*. D₂O buffer was prepared following literature and the pD was carefully adjusted to 8.21 using a pH meter. A 20 mM fructose solution was made as the stock solution in the prepared buffer. The stock solution was stored at room temperature overnight to make sure equilibrium is reached.

During the titration, a ¹H NMR spectrum of **1a** in DMSO-*d6* was recorded first (see Figure S9, 0 equiv. fructose). After that, 5 μ L of the fructose stock solution was added, the sample was kept at room temperature for at least 30 mins before the next spectrum was collected. The procedure was repeated until the end of the experiment.

M. M. M. m. m.	44 equiv.	
 M. m. M. m. m.	40 equiv.	
M_m.M.M_m_m_n	36 equiv.	A
M. M.M. m. n	32 equiv.	M
MmMumm	28 equiv.	M
M. M. M. m. m.	24 equiv.	M
M.m. Mun m.	20 equiv.	h
M.m. Mr. n.m.	16 equiv.	h
Mr. Mr. mm	12 equiv.	In
Mura Maran	8 equiv.	In
Mura Maran	6 equiv.	me
Mr. Mathe m	4 equiv.	me
the man	3 equiv.	he
 M. M. M.	2 equiv.	he
 M. M. M.	1 equiv.	he
M M MANA M	0 equiv.	λ.

Figure S9. ¹H NMR titration of compound **1a** and fructose in DMSO- $d6/D_2O$ buffer (pD = 8.21). The amount of fructose increased from 0 to 44 equivalents.

Figure S10. ¹H NMR titration of compound **1c** and fructose in DMSO- $d6/D_2O$ buffer (pD = 8.21). The amount of fructose increased from 0 to 44 equivalents.

Figure S11. The number of equivalents of fructose plotted against the percentage of boronic acid-fructose complex (calculated based on the integration of ¹H NMR spectra).

Figure S12. ¹¹B NMR spectra of compound **1b-c** and **8a-c** in CD_3CN (spectrum of **1a** was not recorded due to low solubility).

Figure S13. ¹¹B NMR spectra of compound **1a-c** and **8a-c** in CD_3OD . The peak at 19 ppm is boric acid, $B(OH)_3$.

Figure S14. ¹¹B NMR spectra of compound **1a-c** and **8a-c** in CD₃OD in the presence of fructose.⁴

5. Synthetic procedures and characterisation data: First generation "click-fluors"

5.1 Pinacol protection

Tolylboronic acid (1.09 g, 8.0 mmol) and pinacol (1.12 g, 9.5 mmol) were mixed in toluene (100 mL). The reaction mixture was heated under reflux for 2 h, water was removed using Dean-Stark apparatus. The reaction solution was cooled to room temperature and toluene was removed by rotary evaporator. The crude product was dissolved in ethyl acetate (50 mL), and washed with deionised water (2×50 mL), dried over magnesium sulfate and filtered. The solvent was removed in vacuo to obtain boronic acid pinacol ester.

4,4,5,5-Tetramethyl-2-(o-tolyl)-1,3,2-dioxaborolane C₁₃H₁₉BO₂, oil (92% yield), R_f = 0.90 (PE/EtOAc, 6:1), $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.80 (dd, J = 7.5, 1.6, 1H) , 7.35 (dd, J = 7.5, 1.6, 1H), 7.25 - 7.16 (m, 2H), 2.58 (s, 2H), 1.38 (s, 12H); δ_{C} (101 MHz, CDCl_3) 144.8, 135.9, 130.8, 129.8, 124.7, 83.4, 24.9, 22.3.

4,4,5,5-Tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane C₁₃H₁₉BO₂ white solid (86% yield), R_f = 0.89 (hexane/EtOAc, 6:1) δ_{H} (300 MHz, CDCl₃) 7.74 (d, J = 7.6, 2H), 7.22 (d, J = 7.6, 2H), 2.40 (s, 3H), 1.37 (s, 12H). δ_{c} (101 MHz, CDCl₃) 141.4, 134.8, 128.5, 83.6, 77.3, 77.0, 76.7, 24.9, 21.7.

5.2 Bromination

4,4,5,5-Tetramethyl-2-o-tolyl-1,3,2-dioxaborolane (1.54 g, 7.0 mmol), N-bromosuccinimide (1.87 g, 10.5 mmol), and azobisisobutylonitrile (12 mg, 1 mol%) were added in 100 mL of acetonitrile and refluxed at 90 °C for 2 h. After the reaction was completed, the mixture was allowed to cool at room temperature and the solvent was removed by rotary evaporator. Hexane was added to dissolve the product and the remaining solid was removed after filtration. The filtrate was concentrated by rotary evaporator and dried in vacuo to obtain the bromination product.

2-(2-(Bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3a) C₁₃H₁₈BBrO₂, white

solid (99% yield), $R_f = 0.81$ (PE/EtOAc, 6:1), δ_H (300 MHz, CDCl₃) 7.86 (d, J = 7.2, 1H), 7.46 - 7.39 (m, 2H), 7.36 - 7.27 (m, 1H), 4.96 (s, 2H), 1.41 (s, 12H). δ_{C} (101 MHz, CDCl₃) 144.3, 136.4, 131.3, 130.1, 127.6, 83.9, 34.0, 24.9.

2-(3-(Bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3b) $C_{13}H_{18}BBrO_2$, white solid (89% yield), $R_f = 0.79$ (PE/EtOAc, 6:1), δ_H (300 MHz, CDCl₃) 7.85 (s, 1H), 7.76 (dt, J = 7.2, 1.2, 1H), 7.53 (dt, J = 7.6, 1.8, 1H), 7.38 (t, J = 7.6, 1H), 4.53 (s, 2H), 1.37 (s, 12H); δ_C (101 MHz, CDCl₃) 137.0, 135.2, 134.8, 132.0, 128.3, 84.0, 33.5, 24.9.

2-(4-(Bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c) C₁₃H₁₈BBrO₂, white solid (99% yield), $R_f = 0.82$ (hexane/EtOAc, 6:1), δ_H (300 MHz, CDCl₃) 7.81 (d, J = 8.1, 2H), 7.42 (d, J = 8.1, 2H), 4.51 (s, 2H), 1.36 (s, 12H). δ_{c} (101 MHz, CDCl₃) 140.7, 135.2, 128.3, 125.7, 84.0, 33.3, 24.9.

5.3 TMS deprotection

Starting material (153 mg, 0.7 mmol) was dissolved in THF (10 mL). The flask was cooled to 0 °C and a 1 M solution of tetrabutylammonium fluoride (TBAF) in THF (1.34 mL, 1.3 mmol) was slowly added via syringe. The reaction mixture was stirred for 2 h at room temperature, washed three times with water and brine, dried over magnesium sulfate, filtered and concentrated by rotary evaporator. The crude product was purified by flash chromatography on silica gel ((hexane/EtOAc) 95:5, v/v).

2-(2-Ethynylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6a) C₁₄H₁₇BO₂, brown solid (97% yield), $R_f = 0.91$ (PE/EtOAc, 6:1), δ_H (300 MHz, CDCl₃) 7.69 - 7.64 (m, 1H), 7.51 - 7.38 (m, 1H), 7.36 – 7.20 (m, 2H), 3.19 (s, 1H), 1.27 (s, 12H). δ_{C} (101 MHz, CDCl₃) 134.9, 133.5, 130.1, 127.9, 126.3, 84.3, 83.9, 79.2, 24.9.

2-(3-Ethynylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6b) C₁₄H₁₇BO₂, brown solid, (92% yield), R_f = 0.67 (PE/DCM, 1:1), δ_H (300 MHz, CDCl₃) 7.99 (s, 1H), 7.80 (d, J = 7.5, 1H), 7.60 (dt, J = 7.5, 1.2, 1H), 7.35 (t, J = 7.5, 1H), 3.08 (s, 1H), 1.37 (s, 12H). δ_{c} (101 MHz, CDCl₃) 137.4, 133.3, 130.4, 127.7, 126.5, 83.9, 83.6, 79.3, 24.7.

5.4 CuAAC reaction (1st generation "click-fluors")

Brominated boronic acid pinacol ester (0.59 g, 2.0 mmol) and sodium azide (0.16 g, 2.4 mmol) were dissolved in dimethyl sulfoxide (10 mL) and heated at 60 °C for 30 min. Then phenylacetylene (0.22 g, 2.2 mmol), copper(I) iodide (38 mg, 0.2 mmol) and sodium ascorbate (0.20 g, 1.0 mmol) were added. The reaction mixture was heated at 80 °C for 2 h. After cooling to room temperature, deionised water (50 mL) was added into the reaction flask. Ethyl acetate was used to extract the crude product (3×30 mL). After removing water using magnesium sulfate, the product was concentrated by rotary evaporator. Flash chromatography was employed to purify the crude product (hexane/EtOAc, 6:1, v/v). The appropriate

fractions were combined together, and the solvents were removed under reduced pressure to give the corresponding triazole compounds.

4-Phenyl-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4a)

$$\begin{split} &C_{21}H_{24}BN_3O_2, \text{ white solid (43\% yield), } R_f = 0.29 \text{ (hexane/EtOAc, 5:1), mp 100} \\ &- 102 \ ^\circ C, \ \delta_H \ (300 \ \text{MHz}, \text{CDCl}_3) \ 7.96 \ (dd, \textit{J} = 7.3, 1.4, 1H), \ 7.86 - 7.75 \ (m, 3H), \\ &7.51 - 7.22 \ (m, \ 6H), \ 5.92 \ (s, \ 2H), \ 1.38 \ (s, \ 12H); \ \delta_C \ (101 \ \text{MHz}, \text{CDCl}_3) \ 147.6, \\ &140.9, \ 136.7, \ 131.9, \ 130.9, \ 129.2, \ 128.8, \ 128.0, \ 127.9, \ 125.6, \ 119.9, \ 84.2, \\ &53.4, \ 24.9; \ \delta_B \ (128 \ \text{MHz}, \text{CDCl}_3) \ 31.8. \ \textit{v/cm}^{-1} \ 2975, \ 1601, \ 1442, \ 1344, \ 1321, \end{split}$$

1143, 1109, 1067, 966, 764, 721, 696.

4-Phenyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4b)

$$\begin{split} &C_{21}H_{24}BN_3O_2, \text{ white solid (52\% yield) } R_f = 0.37 \text{ (hexane/EtOAc, 6:1),} \\ &mp \ 136 - 138 \ ^\circ C, \ \delta_H \ (300 \ \text{MHz}, \ \text{CDCl}_3) \ 7.76 - 7.58 \ (m, \ 4H), \ 7.54 \ (s, \ 1H), \ 7.31 - 7.17 \ (m, \ 4H), \ 7.17 - 7.08 \ (m, \ 1H), \ 5.37 \ (s, \ 2H), \ 1.19 \ (s, \ 12H); \ \delta_C \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ 148.0, \ 135.2, \ 134.5, \ 134.0, \ 131.0, \ 130.6, \end{split}$$

128.8, 128.6, 128.1, 125.7, 119.7, 84.1, 54.2, 24.9; δ_B (128 MHz, CDCl₃) 13.0. M/z: (ES⁺) 362.2 [M + H]⁺. High resolution MS calc. for formula C₂₁H₂₅BN₃O₂: 362.2040; found: 362.2034. *v*/cm⁻¹ 2979, 2934, 1611, 1467, 1361, 1329, 1142, 1090, 859, 767, 694.

4-Phenyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4c)

$$\begin{split} &C_{21}H_{24}BN_3O_2, \text{ white solid (65\% yield), } R_f = 0.21 \text{ (PE/EtOAc, 5:1), } mp \\ &175 - 177 \ ^\circ C, \ \delta_H \ (300 \text{ MHz, } CDCl_3) \ 7.90 - 7.76 \ (m, \ 4H), \ 7.66 \ (s, \ 1H), \\ &7.46 - 7.38 \ (m, \ 2H), \ 7.38 - 7.29 \ (m, \ 3H), \ 5.61 \ (s, \ 2H), \ 1.36 \ (s, \ 12H); \\ &\delta_C \ (101 \text{ MHz, } CDCl_3) \ 148.2, \ 137.4, \ 135.6, \ 130.5, \ 128.8, \ 128.2, \ 127.3, \end{split}$$

125.7, 119.5, 84.0, 77.3, 77.0, 76.7, 54.3, 24.9; δ_B (128 MHz, CDCl₃) 13.0. M/z: (ES⁺) 362.2 [M + H]⁺. High resolution MS calc. for formula C₂₁H₂₅BN₃O₂: 362.2040; found: 362.2032. v/cm⁻¹ 2980, 2933, 1612, 1411, 1360, 1329, 1271, 1142, 1090, 967, 860, 768, 694.

83.9, 54.0, 24.8; δ_B (128 MHz, CDCl₃) 13.8. M/z: (ES⁺) 362.2 [M + H]⁺. High resolution MS calc. for formula C₂₁H₂₅BN₃O₂: 362.2040; found: 362.2049. *v*/cm⁻¹ 2979, 2933, 1610, 1426, 1349, 1320, 1141, 858, 767, 724, 694.

1-Benzyl-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-1,2,3-triazole (7b)

 $C_{21}H_{24}BN_{3}O_{2}$, white solid (44% yield), $R_{f} = 0.26$ (PE/EtOAc, 5:1), mp 177 - 179 °C, δ_{H} (300 MHz, CDCl₃) 8.11 (s, 1H), 8.09 - 8.03 (m, 1H), 7.78 (dt, *J* = 7.4, 1.2, 1H), 7.74 (s, 1H), 7.52 - 7.36 (m, 4H), 7.36 - 7.26 (m, 2H), 5.58 (s, 2H), 1.35 (s, 12H); δ_{C} (101 MHz, CDCl₃) 148.2, 134.7,

134.5, 131.9, 129.9, 129.2, 128.8, 128.6, 128.3, 128.1, 119.7, 83.9, 54.2, 24.9; δ_B (128 MHz, CDCl₃) 13.4. M/z: (ES⁺) 362.2 [M + H]⁺. High resolution MS calc. for formula C₂₁H₂₅BN₃O₂: 362.2040; found:

362.2048. v/cm⁻¹ 2978, 2925, 1609, 1436, 1356, 1337, 1141, 1078, 963, 861, 794, 724, 707.

1-Benzyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-1,2,3-triazole (7c) N = NN = N

362.2040; found: 362.2046. v/cm⁻¹ 2987, 1615, 1459, 1393, 1352, 1330, 1267, 1135, 1094, 962, 848, 808, 655.

5.5 Pinacol deprotection step 1: Trifluoroborate salts

The triazole intermediate (0.18 g, 0.5 mmol) was dissolved in 7 mL of methanol and added to aqueous potassium hydrogen difluoride (0.55 g, 7.0 mmol) in a plastic container. The resulting white slurry was stirred at room temperature for 15 min, concentrated by rotary evaporator, and then dissolved in hot acetone (60 mL). The mixture was filtered and the filtrate was concentrated *in vacuo*. The solid was dissolved in minimum amount of acetone, and then diethyl ether (20 mL) was added resulting in precipitation of the potassium trifluoroborate salt.

Potassium (2-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)phenyl)trifluoroborate C₁₅H₁₂BF₃KN₃, white

solid (98% yield), mp 243 – 245 °C, $\delta_{\rm H}$ (300 MHz, (CD₃)₂CO) 8.27 (s, 1H), 7.90 – 7.79 (m, 2 H), 7.65 (d, *J* = 6.6, 1H), 7.46 – 7.33 (m, 2H), 7.33 – 7.23 (m, 1H), 7.14 – 6.96 (m, 3H), 5.80 (s, 2H); $\delta_{\rm C}$ (101 MHz, CD₃OD) 147.3, 137.7, 132.3,

130.5, 128.5, 127.7, 127.5, 126.6, 126.5, 125.2, 120.9, 53.6. M/z: (ES⁻) 302.1 $[M - K]^+$. High resolution MS calc. for formula $C_{15}H_{12}BN_3F_3$: 302.1082; found: 302.1077.

Potassium (3-((4-phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)trifluoroborate $C_{15}H_{12}BF_3KN_3$, white solid (95% yield), mp 289 – 291 °C, δ_H (300 MHz, CD₃OD) 7.97 (s, 1H), 7.80 – 7.62 (m, 3H), 7.59 (d, *J* = 6.9, 1H), 7.43 – 7.18 (m, 3H), 7.18 – 7.00 (m, 2H), 5.32 (s, 2H); δ_C (101 MHz, CD₃OD) 147.5, 133.4, 131.6,

131.4, 130.2, 128.6, 127.9, 127.4, 126.0, 125.3, 120.8, 54.3. δ_F (282 MHz, CD₃OD) -142.6. M/z: (ES⁻) 302.1 [M – K]⁺. High resolution MS calc. for formula C₁₅H₁₂BN₃F₃: 302.1082; found: 302.1079.

Potassium (4-((4-phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)trifluoroborate C₁₅H₁₂BF₃KN₃, white solid (93% yield), mp > 300 °C, δ_H (300 MHz, (CD₃)₂CO) 8.27 (s, 1H), 7.93 –7.86 (m, 2H), 7.51 (d, *J* = 7.6, 2H), 7.45 – 7.35 (m, 2H), 7.34 – 7.25 (m, 1H), 7.16 (d, *J* = 7.6, 2H), 5.55 (s, 2H); δ_F (282 MHz, (CD₃)₂CO) -142.7. M/z: (ES⁻) 302.1 [M – K]⁺. High resolution MS calc. for formula C₁₅H₁₂BN₃F₃: 302.1082; found: 302.1086. Potassium (2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl)trifluoroborate C15H12BF3KN3, white solid (99%

yield), mp 213 – 215 mp 289 – 291 °C, $\delta_{\rm H}$ (300 MHz, CD₃OD) 8.31 (s, 1H), 7.82 – 7.65 (m, 2H), 7.42 – 7.18 (m, 7H), 5.56 (s, 2H); $\delta_{\rm C}$ (101 MHz, CD₃OD) 149.9, 135.7, 133.2, 132.7, 128.5, 127.9, 127.5, 127.5, 126.5, 126.2, 124.0, 123.9, 53.3. M/z: (ES⁻) 302.1 [M – K]⁺. High resolution MS calc. for formula

 $C_{15}H_{12}BN_3F_3$: 302.1082; found: 302.1081.

Potassium (3-(1-benzyl-1*H*-1,2,3-triazol-4-yl)phenyl)trifluoroborate $C_{15}H_{12}BF_3KN_3$, white solid (98% yield), mp 256 – 259 mp 289 – 291 °C, δ_H (300 MHz, CD₃OD) 8.08 (s, 1H), 8.00 (s, 1H), 7.62 (dt, *J* = 7.9, 1.7, 1H), 7.56 (d, *J* = 7.3, 1H), 7.41 – 7.17 (m, 6H), 5.45 (s, 2H); δ_C (101 MHz, CD₃OD) 149.0, 135.4, 131.5, 128.7, 128.6, 128.4, 128.1, 127.7, 127.2, 123.3, 120.5, 53.5. M/z: (ES⁻) 302.1 [M – K]⁺.

High resolution MS calc. for formula C₁₅H₁₂BN₃F₃: 302.1082; found: 302.1075.

Potassium (4-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl)trifluoroborate C₁₅H₁₂BF₃KN₃, white solid (98%

yield), mp 243 – 245 mp 289 – 291 °C, δ_{H} (300 MHz, CD₃OD) 8.22 (s, 1H), 7.64 (d, *J* = 8.0, 2H), 7.58 (d, *J* = 8.0, 2H), 7.49 – 7.26 (m, 5H), 5.62 (s, 2H); δ_{C} (101 MHz, CD₃OD) 148.9, 135.5, 131.6, 128.6, 128.1, 127.6, 123.8, 120.2, 53.6. δ_{F} (282 MHz, CD₃OD) -142.7. M/z: (ES⁺) 302.1 [M - K]. High

resolution MS calc. for formula $C_{15}H_{12}BF_3N_3$: 302.1076; found: 302.1065. M/z: (ES⁻) 302.1 [M – K]⁺. High resolution MS calc. for formula $C_{15}H_{12}BN_3F_3$: 302.1082; found: 302.1089.

5.6 Pinacol deprotection step 2: Boronic acids

The obtained potassium trifluoroborate salt (180 mg, 0.5 mmol) and lithium hydroxide (42 mg, 1.8 mmol) were dissolved in acetonitrile (10 mL) and deionised water (5 mL), respectively. Then the solutions were mixed together and stirred at room temperature for 24 h. The solution was acidified using saturated ammonium chloride (8 mL) and hydrochloric acid solution (1 mL, 3 M). After that, the resulting solution was extracted with ethyl acetate (3×20 mL). The combined extracts were washed with hydrochloric acid solution (20 mL, 0.5 M), dried over magnesium sulfate, and filtered. The crude product was by flash chromatography (DCM/methanol, 95:5, v/v).

5H), 5.63 (s, 2H); δ_{C} (101 MHz, CD₃OD) 149.2, 135.1, 134.7, 134.2, 131.7, 131.0, 130.4, 130.0, 129.4, 126.7, 122.2, 55.2; δ_{B} (128 MHz, CD₃CN) 28.6. M/z: (ES⁺) 280.1 [M + H]⁺. High resolution MS calc. for formula C₁₅H₁₅BN₃O₂: 280.1257; found: 280.1250. ν /cm⁻¹ 3418, 3210, 3141, 2934, 1607, 1433, 1381, 1359, 1333, 1151, 1092, 1049, 982, 764, 703.

(4-((4-Phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (1c) $C_{15}H_{14}BN_3O_2$, white solid (89% HO_B N = N N =

147.8, 134.2, 133.8, 130.2, 128.6, 128.0, 126.8, 125.3, 120.9, 53.6; δ_B (128 MHz, CD₃CN) 28.6. M/z: (ES⁺) 280.1 [M + H]⁺. High resolution MS calc. for formula C₁₅H₁₅BN₃O₂: 280.1257; found: 280.1253. ν/cm^{-1} 3420, 3217, 3143, 2950, 1608, 1435, 1390, 1344, 1157, 1050, 998, 762.

(2-(1-Benzyl-1H-1,2,3-triazol-4-yl)phenyl)boronic acid (8a) $C_{15}H_{14}BN_3O_2$, with solid (90%), Rf =

$$\begin{split} & 0.77 \ (\text{DCM/MeOH}, 95:5), \text{mp } 137 - 139 \ ^\circ\text{C}, \ \delta_{\text{H}} \ (300 \ \text{MHz}, \text{CD}_{3}\text{OD}) \ 8.20 \ (\text{s}, 1\text{H}), \\ & 7.67 - 7.58 \ (\text{m}, 1\text{H}), \ 7.47 - 7.28 \ (\text{m}, 8\text{H}), \ 5.62 \ (\text{s}, 2\text{H}); \ \delta_{\text{C}} \ (101 \ \text{MHz}, \text{CD}_{3}\text{OD}) \\ & 148.7, \ 135.5, \ 132.5, \ 131.1, \ 128.7, \ 128.5, \ 128.2, \ 127.7, \ 127.4, \ 125.3, \ 120.4, \\ & 53.6; \ \delta_{\text{B}} \ (128 \ \text{MHz}, \ \text{CD}_{3}\text{CN}) \ 29.4. \ \text{M/z:} \ (\text{ES}^{+}) \ 280.1 \ [\text{M} + \text{H}]^{+}. \ \text{High resolution} \end{split}$$

MS calc. for formula C₁₅H₁₅BN₃O₂: 280.1257; found: 280.1249. *v*/cm⁻¹ 3306, 3149, 2922, 1598, 1444, 1379, 1246, 1131, 1076, 768, 714.

(3-(1-Benzyl-1H-1,2,3-triazol-4-yl)phenyl)boronic acid (8b) C₁₅H₁₄BN₃O₂, white solid (95% yield),

R_f = 0.76 (DCM/MeOH, 95:5), mp 237 – 238 °C, $\delta_{\rm H}$ (300 MHz, CD₃OD) 8.42 – 7.99 (m, 2H), 7.84 (d, *J* = 7.7, 1H), 7.79 – 7.51 (m, 1H), 7.51 – 7.19 (m, 6H), 5.61 (s, 2H); $\delta_{\rm C}$ (101 MHz, CD₃OD) 148.1, 135.4, 133.5, 133.0, 130.8, 130.3, 129.3, 128.7, 128.2, 127.7, 127.1, 126.5, 120.7, 53.6; $\delta_{\rm B}$

 $(128 \text{ MHz}, \text{CD}_3\text{CN})$ 28.8. M/z: (ES^+) 280.1 $[\text{M} + \text{H}]^+$. High resolution MS calc. for formula $C_{15}H_{15}BN_3O_2$: 280.1257; found: 280.1250. ν/cm^{-1} 3236, 3135, 2926, 1609, 1496, 1347, 1120, 1045, 799, 703.

(4-(1-Benzyl-1H-1,2,3-triazol-4-yl)phenyl)boronic acid (8c) C₁₅H₁₄BN₃O₂, white solid (92% yield),

R_f = 0.81 (DCM/MeOH), mp 169 – 171 °C, δ_H (300 MHz, CD₃OD) 7.89 – 7.57 (m, 4H), 7.50 – 7.21 (m, 5H), 5.60 (s, 2H); δ_C (101 MHz, CD₃OD) 147.8, 135.3, 134.1, 133.9, 131.7, 128.6, 128.2, 127.7, 124.3, 121.1, 53.6; δ_B (128 MHz, CD₃CN) 28.5. M/z: (ES⁺) 280.1 [M + H]⁺. High resolution MS calc. for formula C₁₅H₁₅BN₃O₂: 280.1257; found:

280.1258. *v*/cm⁻¹ 3352, 3136, 2924, 1615, 1497, 1334, 1193, 972, 822, 713.

6. Synthetic procedures and characterisation data: Second generation "*click-fluors*"

6.1 Synthesis of acetylene-modified fluorophores

Synthesis of N,N-diphenyl-4-((trimethylsilyl)ethynyl)aniline

A three-neck round-bottom flask was dried in oven overnight and charged with 4-bromo-*N*,*N*-diphenylaniline (1.50 g, 4.6 mmol). 20 mL dry TEA was added *via* syringe. After bubbling with argon gas for 15 min, Pd(PPh₃)₂Cl₂ (325 mg, 0.5 mmol), and CuI (88 mg, 0.5 mmol) was added to the flask. After bubbling with argon gas for another 15 min, trimethylsilylacetylene (1.0 mL, 7.0 mmol) was injected *via* syringe, and the reaction mixture turned black. The mixture was refluxed for 20 h, diluted with DCM, filtered, and concentrated by rotary evaporator. The crude product was purified by chromatographyon silica gel using hexane as eluent.⁵

In a one-neck round-bottom flask, *N*,*N*-diphenyl-4-((trimethylsilyl)ethynyl)aniline (223 mg, 1.1 mmol) was dissolved in THF (10 mL). The flask was cooled to 0 °C and a 1 M solution of TBAF in THF (1.34 mL, 1.3 mmol) was slowly added *via* syringe. The reaction mixture was stirred for 2 h at room temperature, washed three times with water and brine, dried over MgSO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash chromatography on silica gel ((hexane/EtOAc) 95:5, ν/ν).

N,N-Diphenyl-4-((trimethylsilyl)ethynyl)aniline C₂₃H₂₃NSi Brown solid (93% yield), R_f = 0.81 (PE/EtOAc, 6:1), $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.37 (dd, *J* = 7.3, 7.2, 4H), 7.30 (d, *J* = 8.6, 2H), 7.12 (t, *J* = 7.3, 2H), 7.06 (d, *J* = 7.2, 4H), 6.85 (d, *J* = 8.6, 2H), 0.23 (s, 9H); $\delta_{\rm C}$ (101 MHz, CD₃OD) 147.7, 146.3, 132.7, 129.6, 125.0, 124.0, 120.8, 114.5, 105.5, 92.7, 0.1. M/z: (ES⁺) 341.3 [M]⁺. *v*/cm⁻¹ 3597, 2924, 2153, 1641, 1591, 1486, 1273, 1206, 948, 930, 834, 750, 694.

4-Ethynyl-*N*,*N*-diphenylaniline C₂₀H₁₅N brown solid (84% yield), R_f = 0.77 (PE/EtOAc, 6:1). δ_H (300 MHz, CDCl₃) 7.33 (m, 6H), 7.10 (t, *J* = 7.2, 2H), 7.05 (d, *J* = 7.2, 4H), 6.86 (d, *J* = 8.5, 2H), 4.05 (s, 1H). δ_C (300 MHz, CDCl₃) 148.3; 146.9; 133.3; 130.2; 125.4; 124.5; 121.7; 114.7; 84.1; 80.1.

Synthesis of 4-ethynyl-1,8-naphthalimide

4-bromo-1,8-naphthalic anhydride (1.00 g, 3.6 mmol) and ethylamine (70% solution in water) (0.35 mL, 4.3 mmol) were refluxed in 1,4-dioxane (50 mL) for 16 h. The crude mixture was then poured onto ice-cold water. The precipitate was dissolved in minimum amount of hot dichloromethane first, then precipitated in large amount of methanol. After filtration, the product was dried *in vacuo* to yield 4-bromo-*N*-ethyl-1,8-naphthalimide as a light yellow solid.⁶

For Sonogashira cross-coupling reactions and TMS deprotections, the same procedures were followed as previously described. The product was purified by flash chromatography on silica gel ((hexane/EtOAc, 9:1, v/v) to give 4-

ethynyl-N-ethyl-1,8-naphthalimide as a yellow-brown solid.

6-Bromo-2-ethyl-1H-benzo[de]isoquinoline-1,3(2H)-dione C₁₄H₁₀BrNO₂ light yellow solid (85% yield), $R_f = 0.76$ (hexane/EtOAc, 5:1), δ_H (300 MHz, CDCl₃) 8.61 (dd, J = 7.3, 1.1, 1H), 8.50 (dd, J = 8.5, 1.1, 1H), 8.36 (d, J = 7.9, 1H), 7.99 (d, J = 7.9, 1H), 7.81 (dd, J = 8.5, 7.3, 1H), 4.23 (q, J = 7.1, 2H), 1.34 (t, J = 7.1, 3H). δ_{C} (101 MHz, CDCl₃) δ 163.3, 133.1, 131.9, 131.1, 131.0, 130.5, 130.1, 128.8, 128.0, 123.1, 122.2, 35.6, 13.3. M/z: (LD⁺) 304.0 [M]⁺. *v*/cm⁻¹ 2980, 1693, 1659, 1587, 1568, 1339, 1242, 1060, 961, 775, 747.

2-Ethyl-6-((trimethylsilyl)ethynyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione C₁₉H₁₉NO₂Si yellowbrown solid (92% yield), $R_f = 0.83$ (hexane/EtOAc, 5:1), δ_H (300 MHz, CDCl₃) 8.61 (d, J = 7.9, 2H), 8.51 (dd, J = 7.6, 4.0, 1H), 7.88 (dd, J = 8.6, 4.8, 1H), 7.82 (dd, J = 9.8, 5.9, 1H), 4.23 (q, J = 7.1, 2H), 1.32 (t, J = 7.1, 3H), 0.38 (s, 9H), δ_{C} (101 MHz, CDCl₃) 163.7, 163.5, 132.3, 131.7, 131.5, 131.1, 130.1, 127.8, 127.4, 127.2, 122.9, 122.3, 105.2, 101.2, 35.6, 13.3, -0.1. v/cm⁻¹ 2980, 1922, 1692, 1652, 1587, 1567, 1338, 1241, 1059, 961, 774, 747. т́мs

2-Ethyl-6-ethynyl-1H-benzo[de]isoquinoline-1,3(2H)-dione C₁₆H₁₁NO₂ yellow solid (76% yield), R_f = 0.75 (hexane/EtOAc, 5:1), $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.74 – 8.59 (m, 1H), 8.54 (d, J = 7.6, 1H), 7.95 (d, J = 7.6, 1H), 7.84 (dd, J = 8.2, 7.6, 1H), 4.26 (q, J = 7.1, 1H), 3.76 (s, 1H), 1.36 (t, J = 7.1, 2H). $\delta_{C} (101 \text{ MHz}, \text{CDCl}_{3}) 163.7, 163.4, 132.1, 131.9, 131.6, 130.1, 127.9, 163.4$ 127.7, 126.1, 123.0, 122.8, 86.5, 80.3, 35.6, 13.3. M/z: (ES⁺) 250.1 [M+H]⁺. v/cm⁻¹ 3224, 2980, 2099, 1690, 1649, 1588, 1342, 1238, 1059, 869, 781, 687.

Synthesis of 7-ethynylcoumarin

7-Hydroxycoumarin (1.00 g, 6.2 mmol) was initially combined with anhydrous pyridine (20 mL). The reaction mixture was placed on ice and allowed to cool prior to the addition of trifluoromethanesulfonic anhydride (1.00 mL, 5.9 mmol). The mixture was stirred in an ice bath for 4 h, after which diethyl ether (100 mL) was added. The first precipitate was separated by filtration and discarded. Following a second precipitation after the addition of 1 M HCl (5 mL), the product was collected by filtration, and dried under vacuum to give 1.66 g of 2-oxo-2H-chromen-7-yl trifluoromethanesulfonate.⁷

For Sonogashira cross-coupling reaction and TMS deprotection, the same procedures was followed as previously described. The final product was purified using chromatography on silica gel ((hexane/EtOAc, 5:1, v/v).

2-Oxo-2H-chromen-7-yl trifluoromethanesulfonate $C_{10}H_5F_3O_5S$, light yellow solid (91% yield), $R_f =$ TfO 0.24 (hexane/EtOAc, 3:1), $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.76 (d, J = 9.6, 1H), 7.62 (d, J = 8.5, 1H), 7.32 - 7.20 (m, 2H), 6.50 (d, J = 9.6, 1H). δ_{C} (101 MHz, CDCl₃) 159.3, 154.5, 150.8, 142.2, 129.5, 120.2, 118.8, 117.7, 117.0, 110.5. δ_F (282 MHz, CDCl₃) -72.6, M/z: (AP⁺) 295.0 [M+H]⁺. *v*/cm⁻¹ 3092, 3058, 1719, 1608, 1421, 1400, 1221, 1196, 1131, 1103, 980, 851, 747.

7-((Trimethylsilyl)ethynyl)-2H-chromen-2-one $C_{14}H_{14}O_2Si$, yellow-brown solid (95% yield), $R_f =$ TMS 0.83 (hexane/EtOAc, 2:1) $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.69 (d, J = 9.5, 1H,), 7.38 (m, 3H), 6.43 (d, J = 9.5, 1H), 0.29 (s, 9H). δ_{c} (101 MHz, CDCl₃) 160.4, 153.6, 142.8, 134.1, 134.0, 129.8, 128.5, 128.0, 127.6, 126.8, 119.9, 118.8, 117.0, 103.2, 98.6, -0.2. M/z: (ES⁺) 265.2 [M + Na]⁺. v/cm⁻¹ 3059, 2963, 2156, 1721, 1609, 1396, 1243, 1134, 985, 838, 765.

7-Ethynyl-2H-chromen-2-one C₁₁H₆O₂, yellow solid (83% yield), R_f = 0.74 (hexane/EtOAc, 2:1), δ_H (300 MHz, CDCl₃) 7.68 (d, J = 9.5, 1H), 7.44 - 7.36 (m, 3H), 6.43 (d, J = 9.5, 1H), 3.27 (s, 1H). δ_C (101 MHz, CDCl₃) 160.1, 153.5, 142.6, 127.9, 127.6, 125.5, 120.1, 119.0, 117.1, 82.0, 80.6. M/z: (ES⁺) 193.2 [M+Na]⁺. ν /cm⁻¹ 3226, 2980, 2099, 1690, 1649, 1588, 1342, 1237, 1058, 869, 781.

6.2 Azido substitution

Bromo-substitued starting material (1.00 g, 3.4 mmol) and sodium azide (0.30 g, 5.1 mmol) were charged into a round-bottom flask. 5 mL DMSO was added and the reaction mixture was heated at 80 0 C for 30 minutes. After cooling to room temperature, water was added and the reaction mixture was extracted with diethyl ether three times. The product was concentrated *in vacuo*.

 $\begin{array}{c} \textbf{2-(2-(Azidomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9a)} C_{13}H_{18}BN_{3}O_{2}, \ liquid (99\%) \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \circ \\ & \circ$

2-(4-(Azidomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9b) $C_{13}H_{18}BN_{3}O_{2}$, colorless crystalline (99% yield), $R_{f} = 0.79$ (PE/EtOAc, 6:1), δ_{H} (300 MHz, CDCl₃) 7.87 (d, J = 8.0, 2H), $\sigma_{B}O$ 7.34 (d, J = 8.0, 2H), 4.35 (s, 2H), 1.37 (s, 12H),. ν/cm^{-1} 2981, 2935, 2095, 1612, 1390, 1356, 1337, 1269, 1140, 1086, 857, 819, 735, 655.

6.3 CuAAC reaction (second generation "click-fluors")

N,N-Diphenyl-4-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-

yl)aniline (10a) $C_{33}H_{33}BN_4O_2$ yellow solid (46% yield), $R_f = 0.23$ (hexane/EtOAc, 5:1), mp 113 – 115 °C, δ_H (300 MHz, CDCl₃) 7.92 (dd, J = 7.3, 1.4, 1H), 7.69 (s, 1H), 7.67 – 7.60 (m, 2H), 7.42 (td, J = 7.5, 1.6, 1H), 7.33 (td, J = 7.4, 1.3, 1H), 7.28 – 7.18 (m, 6H), 7.13 – 7.05 (m, 6H), 7.04 – 6.96 (m, 2H), 5.89 (s, 2H), 1.36 (s, 12H); δ_C (101 MHz,

CDCl₃) 147.6, 141.0, 136.7, 131.9, 129.3, 129.1, 127.9, 126.5, 124.9, 124.4, 123.8, 123.0, 119.3, 84.2, 53.4, 24.9; δ_B (128 MHz, CDCl₃) 31.2. M/z: (ES⁺) 529.4 [M + H]⁺. High resolution MS calc. for formula C₃₃H₃₄BN₄O₂: 529.2775; found: 529.2780. ν /cm⁻¹ 3599, 3033, 2976, 2097, 1592, 1503, 1291, 956, 831, 744.

N,N-Diphenyl-4-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-

yl)aniline (10b) C₃₃H₃₃BN₄O₂ yellow solid (41% yield), R_f = 0.22 (hexane/EtOAc, 5:1), mp 173 – 175 °C, $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.82 (d, *J* = 8.1, 2H), 7.68 – 7.60 (m, 2H), 7.56 (s, 1H), 7.32 – 7.19 (m, 6H), 7.12 – 7.05 (m, 6H), 7.05 – 6.98 (m, 2H), 5.55 (s, 2H), 1.33 (s, 12H); $\delta_{\rm C}$ (101 MHz, CDCl₃) 148.1, 147.8,

147.5, 137.6, 135.5, 129.3, 127.3, 126.6, 124.7, 124.5, 123.7, 123.0, 118.9, 84.0, 54.2,24.9; δ_B (128 MHz, CDCl₃) 30.9. M/z: (ES⁺) 529.5 [M + H]⁺. High resolution MS calc. for formula C₃₃H₃₄BN₄O₂: 529.2775; found: 529.2772. *v*/cm⁻¹ 3596, 3040, 2977, 2102, 1588, 1487, 1360, 1273, 1209, 961, 834, 752, 694.

4-(Pyren-1-yl)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11a)

 $C_{31}H_{28}BN_3O_2$ brown solid (70% yield), $R_f = 0.22$ (hexane/EtOAc, 6:1), mp 92 – 93 °C, δ_H (300 MHz, CDCl₃) 7.91 (dd, J = 7.3, 1.4, 1H), 7.69 (s, 1H), 7.67 – 7.60 (m, 2H), 7.44 (td, J = 7.4, 1.5, 1H), 7.35 (td, J = 7.4, 1.5, 1H), 7.31 – 7.20 (m, 6H), 7.14 – 7.05 (m, 5H), 7.05 – 6.97 (m, 2H), 5.90 (s, 2H), 1.36 (s, 12H); δ_C (101 MHz, CDCl₃) 147.2, 140.9, 136.8, 132.0, 131.4, 131.2, 130.9, 129.6, 128.4, 128.0, 127.7, 127.4, 127.1, 126.0,

125.6, 125.3, 125.0, 124.9, 124.8, 123.1, 84.3, 53.6, 25.0; δ_B (128 MHz, CDCl₃) 31.1. M/z: (ES⁺) 486.2 [M + H]⁺. High resolution MS calc. for formula C₃₁H₂₉BN₃O₂: 486.2353; found: 486.2361. *ν*/cm⁻¹ 3044, 2977, 1601, 1443, 1345, 1318, 1142, 1051, 963, 844, 760, 711, 655.

4-(Pyren-1-yl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11b)

 $C_{31}H_{28}BN_3O_2$, Brown solid (58% yield), R_f = 0.26 (hexane/EtOAc, 5:1), mp 212 – 213, δ_H (400 MHz, CDCl₃) 8.68 (d, J = 9.3, 1H), 8.24 – 8.15 (m, 4H), 8.14 – 7.98 (m, 4H), 7.91 (d, J = 8.0, 2H), 7.84 (s, 1H), 7.43 (d, J = 8.0, 2H), 5.71 (s, 2H), 1.38 (s, 12H); δ_C (101 MHz,

CDCl₃) 148.0, 137.5, 135.6, 131.3, 131.3, 130.9, 128.5, 128.2, 127.8, 127.5, 127.3, 127.2, 126.1, 125.4, 125.1, 125.0, 124.8, 124.8, 122.8, 84.1, 54.4, 24.9; δ_B (128 MHz, CDCl₃) 30.9. M/z: (ES⁺) 486.2 [M + H]⁺. High resolution MS calc. for formula C₃₁H₂₉BN₃O₂: 486.2353; found: 486.2363. *v*/cm⁻¹ 3043, 2977, 1614, 1401, 1362, 1142, 1092, 964, 848, 716.

2-Ethyl-6-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-

benzo[de]isoquinoline-1,3(2H)-dione (12a) $C_{29}H_{29}BN_4O_4$ white solid (65% yield), $R_f = 0.41$ (hexane/EtOAc, 3:1), mp 201 – 203 °C, δ_H (300 MHz, CDCl₃) 9.01 (dd, *J* = 8.6, 1.1, 1H), 8.62 (dd, *J* = 7.3, 1.1, 1H), 8.58 (d, *J* = 7.6, 1H), 8.00 (s, 1H), 7.98 – 7.92 (m, 1H), 7.88 (d,

 $J = 7.6, 1H), 7.75 (dd, J = 8.6, 7.3, 1H), 7.56 - 7.46 (m, 1H), 7.46 - 7.36 (m, 2H), 6.00 (s, 2H), 4.24 (q, J = 7.1, 2H), 1.38 (s, 12H), 1.34 (t, J = 7.1, 3H); <math>\delta_{C}$ (101 MHz, CDCl₃) 164.0, 163.7, 145.6, 140.3, 137.0, 134.5, 132.7, 132.1, 131.3, 130.7, 129.7, 129.2, 128.8, 128.3, 127.2, 127.0, 123.6, 122.8, 122.3, 84.3, 53.7, 35.5, 25.0, 13.4; δ_{B} (128 MHz, CDCl₃) 31.1. M/z: (AP⁺) 531.2 [M + Na]⁺. High resolution MS calc. for formula C₂₉H₂₉BN₄O₄Na: 531.2180; found: 531.2189. ν/cm^{-1} 2981, 1723, 1616, 1357, 1141, 1088, 931, 796, 703.

2-Ethyl-6-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-

benzo[de]isoquinoline-1,3(2H)-dione (12b) $C_{29}H_{29}BN_4O_4$ white solid (56% yield), $R_f = 0.36$ (hexane/EtOAc, 3:1), mp 218 – 220 °C, δ_H (300 MHz, CDCl₃) 7.94 (dd, J = 7.4, 1.3, 1H), 7.90 (s, 1H), 7.80 (dd, J = 8.1, 1.5, 1H), 7.69 (d, J = 9.5, 1H), 7.64 (d, J = 1.3, 1H), 7.51 (d, J = 8.1, 1H), 7.47 (td, J = 7.5, 1.5, 1H), 7.38

(td, *J* = 7.6, 1.2, 1H), 7.35 (d, *J* = 7.7, 1H), 6.40 (d, *J* = 9.5, 1H), 5.92 (s, 2H), 1.38 (s, 12H); δ_{c} (101 MHz, CDCl₃) 160.8, 154.5, 145.9, 143.1, 140.4, 136.9, 134.6, 132.0, 129.6, 128.4, 128.2, 121.7, 120.9, 118.3, 116.3, 113.3, 84.3, 53.6, 25.0; δ_{B} (128 MHz, CDCl₃) 30.7. M/z: (AP⁺) 509.2 [M + H]⁺. High resolution MS calc. for formula C₂₉H₃₀BN₄O₄: 509.2360; found: 509.2357. *v*/cm⁻¹ 2978, 1716, 1615, 1359, 1143, 1090, 937, 846, 794, 711.

7-(1-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-

2-one (13a) $C_{24}H_{24}BN_{3}O_{4}$, light brown solid (63% yield), $R_{f} = 0.35$ (hexane/EtOAc, 2:1), mp 89 – 91 °C, δ_{H} (400 MHz, CDCl₃) 7.94 (dd, J = 7.4, 1.3, 1H), 7.90 (s, 1H), 7.80 (dd, J = 8.1, 1.5, 1H), 7.69 (d, J = 9.5, 1H), 7.64 (d, J = 1.3, 1H), 7.51 (d, J = 8.1, 1H), 7.47 (td, J = 7.6 & 1.2, 1H), 7.38

 $(td, J = 7.6, 1.2, 1H), 7.35 (d, J = 7.6, 1H), 6.40 (d, J = 9.5, 1H), 5.92 (s, 2H), 1.38 (s, 12H); \delta_{H} (300 MHz, DMSO-d_{6}) 8.68 (s, 1H), 8.35 (s, 2H), 8.07 (d, J = 9.5, 1H), 7.89 - 7.81 (m, 2H), 7.78 (d, J = 7.9, 1H), 7.70 - 7.62 (m, 1H), 7.42 - 7.28 (m, 2H), 7.11 (d, J = 6.5, 1H), 6.48 (d, J = 9.5, 1H), 5.87 (s, 2H). \\ \delta_{C} (101 MHz, CDCl_{3}) 160.8, 154.5, 145.9, 143.1, 140.4, 136.9, 134.6, 132.0, 129.6, 128.4, 128.2, 121.7, 120.9, 118.3, 116.3, 113.3, 84.3, 53.6, 25.0; \\ \delta_{B} (128 MHz, CDCl_{3}) 31.0. M/z: (ES⁺) 452.2 [M + Na]⁺. High resolution MS calc. for formula C₂₄H₂₄BN₃O₄Na: 452.1758; found: 452.1754.$ *v*/cm⁻¹ 2947, 1735, 1612, 1221, 1206, 843, 759, 663.

7-(1-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-

2-one (13b) $C_{24}H_{24}BN_{3}O_{4}$, light brown solid (45% yield), $R_{f} = 0.38$ (hexane/EtOAc, 2:1), mp 221 – 223 °C, δ_{H} (300 MHz, CDCl₃) 7.84 (d, J = 8.1, 2H), 7.78 (s, 1H), 7.77 (dd, J = 8.1, 1.6, 1H), 7.69 (d, J = 9.5, 1H), 7.67 (s, 1H), 7.50 (d, J = 8.1, 1H), 7.34 (d, J = 8.1, 2H), 6.39 (d, J = 9.5, 1H), 5.62 (s, 2H), 1.34 (s, 12H); δ_{C} (101 MHz, CDCl₃)

160.7, 154.4, 146.5, 143.1, 137.1, 135.6, 134.2, 128.4, 127.4, 121.8, 120.7, 118.4, 116.4, 113.4, 84.1, 54.4, 24.9; δ_B (128 MHz, CDCl₃) 30.7. M/z: (ES⁺) 452.2 [M + Na]⁺. High resolution MS calc. for formula C₂₄H₂₄BN₃O₄Na: 452.1758; found: 452.1763. *v*/cm⁻¹ 2953, 1726, 1615, 1233, 1198, 861, 665.

6.4 Pinacol deprotection step 1: Trifluoroborate salts

The procedure for the synthesis of the trifluoroborate salts is the same as previously described. **Potassium (2-((4-(4-(diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)trifluoroborate**

$$\begin{split} &C_{27}H_{21}BF_3KN_4,\ mp\ 238-239\ ^\circ C,\ \delta_H\ (300\ MHz,\ CD_3OD)\ 8.09\ (s,\ 1H),\\ &7.66-7.60\ (m,\ 3H),\ 7.30-7.25\ (m,\ 4H),\ 7.18-7.01\ (m,\ 11H),\ 5.78\ (s,\ 2H);\ \delta_C\ (101\ MHz,\ CD_3OD)\ 147.8,\ 147.6,\ 137.7,\ 132.3,\ 129.0,\ 127.4,\\ &126.5,\ 126.4,\ 126.1,\ 124.5,\ 124.3,\ 123.1,\ 122.9,\ 120.4,\ 53.5.\ \delta_F\ (282) \end{split}$$

MHz, CD₃OD) -138.3 ν /cm⁻¹ 3038, 1589, 1487, 1274, 1200, 955, 803, 752, 694. MS was not readily obtained, this intermediate was used without MS analysis.

Potassium (4-((4-(diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)trifluoroborate

C₂₇H₂₁BF₃KN₄, mp 289 – 291 °C, $\delta_{\rm H}$ (300 MHz, CD₃OD) 8.12 (s, 1H), 7.65 (dt, *J* = 8.7, 2.1, 2H), 7.54 (d, *J* = 7.8, 2H), 7.31 – 7.20 (m, 6H), 7.08 – 7.02 (m, 8H) 5.55 (s, 2H); $\delta_{\rm C}$ (101 MHz, CD₃OD) 147.9, 147.5, 132.4, 131.8, 129.1, 126.3, 126.2, 124.3, 124.2,

123.0, 120.0, 54.2. v/cm⁻¹ 2987, 2100, 1588, 1487, 1279, 1220, 962, 844, 753, 695. MS was not readily obtained, this intermediate was used without MS analysis.

4-(Pyren-1-yl)-1-(2-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt C₂₅H₁₆BN₃KF₃,

mp 176 – 177 , $\delta_{\rm H}$ (300 MHz, (CD₃)₂CO) 8.99 (d, *J* = 9.4, 1H), 8.52 (s, 1H), 8.34 – 8.24 (m, 4H), 8.24 – 8.13 (m, 3H), 8.11 – 8.02 (m, 1H), 7.74 – 7.64 (m, 1H), 7.27 – 7.04 (m, 3H), 5.95 (s, 2H); $\delta_{\rm C}$ (101 MHz, (CD₃)₂CO) 132.7, 127.6, 127.5, 127.4, 127.3, 126.9, 126.2, 126.1, 125.9, 125.4, 125.2,

124.9, 123.9, 53.5. δ_F (300 MHz, (CD₃)₂CO) -138.1 ν/cm⁻¹ 3595, 3139, 3039, 1641, 1602, 1433, 1206, 949, 847, 751. MS was not readily obtained, this intermediate was used without MS analysis.

4-(Pyren-1-yl)-1-(4-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt C₂₅H₁₆BN₃KF₃,

mp 221 – 224 °C, $\delta_{\rm H}$ (300 MHz, CD₃OD) 8.48 (d, *J* = 9.3, 1H), 8.35 (s, 1H), 8.23 (t, *J* = 6.9, 3H), 8.19 – 8.09 (m, 4H), 8.03 (t, *J* = 7.7, 1H), 7.61 (d, *J* = 7.7, 2H), 7.34 (d, *J* = 7.7, 2H), 5.72 (s, 2H); $\delta_{\rm C}$ (101 MHz, CD₃OD) 132.5, 131.9, 131.3, 130.8, 128.4, 127.8, 127.5, 126.9,

126.3, 125.9, 125.1, 124.8, 124.6, 124.5, 124.1, 54.3. δ_F (282 MHz, CD₃OD) -142.5 ν/cm^{-1} 3593, 3137, 3039, 1641, 1603, 1433, 1207, 949, 847, 751. MS was not readily obtained, this intermediate was used without MS analysis.

2-Ethyl-6-(1-(2-(trifluoro-λ⁴-boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-

1,3(2*H***)-dione, potassium salt** $C_{23}H_{17}BF_3KN_4O_2$, mp 279 – 281 °C, δ_H (300 MHz, (CD₃)₂CO) 9.04 (1H, dd, *J* = 8.6, 1.1), 8.46 (1H, s), 8.38 (1H, dd, *J* = 7.2, 1.1), 8.29 (1H, d, *J* = 7.5), 7.81 (1H, d, *J* = 7.5), 7.72 - 7.67 (1H, m), 7.63 (1H, dd, *J* = 8.6, 7.3), 7.21 - 7.10 (3H, m), 5.92 (2H, s),

4.11 (2H, q, J = 7.1), 1.26 (3H, t, J = 7.1); δ_{C} (101 MHz, (CD₃)₂CO) 163.3, 162.9, 145.0, 138.3, 134.6, 132.7, 130.4, 130.1, 128.6, 128.3, 127.8, 126.9, 126.6, 126.5, 126.2, 124.9, 122.6, 121.6, 53.7, 34.8, 12.7. M/z: (ES⁺) 527.1 [M + K]⁺. High resolution MS calc. for formula C₂₃H₁₇BN₄O₂F₃K₂: 527.0671; found: 527.0679.

 $\label{eq:constraint} \textbf{7-(1-(2-(trifluoro-λ^4-boranyl])benzyl]-1H-1,2,3-triazol-4-yl]-2H-chromen-2-one potassium salt}$

$$\begin{split} & \mathsf{C}_{18}\mathsf{H}_{12}\mathsf{BF}_3\mathsf{KN}_3\mathsf{O}_2, \delta_\mathsf{H} \mbox{(300 MHz, DMSO-}{d6) 8.59 (s, 1H), 8.07 (d, J = 9.6, 1H),} \\ & 7.88 - 7.80 \mbox{(m, 2H), 7.77 (dd, J = 9.6, 3.6, 1H), 7.49 (dd, J = 7.0, 1.7, 1H),} \\ & 7.14 - 7.01 \mbox{(m, 2H), 6.79 (d, J = 6.9, 1H), 6.49 (dd, J = 9.6, 3.6, 1H), 5.75 (s, 2H); } \delta_\mathsf{C} \mbox{(101 MHz, DMSO-}{d6) 160.5, 154.6, 145.4, 144.5, 138.5, 134.9,} \end{split}$$

132.6, 129.6, 126.7, 126.6, 126.4, 123.4, 121.7, 118.6, 116.2, 112.6, 53.6; δ_F (282 MHz, DMSO-*d6*)

-135.8. M/z: (ES⁺) 432.1 [M + Na]⁺. High resolution MS calc. for formula $C_{18}H_{12}BN_3O_2F_3KNa$: 432.0509; found: 432.0502.

$7-(1-(4-(trifluoro-\lambda^4-boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one potassium salt$

 $C_{18}H_{12}BF_3KN_3O_2$, δ_H (300 MHz, DMSO-*d6*) 9.17 (dd, *J* = 8.6, 1.0, 1H), 8.91 (s, 1H), 8.62 – 8.48 (m, 2H), 8.13 (d, *J* = 7.7, 1H), 7.93 (dd, *J* = 8.6, 7.4, 1H), 7.36 (d, *J* = 7.6, 2H), 7.20 (d, *J* = 7.6, 2H), 5.64 (s, 2H). δ_C (101 MHz, DMSO-*d6*) 163.7, 145.3, 134.5, 133.1, 132.2, 131.3,

130.9, 129.9, 128.7, 128.1, 127.6, 126.7, 125.8, 122.9, 122.1, 54.2; δ_F (282 MHz, DMSO-*d6*) 139.1. MS was not readily obtained, this intermediate was used without MS analysis.

6.5 Pinacol deprotection step 2: Boronic acids

The procedure for the final step is the same as before.

(2-((4-(4-(Diphenylamino)phenyl)-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14a) $HO_{B}OH$ $HO_{N=N}$ $HO_{N=N}$ $HO_{N=N}$ $HO_{N=N}$ $HO_{N=N}$ $HO_{N=N}$ $HO_{N=N}$ $HO_{N=N}$ $HO_{N=N}$ $HO_{27}H_{23}BN_4O_2$, yellow solid (82% yield), R_f = 0.76 (DCM/MeOH, 95:5), mp 156 - 158 °C, δ_{H} (300 MHz, CDCl₃) 8.07 (s, 1H), 7.60 (d, *J* = 8.4, 2H), 7.34 - 7.20 (m, 7H), 7.03 - 6.97 (m, 8H), 5.81 (s, 2H); δ_{C} (101 MHz, CDCl₃) 148.1, 147.4, 129.1, 128.7, 127.5, 126.6, 126.3, 124.7, $HO_{N=N}$ $HO_{N=N}$ $HO_$

124.4, 123.1, 122.9, 120.4, 54.0; δ_B (128 MHz, CD₃OD) 29.3. M/z: (MALDI) 447.3 [M + H]⁺. ν /cm⁻¹ 3036, 2926, 1589, 1487, 1273, 974, 809, 751, 693.

(4-((4-(4-(Diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14b)

 $C_{27}H_{23}BN_4O_2$, brown solid (85% yield), $R_f = 0.79$ (DCM/MeOH, 95:5), mp 158 – 161 °C, δ_H (300 MHz, CD₃OD) 8.20 (s, 1H), 7.77 – 7.64 (m, 4H), 7.30 – 7.24 (m, 6H), 7.07 – 7.01 (m, 8H), 5.62 (s, 2H); δ_C (101 MHz, CD₃OD) 148.0, 147.6, 147.5, 134.2, 133.8, 129.1, 126.7, 126.2, 124.4, 124.0, 123.0, 122.9, 120.3, 53.6; δ_B

(128 MHz, CD₃OD) 28.6. M/z: (MALDI) 447.3 [M + H]⁺. v/cm⁻¹ 3314, 3035, 1588, 1487, 1329, 1273, 1180, 1019, 752, 693.

(2-((4-(Pyren-1-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (15a) $C_{25}H_{18}BN_{3}O_{2}$, light HO B OH yellow solid (79% yield), $R_{f} = 0.82$ (DCM/MeOH, 9:1), mp 214 – 216 °C, δ_{H} NMR (300 MHz, CDCl₃) 8.43 – 8.36 (m, 1H), 7.80 (d, J = 6.8, 1H), 7.73 (d, J = 9.3, 1H), 7.67 (d, J = 7.5, 1H), 7.57 – 7.63 (m, 4H), 7.52 (d, J = 8.9, 1H), 7.38 (s, 1H), 7.23 – 7.12 (m, 2H), 7.09 (d, J = 7.9, 1H), 6.97 (d, J = 7.9, 1H), 6.04 (s, 2H). δ_{C} NMR (101 MHz, DMSO-*d6*) 146.9, 138.2, 135.1,

131.4, 131.1, 130.8, 128.5, 128.2, 127.8, 127.5, 126.9, 126.0, 125.7, 125.6, 125.3, 125.2, 124.8, 124.4, 53.7, 31.2; δ_B (128 MHz, DMSO-*d6*) 29.1. M/z: (MALDI) 404.2 [M + H]⁺. *v*/cm⁻¹ 3284, 3149, 2987, 1716, 1611, 1411, 1354, 1182, 1050, 905, 839, 724.

όH
8.11 - 8.03 (m, 3H), 8.00 (d, J = 7.6, 2H), 7.80 (s, 1H), 7.23 (d, J = 8.6, 2H), 6.89 (d, J = 8.6, 2H), 5.56 (s, 2H); δ_c (101 MHz, CDCl₃)
147.81, 135.67, 135.26, 134.31, 131.30, 130.83, 128.55, 128.18, 127.85, 127.33, 127.17, 126.08, 125.40,
125.15, 124.96, 124.80, 123.55, 122.90, 54.31; δ_B (128 MHz, DMSO-*d6*) 27.9. M/z: (MALDI) 404.2 [M

+ H]⁺. v/cm⁻¹ 3045, 1730, 1600, 1443, 1377, 1311, 1079, 844, 707.

(2-((4-(2-Ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-1-

yl)methyl)phenyl)boronic acid (16a) C₂₃H₁₉BN₄O₄, light green solid (91% yield), R_f = 0.75 (DCM/MeOH, 95:5), mp 187 – 189 °C, $\delta_{\rm H}$ (300 MHz, CD₃OD) 8.80 - 8.74 (m, 1H), 8.45 - 8.34 (m, 3H), 7.83 (d, *J* = 7.6, 1H), 7.66 (m, 1H), 7.56 - 7.39 (m, 4H), 5.79 (s, 2H), 4.13 (q, *J* = 7.0,

2H), 1.27 (t, J = 7.0, 3H); δ_c (101 MHz, CDCl₃) 167.6, 167.3, 149.1, 142.0, 136.3, 136.0, 134.6, 134.0, 133.2, 133.0, 132.7, 132.1, 131.6, 131.0, 130.9, 128.7, 126.3, 125.9, 58.1, 38.9, 16.0; δ_B (128 MHz, CD₃OD) 28.8. M/z: (MALDI) 427.2 [M + H]⁺. ν /cm⁻¹ 3344, 2924, 1694, 1646, 1587, 1337, 1244, 1064, 781, 756.

(4-((4-(2-Ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-1-

yl)methyl)phenyl)boronic acid (16b) $C_{23}H_{19}BN_4O_4$, light green solid (87% yield), $R_f = 0.71$ (DCM/MeOH, 95:5), mp 218 – 220 °C, δ_H NMR (300 MHz, CDCl₃) 8.89 (d, J = 8.6, 1H), 8.53 (dd, J = 17.3, 6.9, 2H), 7.66 – 8.16 (m, 5H), 7.29 – 7.51 (m, 2H), 5.68 (s, 2H),

4.21 (q, J = 7.2, 2H), 3.67 (s, 2H), 3.67 (s, 2H), 1.32 (t, J = 7.2, 3H). $\delta_{\rm C}$ NMR (101 MHz, CDCl₃) 164.1, 163.8, 146.3, 134.5, 134.0, 132.7, 131.4, 130.6, 129.2, 128.8, 127.6, 127.4, 127.3, 123.3, 122.8, 122.6, 54.5, 35.6, 13.4. M/z: (MALDI) 427.2 [M + H]⁺. $\nu/{\rm cm}^{-1}$ 3357, 3127, 2966, 1684, 1641, 1589, 1333, 1245, 1064, 781, 700.

(2-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17a)

 $C_{18}H_{14}BN_3O_4$, white solid (93% yield), $R_f = 0.79$ (DCM/MeOH, 95:5), mp 198 – 201 °C, δ_H NMR (300 MHz, CD₃OD) 8.42 (s, 1H), 7.96 (d, J = 9.5, 1H), 7.84 – 7.77 (m, 2H), 7.69 (d, J = 8.6, 1H), 7.50 – 7.37 (m, 4H), 6.44 (d, J = 9.5, 1H), 5.72 (s, 2H). δ_C NMR (101 MHz, DMSO-*d6*) 160.4, 154.6,

145.5, 144.4, 139.9, 135.0, 134.7, 130.2, 129.6, 128.6, 127.7, 123.6, 121.7, 118.7, 116.3, 112.7, 53.6, 51.1, 49.1; δ_B (128 MHz, CD₃OD) 28.8. M/z: (MALDI) 348.1 [M + H]⁺. ν /cm⁻¹ 3134, 1715, 1617, 1321, 1217, 943, 843, 754, 715.

(4-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17b)

 $C_{18}H_{14}BN_3O_4$, white solid (95% yield), $R_f = 0.81$ (DCM/MeOH, 95:5), mp 261 – 263 °C, δ_H NMR (300 MHz, DMSO-*d6*) 8.61 (s, 1H), 8.00 (d, *J* = 9.2, 1H), 7.92 (d, *J* = 8.2, 3H), 7.85 (s, 1H), 7.74 (d, *J* = 8.1, 1H), 7.41 (d, *J* = 8.4, 2H), 6.42 (d, *J* = 9.2, 1H), 5.75 (s, 2H); δ_C NMR (101 MHz, DMSO-*d6*) 160.4, 154.6, 145.8, 144.4, 137.9, 135.1, 134.9, 134.6, 129.6, 127.4, 123.6, 121.7, 118.7, 116.3, 112.7, 53.7, 50.7, 49.1. M/z: (MALDI) 348.1 $[M + H]^+$. ν/cm^{-1} 3332, 3098, 1710, 1614, 1567, 1340, 1153, 940, 844, 784, 713.

7. NMR spectra of the synthesised compounds

4-Phenyl-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4a) ¹H NMR spectrum

4-Phenyl-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4a) ¹³C NMR spectrum

4-Phenyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1*H*-1,2,3-triazole (4b) ¹¹B NMR spectrum

4-Phenyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4c) ¹H NMR spectrum

4-Phenyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4c) ¹³C NMR spectrum
4-Phenyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (4c) ¹¹B NMR spectrum

1-Benzyl-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1*H*-1,2,3-triazole (7a) ¹³C NMR spectrum

1-Benzyl-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1*H*-1,2,3-triazole (7a) ¹¹B NMR spectrum

1-Benzyl-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1*H*-1,2,3-triazole (7b) ¹H NMR spectrum

1-Benzyl-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1*H*-1,2,3-triazole (7b) ¹¹B NMR spectrum

1-Benzyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1*H*-1,2,3-triazole (7c) ¹H NMR spectrum

1-Benzyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-1,2,3-triazole (7c) ¹³C NMR spectrum

1-Benzyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1*H*-1,2,3-triazole (7c) ¹¹B NMR spectrum

4-Phenyl-1-(2-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

4-Phenyl-1-(3-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

4-Phenyl-1-(3-(trifluoro-l4-boranyl)benzyl)-1*H*-1,2,3-triazole, potassium salt ¹⁹F NMR spectrum

4-Phenyl-1-(4-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

4-Phenyl-1-(4-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹⁹F NMR spectrum

1-Benzyl-4-(2-(trifluoro-l4-boranyl)phenyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

1-Benzyl-4-(3-(trifluoro-l4-boranyl)phenyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

1-Benzyl-4-(4-(trifluoro-l4-boranyl)phenyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

1-Benzyl-4-(4-(trifluoro-l4-boranyl)phenyl)-1H-1,2,3-triazole, potassium salt ¹⁹F NMR spectrum

(2-((4-Phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (1a) ¹H NMR spectrum

(3-((4-Phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (1b) ¹H NMR spectrum

(3-((4-Phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (1b) ¹³C NMR spectrum

(4-((4-Phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (1c) ¹H NMR spectrum

(4-((4-Phenyl-1*H*-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (1c) ¹³C NMR spectrum

(2-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)phenyl)boronic acid (8a) ¹H NMR spectrum

(2-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)phenyl)boronic acid (8a) ¹³C NMR spectrum

(3-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)phenyl)boronic acid (8b) ¹H NMR spectrum

(4-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)phenyl)boronic acid (8c) ¹H NMR spectrum

N,N-Diphenyl-4-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)aniline (10a) ¹H NMR spectrum

N,N-Diphenyl-4-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)aniline (10a) ¹³C NMR spectrum

N,N-Diphenyl-4-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)aniline (10a)¹¹B NMR spectrum

N,N-Diphenyl-4-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)aniline (10b) ¹H NMR spectrum

N,*N*-Diphenyl-4-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1*H*-1,2,3-triazol-4-yl)aniline (10b) ¹³C NMR spectrum

N,N-Diphenyl-4-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)aniline (10b)¹¹B NMR spectrum

4-(Pyren-1-yl)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11a) ¹H NMR spectrum

4-(Pyren-1-yl)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11a) ¹³C NMR spectrum

4-(Pyren-1-yl)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11a) ¹¹B NMR spectrum

4-(Pyren-1-yl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11b) ¹H NMR spectrum

4-(Pyren-1-yl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11b) ¹³C NMR spectrum

4-(Pyren-1-yl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazole (11b) ¹¹B NMR spectrum

2-Ethyl-6-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (12a) ¹H NMR spectrum

2-Ethyl-6-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (12a)¹³C NMR spectrum

2-Ethyl-6-(1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (12a)¹¹B NMR spectrum

2-Ethyl-6-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (12b) ¹H NMR spectrum

2-Ethyl-6-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (12b) ¹³C NMR spectrum

2-Ethyl-6-(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (12b)¹¹B NMR spectrum

7-(1-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one (13a) ¹H NMR spectrum

7-(1-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one (13a) ¹³C NMR spectrum

7-(1-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one (13a)¹¹B NMR spectrum

7-(1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one (13b) ¹H NMR spectrum

7-(1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one (13b)¹¹B NMR spectrum

N,*N*-Diphenyl-4-(1-(2-(trifluoro-l4-boranyl)benzyl)-1*H*-1,2,3-triazol-4-yl)aniline, potassium salt ¹H NMR spectrum

N,N-Diphenyl-4-(1-(2-(trifluoro-l4-boranyl)benzyl)-1*H*-1,2,3-triazol-4-yl)aniline, potassium salt ¹³C NMR spectrum

ppm

N,N-Diphenyl-4-(1-(2-(trifluoro-l4-boranyl)benzyl)-1*H*-1,2,3-triazol-4-yl)aniline, potassium salt ¹⁹F NMR spectrum

N,*N*-Diphenyl-4-(1-(4-(trifluoro-l4-boranyl)benzyl)-1*H*-1,2,3-triazol-4-yl)aniline, potassium salt ¹H NMR spectrum

N,N-Diphenyl-4-(1-(4-(trifluoro-l4-boranyl)benzyl)-1*H*-1,2,3-triazol-4-yl)aniline, potassium salt ¹³C NMR spectrum

4-(Pyren-1-yl)-1-(2-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

4-(Pyren-1-yl)-1-(2-(trifluoro-l4-boranyl)benzyl)-1*H*-1,2,3-triazole, potassium salt ¹³C NMR spectrum

4-(Pyren-1-yl)-1-(2-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹⁹F NMR spectrum

4-(Pyren-1-yl)-1-(4-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹H NMR spectrum

4-(Pyren-1-yl)-1-(4-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹³C NMR spectrum

4-(Pyren-1-yl)-1-(4-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazole, potassium salt ¹⁹F NMR spectrum

2-Ethyl-6-(1-(2-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione, potassium salt ¹H NMR spectrum

2-Ethyl-6-(1-(2-(trifluoro-l4-boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione, potassium salt ¹³C NMR spectrum

7-(1-(2-(Trifluoro- λ^4 -boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-2*H*-chromen-2-one, potassium salt, ¹H NMR spectrum

7-(1-(2-(Trifluoro- λ^4 -boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one, potassium salt, ¹³C NMR spectrum

7-(1-(4-(Trifluoro- λ^4 -boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-2*H*-chromen-2-one, potassium salt, ¹H NMR spectrum

7-(1-(4-(Trifluoro- λ^4 -boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one, potassium salt, ¹³C NMR spectrum

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

7-(1-(4-(Trifluoro- λ^4 -boranyl)benzyl)-1H-1,2,3-triazol-4-yl)-2H-chromen-2-one, potassium salt, ¹⁹F NMR spectrum

(2-((4-(4-(Diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14a) ¹H NMR spectrum

(2-((4-(4-(Diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14a) ¹³C NMR spectrum

(2-((4-(4-(Diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14a)¹¹B NMR spectrum

(4-((4-(Diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14b) ¹H NMR spectrum

(4-((4-(Diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14b) ¹³C NMR spectrum

(4-((4-(Diphenylamino)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (14b)¹¹B NMR spectrum

(2-((4-(Pyren-1-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (15a) ¹H NMR spectrum

(2-((4-(Pyren-1-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (15a)¹¹B NMR spectrum

(4-((4-(Pyren-1-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (15b) ¹H NMR spectrum

(4-((4-(Pyren-1-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (15b)¹¹B NMR spectrum

(2-((4-(2-Ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (16a) ¹H NMR spectrum

(2-((4-(2-Ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (16a) ¹³C NMR spectrum

(2-((4-(2-Ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (16a) ¹¹B NMR spectrum

(4-((4-(2-Ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (16b) ¹H NMR spectrum

(4-((4-(2-Ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (16b) ¹³C NMR spectrum

4(2-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17a) ¹H NMR spectrum (d₄-methanol)

4(2-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17a) ¹H NMR spectrum (d₆-DMSO)

4(2-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17a)¹³C NMR spectrum

4(2-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17a)¹¹B NMR spectrum

(4-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17b) ¹H NMR spectrum

(4-((4-(2-Oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)boronic acid (17b) ¹³C NMR spectrum

8. X-Ray crystallographic information

8.1 Compound 8a

Table 1 Crystal data and structure refinement for COMPOUND 8A.

Identification code	COMPOUND 8A
Empirical formula	$C_{16}H_{16}BN_3O_2$
Formula weight	293.13
Temperature/K	99.98(11)
Crystal system	monoclinic
Space group	12/a
a/Å	25.8560(9)
b/Å	5.37038(17)
c/Å	21.5154(7)
α/°	90

β/°	101.646(3)
γ/°	90
Volume/Å ³	2926.05(18)
Z	8
$\rho_{calc}g/cm^3$	1.331
µ/mm ⁻¹	0.089
F(000)	1232.0
Crystal size/mm ³	0.2588 × 0.1815 × 0.1003
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.506 to 52.742
Index ranges	$-32 \le h \le 25, -5 \le k \le 6, -22 \le l \le 26$
Reflections collected	5839
Independent reflections	2976 [R _{int} = 0.0188, R _{sigma} = 0.0283]
Data/restraints/parameters	2976/0/204
Goodness-of-fit on F ²	1.090
Final R indexes [I>=2σ (I)]	$R_1 = 0.0418$, $wR_2 = 0.1011$
Final R indexes [all data]	$R_1 = 0.0491$, $wR_2 = 0.1059$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.19

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for COMPOUND 8A. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	у	Z	U(eq)
B ₁	3830.3(7)	5355(3)	6078.7(8)	19.3(4)
C ₁	4041.9(6)	3315(3)	6607.2(7)	17.7(3)
C ₂	3750.6(6)	3155(3)	7091.9(7)	21.6(3)
C ₃	3844.1(6)	1372(3)	7565.2(7)	22.9(4)
C ₄	4240.2(6)	-366(3)	7567.5(7)	23.2(4)
C ₅	4548.5(6)	-228(3)	7112.9(7)	21.1(3)
C ₆	4460.5(6)	1585(3)	6635.8(7)	16.8(3)
C ₇	4835.3(6)	1532(3)	6199.4(7)	16.1(3)
C ₈	5154.7(6)	-389(3)	6082.7(7)	17.8(3)
C ₉	5853.9(6)	-687(3)	5417.7(7)	19.2(3)
C ₁₀	6376.3(6)	-732(3)	5881.9(7)	18.0(3)
C ₁₁	6517.3(6)	1119(3)	6333.2(8)	22.3(4)
C ₁₂	7003.2(7)	1040(3)	6750.3(8)	27.3(4)
C ₁₃	7353.5(7)	-870(4)	6712.6(8)	27.9(4)
C ₁₄	7219.3(7)	-2706(4)	6258.9(9)	29.7(4)
C ₁₅	6730.8(7)	-2654(3)	5846.2(8)	24.3(4)
C ₁₆	3119.7(7)	8161(4)	5649.8(8)	29.0(4)
N_1	4949.3(5)	3528(2)	5859.4(6)	18.3(3)

N ₂	5315.6(5)	2931(2)	5538.8(6)	19.1(3)
N ₃	5437.9(5)	537(2)	5677.0(6)	16.6(3)
O ₁	4071.8(5)	6200(2)	5620.2(5)	21.8(3)
O ₂	3339.3(4)	6271(2)	6094.0(5)	24.7(3)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for COMPOUND 8A. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
B_1	17.0(8)	18.2(9)	21.4(9)	-2.8(7)	0.7(7)	-1.9(7)
C ₁	15.8(7)	17.9(8)	18.3(7)	-2.6(6)	1.0(6)	-3.4(6)
C ₂	17.9(8)	23.3(8)	23.3(8)	-1.2(7)	3.4(6)	-0.3(7)
C ₃	20.1(8)	29.7(9)	18.9(8)	0.0(7)	4.1(6)	-4.2(7)
C ₄	24.4(8)	24.4(9)	18.7(8)	6.1(7)	-0.6(6)	-3.9(7)
C ₅	19.5(8)	19.8(8)	22.2(8)	1.1(7)	0.0(6)	-0.1(7)
C ₆	15.7(7)	16.6(7)	16.4(7)	-1.7(6)	-0.9(6)	-4.3(6)
C ₇	14.2(7)	15.8(8)	16.0(7)	-0.8(6)	-2.2(5)	-2.2(6)
C ₈	17.8(8)	14.4(8)	19.6(7)	0.6(6)	0.1(6)	-1.4(6)
C ₉	20.7(8)	17.8(8)	18.7(7)	-1.2(6)	3.2(6)	3.1(6)
C ₁₀	17.7(8)	18.6(8)	18.7(7)	4.2(6)	6.2(6)	0.3(6)
C ₁₁	20.4(8)	21.6(8)	25.1(8)	-0.9(7)	4.9(6)	3.6(7)
C ₁₂	23.7(9)	30.0(9)	26.8(9)	-4.9(8)	1.9(7)	-2.7(8)
C ₁₃	16.0(8)	36(1)	30.2(9)	3.7(8)	0.7(7)	0.8(7)
C ₁₄	23.1(9)	28.9(10)	38.1(10)	4.2(8)	8.7(7)	9.4(8)
C ₁₅	24.8(9)	21.7(8)	26.7(8)	-2.0(7)	5.8(7)	3.6(7)
C ₁₆	23.0(9)	31.9(10)	31.1(9)	7.7(8)	3.3(7)	9.1(8)
N_1	16.6(6)	17.5(7)	20.4(6)	1.5(5)	3.1(5)	0.7(5)
N_2	18.1(7)	16.6(7)	22.8(7)	1.8(6)	4.1(5)	3.3(5)
N_3	15.9(6)	15.0(6)	17.6(6)	0.4(5)	0.1(5)	1.4(5)
O ₁	19.9(6)	21.6(6)	24.4(6)	5.3(5)	5.6(5)	4.4(5)
O ₂	19.1(6)	26.9(6)	28.4(6)	7.5(5)	5.2(5)	5.6(5)

Table 4 Bond Lengths for COMPOUND 8A.

Ato	m Atom	Length/Å	Ator	n Atom	Length/Å
B1	C ₁	1.594(2)	C ₈	N_3	1.343(2)
B1	O1	1.348(2)	C ₉	C ₁₀	1.509(2)
B1	O ₂	1.368(2)	C ₉	N_3	1.4638(19)
C_1	C ₂	1.407(2)	C ₁₀	C ₁₁	1.386(2)

C_1	C ₆	1.418(2)	C ₁₀	C ₁₅	1.393(2)
C ₂	C ₃	1.383(2)	C ₁₁	C ₁₂	1.389(2)
C ₃	C ₄	1.385(2)	C ₁₂	C ₁₃	1.381(3)
C_4	C ₅	1.383(2)	C ₁₃	C ₁₄	1.382(3)
C ₅	C ₆	1.400(2)	C_{14}	C ₁₅	1.390(2)
C ₆	C ₇	1.480(2)	C_{16}	02	1.431(2)
C ₇	C ₈	1.376(2)	N_1	N_2	1.3189(18)
C ₇	N_1	1.363(2)	N_2	N_3	1.3428(18)

Table 5 Bond Angles for COMPOUND 8A.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O ₁	B_1	C1	127.62(15)	N_3	C ₈	C ₇	105.48(14)
O ₁	B_1	O ₂	117.75(15)	N_3	C ₉	C ₁₀	112.54(12)
O ₂	B_1	C ₁	114.61(14)	C_{11}	C ₁₀	C ₉	121.72(14)
C ₂	C_1	B ₁	114.37(14)	C ₁₁	C ₁₀	C ₁₅	119.16(15)
C ₂	C_1	C ₆	116.49(14)	C ₁₅	C ₁₀	C ₉	119.11(14)
C ₆	C_1	B ₁	129.06(14)	C ₁₀	C ₁₁	C ₁₂	120.42(15)
C ₃	C ₂	C ₁	123.21(15)	C ₁₃	C ₁₂	C ₁₁	120.18(16)
C ₂	C ₃	C ₄	119.24(15)	C ₁₂	C ₁₃	C ₁₄	119.82(16)
C ₅	C ₄	C ₃	119.53(15)	C ₁₃	C ₁₄	C ₁₅	120.20(16)
C ₄	C ₅	C ₆	121.62(15)	C ₁₄	C ₁₅	C ₁₀	120.20(16)
C_1	C ₆	C ₇	125.23(14)	N_2	N_1	C ₇	110.19(13)
C ₅	C ₆	C ₁	119.81(14)	N_1	N_2	N ₃	106.19(12)
C ₅	C ₆	C ₇	114.95(14)	C ₈	N_3	C ₉	128.37(13)
C ₈	C ₇	C ₆	128.62(14)	N_2	N_3	C ₈	111.32(13)
N_1	C ₇	C ₆	124.46(14)	N_2	N_3	C ₉	120.23(13)
N_1	C ₇	C ₈	106.81(13)	B_1	O ₂	C ₁₆	118.96(13)

Table 6 Hydrogen Bonds for COMPOUND 8A.

DHA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
$C_8 H_8 N_1^{1}$	0.93	2.57	3.329(2)	138.5
$C_9 H_{9A} O_1^{2}$	0.97	2.41	3.317(2)	154.8
$O_1H_1 N_1$	0.94(3)	1.74(3)	2.6458(17)	161(2)

¹+X,-1+Y,+Z; ²1-X,1-Y,1-Z

Table 7 Torsion Angles for COMPOUND 8A.

ABCD	Angle/°	ABCD	Angle/°
$B_1C_1C_2C_3$	174.63(15)	$C_8 \ C_7 \ N_1 \ N_2$	0.52(17)
$B_1 C_1 C_6 C_5$	-173.55(15)	$C_9 \ C_{10} C_{11} C_{12}$	-179.37(15)
$B_1C_1C_6C_7$	7.6(2)	$C_9 \ C_{10} C_{15} C_{14}$	178.54(15)
$C_1 B_1 O_2 C_{16}$	178.36(14)	$C_{10}C_9\ N_3\ C_8$	-78.73(19)
$C_1 C_2 C_3 C_4$	-0.4(3)	$C_{10}C_9\ N_3\ N_2$	97.80(16)
$C_1 C_6 C_7 C_8$	-161.18(15)	$C_{10}C_{11}C_{12}C_{13}$	0.9(3)
$C_1C_6\;C_7\;N_1$	23.2(2)	$C_{11}C_{10}C_{15}C_{14}$	0.0(2)
$C_2 C_1 C_6 C_5$	2.9(2)	$C_{11}C_{12}C_{13}C_{14}$	-0.1(3)
$C_2 C_1 C_6 C_7$	-175.91(14)	$C_{12}C_{13}C_{14}C_{15}$	-0.8(3)
$C_2 C_3 C_4 C_5$	2.6(2)	$C_{13}C_{14}C_{15}C_{10}$	0.8(3)
$C_3 C_4 C_5 C_6$	-2.0(2)	$C_{15}C_{10}C_{11}C_{12}$	-0.9(2)
$C_4 C_5 C_6 C_1$	-0.8(2)	$N_1 \ C_7 \ C_8 \ N_3$	-0.59(16)
$C_4 C_5 C_6 C_7$	178.08(14)	$N_1 \ N_2 \ N_3 \ C_8$	-0.17(16)
$C_5 C_6 C_7 C_8$	20.0(2)	$N_1 \ N_2 \ N_3 \ C_9$	-177.25(12)
$C_5C_6C_7N_1$	-155.67(14)	$N_3 \ C_9 \ C_{10} \ C_{11}$	-29.9(2)
$C_6 C_1 C_2 C_3$	-2.3(2)	$N_3 \ C_9 \ C_{10} \ C_{15}$	151.58(14)
$C_6 C_7 C_8 N_3$	-176.83(14)	$O_1 \ B_1 \ C_1 \ C_2$	168.61(16)
$C_{6}C_{7}N_{1}N_{2}$	176.96(13)	$O_1 \ B_1 \ C_1 \ C_6$	-14.9(3)
$C_7 C_8 N_3 C_9$	177.26(14)	$O_1 \; B_1 \; O_2 \; C_{16}$	-3.4(2)
$C_7C_8N_3N_2$	0.48(16)	$O_2 \ B_1 \ C_1 \ C_2$	-13.3(2)
$C_7 N_1 N_2 N_3$	-0.22(16)	$O_2 B_1 C_1 C_6$	163.20(15)

Table 8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for COMPOUND 8A.

Atom	X	У	Z	U(eq)
H ₂	3482	4306	7094	26
H ₃	3643	1340	7878	27
H ₄	4298	-1617	7873	28
H₅	4821	-1369	7124	25
H ₈	5171	-1991	6250	21
H _{9A}	5897	180	5036	23
H _{9B}	5747	-2382	5301	23
H ₁₁	6285	2422	6357	27
H ₁₂	7093	2276	7056	33
H ₁₃	7679	-919	6992	34
H ₁₄	7457	-3981	6230	36
H ₁₅	6640	-3906	5545	29

H_{16A}	3137	7632	5228	43
H _{16B}	3317	9675	5747	43
H_{16C}	2758	8443	5676	43
H ₁	4411(10)	5520(50)	5658(11)	54(7)

Experimental

Single crystals of $C_{16}H_{16}BN_3O_2$ **8a** were obtained by slow evaporation of a methanol solution. A suitable crystal was selected and analysed on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at 99.98(11) K during data collection. Using Olex2,⁸ the structure was solved with the Superflip⁹⁻¹¹ structure solution program using Charge Flipping and refined with the ShelXL¹² refinement package using Least Squares minimisation.

Crystal structure determination of 8a

Crystal Data for C₁₆H₁₆BN₃O₂ (*M*=293.13 g/mol): monoclinic, space group I2/a (no. 15), *a* = 25.8560(9) Å, *b* = 5.37038(17) Å, *c* = 21.5154(7) Å, β = 101.646(3)°, *V* = 2926.05(18) Å³, *Z* = 8, *T* = 99.98(11) K, μ (MoK α) = 0.089 mm⁻¹, *Dcalc* = 1.331 g/cm³, 5839 reflections measured (5.506° ≤ 2 Θ ≤ 52.742°), 2976 unique (R_{int} = 0.0188, R_{sigma} = 0.0283) which were used in all calculations. The final R_1 was 0.0418 (I > 2 σ (I)) and *w* R_2 was 0.1059 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

Fixed Uiso
 At 1.2 times of:
 All C(H) groups, All C(H,H) groups
 At 1.5 times of:
 All C(H,H,H) groups

 2.a Secondary CH2 refined with riding coordinates:
 C9(H9A,H9B)
 2.b Aromatic/amide H refined with riding coordinates:
 C2(H2), C3(H3), C4(H4), C5(H5), C8(H8), C11(H11), C12(H12), C13(H13),
 C14(H14), C15(H15)
 2.c Idealised Me refined as rotating group:

C16(H16A,H16B,H16C)

8.2 Compound 13a

Table 1 Crystal data and structure refinement for COMPOUND 13A.

COMPOUND 13A
$C_{24}H_{24}BN_3O_4$
429.27
99.9(2)
triclinic
P-1
7.1065(4)
9.0913(6)
17.6850(11)
81.994(5)
84.409(5)

γ/°	68.790(6)
Volume/Å ³	1053.43(12)
Z	2
$\rho_{calc}g/cm^3$	1.353
μ/mm ⁻¹	0.750
F(000)	452.0
Crystal size/mm ³	0.2165 × 0.173 × 0.0282
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	10.116 to 136.484
Index ranges	$-8 \le h \le 7$, $-10 \le k \le 7$, $-21 \le l \le 21$
Reflections collected	6836
Independent reflections	3847 [R _{int} = 0.0249, R _{sigma} = 0.0340]
Data/restraints/parameters	3847/0/293
Goodness-of-fit on F ²	1.042
Final R indexes [I>=2σ (I)]	$R_1 = 0.0443$, $wR_2 = 0.1147$
Final R indexes [all data]	$R_1 = 0.0539$, w $R_2 = 0.1232$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.34

Table 2 Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for COMPOUND 13A. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
03	7946.2(17)	-1718.1(13)	11246.4(7)	22.4(3)
04	8442.2(19)	-3233.6(15)	12349.9(7)	28.5(3)
01	5207.9(18)	3151.8(14)	6411.5(7)	28.7(3)
02	2202.6(19)	4573.0(14)	5875.3(8)	31.0(3)
C17	7580(2)	-30.3(19)	10090(1)	20.8(3)
N3	7313(2)	3000.6(16)	9242.3(8)	23.1(3)
N1	6923(2)	3814.2(16)	8049.2(8)	21.7(3)
C18	7725(2)	-1507.9(19)	10469.7(9)	20.0(3)
C19	7627(2)	-2726.4(19)	10091.2(10)	20.9(3)
C22	7812(2)	-4223.0(19)	10532.6(10)	22.5(3)
C15	7174(2)	1800.0(19)	8889.4(10)	20.7(3)
C21	7230(2)	-963.3(19)	8916.7(10)	22.7(3)
N2	7165(2)	4224.1(16)	8725.4(8)	23.9(3)
C16	7329(2)	252.2(18)	9308.2(10)	19.9(3)
C24	8190(2)	-3159(2)	11676.5(10)	23.1(3)
C23	8105(2)	-4431.9(19)	11283.8(10)	23.7(3)
C20	7378(2)	-2425.1(19)	9302.5(10)	22.4(3)
С9	4085(3)	7463(2)	7688.8(10)	26.9(4)
C14	6917(2)	2323.6(18)	8126(1)	21.5(3)
-----	---------	------------	------------	---------
C12	1324(3)	7197(2)	6775.1(10)	26.1(4)
C7	3240(3)	5985.1(19)	6817.8(9)	22.8(3)
C11	805(3)	8495(2)	7181.4(11)	29.2(4)
C8	4636(2)	6153.4(19)	7278.6(9)	22.2(3)
C10	2176(3)	8626(2)	7649.6(11)	30.0(4)
C4	2805(3)	3053(2)	5575.9(11)	28.6(4)
C1	4926(3)	2077(2)	5928.8(11)	27.3(4)
B1	3576(3)	4535(2)	6363.8(12)	24.5(4)
C13	6760(2)	4942(2)	7355.6(10)	23.4(3)
C2	4934(3)	606(2)	6460.5(14)	44.2(5)
C6	2838(4)	3355(3)	4720.4(13)	54.7(7)
C3	6687(3)	1683(3)	5350.6(14)	47.1(6)
C5	1150(3)	2376(3)	5873.7(17)	51.7(6)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for COMPOUND 13A. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a*^2U_{11}+2hka*b*U_{12}+\cdots]$.

Atom	U11	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
03	26.1(6)	18.7(6)	21.8(6)	-2.6(4)	-1.8(4)	-6.8(4)
04	34.2(7)	26.7(6)	22.9(6)	-0.9(5)	-2.1(5)	-9.1(5)
01	29.8(6)	21.9(6)	33.4(7)	-9.0(5)	-7.7(5)	-4.4(5)
02	32.2(7)	20.8(6)	37.4(7)	-8.9(5)	-9.5(5)	-2.2(5)
C17	19.2(7)	16.7(8)	26.2(8)	-5.6(6)	-1.0(6)	-4.8(6)
N3	25.8(7)	16.9(7)	26.3(7)	-3.6(6)	-3.2(6)	-6.4(5)
N1	23.6(7)	17.5(7)	23.5(7)	-1.2(5)	-3.3(5)	-6.7(5)
C18	16.7(7)	19.2(8)	21.7(8)	-3.2(6)	-1.4(6)	-2.9(6)
C19	18.5(7)	16.0(7)	26.2(9)	-3.8(6)	-0.3(6)	-3.5(6)
C22	21.0(8)	16.3(7)	29.0(9)	-4.1(6)	-0.1(6)	-4.7(6)
C15	18.1(7)	17.6(8)	25.5(8)	-4.7(6)	-1.6(6)	-4.2(6)
C21	25.5(8)	18.5(8)	23.1(8)	-3.6(6)	-2.5(6)	-5.8(6)
N2	28.0(7)	18.4(7)	25.8(7)	-2.1(6)	-4.7(6)	-8.1(6)
C16	16.1(7)	16.4(8)	25.5(8)	-3.2(6)	-0.9(6)	-3.4(6)
C24	20.7(8)	20.1(8)	25.4(9)	-1.1(6)	0.7(6)	-4.7(6)
C23	22.4(8)	17.2(8)	28.3(9)	-1.3(6)	0.7(6)	-4.2(6)
C20	23.7(8)	16.3(8)	26.3(8)	-6.6(6)	-1.6(6)	-4.4(6)
С9	34.3(9)	21.4(8)	26.9(9)	-1.8(7)	-7.2(7)	-11.1(7)
C14	22.5(8)	15.4(8)	26.1(8)	-3.9(6)	-2.5(6)	-5.3(6)

C12	27.7(8)	23.7(8)	25.8(9)	-1.2(7)	-5.4(7)	-7.2(7)
С7	26.9(8)	18.8(8)	21.9(8)	-0.9(6)	-0.3(7)	-7.9(7)
C11	28.5(9)	21.0(8)	32.7(10)	-3.4(7)	-1.7(7)	-2.3(7)
C8	25.7(8)	17.2(8)	23.0(8)	1.3(6)	-0.7(6)	-8.1(6)
C10	40.5(10)	18.1(8)	30.0(9)	-5.8(7)	-2.2(8)	-7.6(7)
C4	33.2(9)	19.9(8)	32.2(10)	-7.9(7)	-7.7(7)	-5.4(7)
C1	28.7(9)	21.8(8)	32.3(9)	-8.3(7)	-5.5(7)	-7.0(7)
B1	25.1(9)	20.0(9)	28.7(10)	-5.3(8)	-0.4(8)	-7.7(7)
C13	26.7(8)	20.0(8)	23.9(8)	1.9(6)	-3.9(6)	-9.6(7)
C2	47.6(12)	28.2(10)	58.6(14)	5.8(9)	-23.4(10)	-14.1(9)
C6	56.2(14)	52.2(14)	33.3(12)	-11(1)	-11.5(10)	12.2(11)
C3	32(1)	63.5(15)	46.3(13)	-27.4(11)	-1.0(9)	-10.1(10)
C5	34.9(11)	29.5(11)	91(2)	-5.5(11)	-15.1(12)	-9.3(9)

TADLE 4 DOLLA LELIGUES TOL COMPOUND I	Table	4	Bond	Lengths	for	COMPOUND	13A
---------------------------------------	-------	---	------	---------	-----	----------	-----

Ator	nAtom	Length/Å	Aton	nAtom	Length/Å
03	C18	1.377(2)	C15	C16	1.468(2)
03	C24	1.381(2)	C15	C14	1.374(2)
04	C24	1.211(2)	C21	C16	1.409(2)
01	C1	1.460(2)	C21	C20	1.379(2)
01	B1	1.367(2)	C24	C23	1.452(2)
02	C4	1.450(2)	С9	C8	1.395(2)
02	B1	1.354(2)	С9	C10	1.387(3)
C17	C18	1.389(2)	C12	C7	1.409(2)
C17	C16	1.388(2)	C12	C11	1.384(3)
N3	C15	1.368(2)	C7	C8	1.405(2)
N3	N2	1.317(2)	C7	B1	1.571(2)
N1	N2	1.345(2)	C11	C10	1.385(3)
N1	C14	1.345(2)	C8	C13	1.518(2)
N1	C13	1.470(2)	C4	C1	1.585(2)
C18	C19	1.397(2)	C4	C6	1.499(3)
C19	C22	1.440(2)	C4	C5	1.534(3)
C19	C20	1.399(2)	C1	C2	1.523(3)
C22	C23	1.341(2)	C1	C3	1.506(3)

Table 5 Bond Angles for COMPOUND 13A.

Ator	nAton	nAtom	Angle/°	Ator	nAtor	nAtom	Angle/°
C18	03	C24	121.73(13)	C10	С9	C8	121.38(16)
B1	01	C1	108.90(13)	N1	C14	C15	104.95(14)
B1	02	C4	109.75(13)	C11	C12	C7	121.71(16)
C16	C17	C18	119.15(15)	C12	C7	B1	116.19(15)
N2	N3	C15	108.58(14)	C8	C7	C12	117.56(15)
N2	N1	C13	119.84(13)	C8	C7	B1	126.22(15)
C14	N1	N2	110.90(14)	C12	C11	C10	120.16(16)
C14	N1	C13	129.24(14)	С9	C8	C7	120.03(15)
03	C18	C17	116.77(14)	С9	C8	C13	117.70(15)
03	C18	C19	121.00(14)	C7	C8	C13	122.27(15)
C17	C18	C19	122.23(15)	C11	C10	С9	119.13(16)
C18	C19	C22	118.17(15)	02	C4	C1	103.69(13)
C18	C19	C20	117.97(15)	02	C4	C6	107.95(16)
C20	C19	C22	123.85(15)	02	C4	C5	105.33(16)
C23	C22	C19	120.22(15)	C6	C4	C1	115.43(17)
N3	C15	C16	122.05(15)	C6	C4	C5	110.1(2)
N3	C15	C14	108.10(14)	С5	C4	C1	113.49(16)
C14	C15	C16	129.84(15)	01	C1	C4	103.83(13)
C20	C21	C16	120.69(16)	01	C1	C2	105.92(15)
N3	N2	N1	107.46(13)	01	C1	C3	107.31(15)
C17	C16	C15	120.53(14)	C2	C1	C4	113.37(15)
C17	C16	C21	119.43(15)	С3	C1	C4	114.52(17)
C21	C16	C15	120.04(15)	С3	C1	C2	111.06(18)
03	C24	C23	117.34(15)	01	B1	C7	125.34(16)
04	C24	03	116.49(15)	02	B1	01	113.68(15)
04	C24	C23	126.16(16)	02	B1	C7	120.98(16)
C22	C23	C24	121.44(15)	N1	C13	C8	112.10(13)
C21	C20	C19	120.54(15)				

Table 6 Torsion Angles for COMPOUND 13A.

A	B C D	Angle/°	A B C D	Angle/°
03	C18C19C22	-1.5(2)	C14C15C16C17	-179.72(16)
03	C18C19C20	179.28(14)	C14C15C16C21	0.5(3)
03	$\mathrm{C24C23C22}$	0.3(2)	C12C7 C8 C9	1.7(2)
04	$\mathrm{C24C23C22}$	179.84(16)	C12C7 C8 C13	-178.69(15)
02	C4 C1 O1	2.45(18)	C12C7 B1 01	-170.75(17)

02 C4 C1 C2	116.91(17)	C12C7 B1 02	9.2(2)
02 C4 C1 C3	-114.23(18)	C12C11C10C9	1.7(3)
C17C18C19C22	179.38(14)	C7 C12C11C10	-0.4(3)
C17 C18 C19 C20	0.2(2)	C7 C8 C13N1	-97.79(18)
N3 C15C16C17	1.5(2)	C11C12C7 C8	-1.3(3)
N3 C15C16C21	-178.33(14)	C11C12C7 B1	176.57(16)
N3 C15C14N1	0.32(17)	C8 C9 C10C11	-1.2(3)
C1803 C2404	177.49(14)	C8 C7 B1 01	6.9(3)
C1803 C24C23	-3.0(2)	C8 C7 B1 O2	-173.17(16)
C18C17C16C15	-179.91(14)	C10C9 C8 C7	-0.5(3)
C18C17C16C21	-0.1(2)	C10C9 C8 C13	179.89(16)
C18 C19 C22 C23	-1.1(2)	C4 02 B1 01	4.0(2)
C18 C19 C20 C21	-0.2(2)	C4 02 B1 C7	-175.92(15)
C19C22C23C24	1.6(2)	C1 01 B1 02	-2.3(2)
C22C19C20C21	-179.38(15)	C1 01 B1 C7	177.69(16)
C15N3 N2 N1	0.30(17)	B1 01 C1 C4	-0.29(19)
N2 N3 C15C16	178.63(14)	B1 01 C1 C2	-119.96(17)
N2 N3 C15C14	-0.39(18)	B1 01 C1 C3	121.34(18)
N2 N1 C14C15	-0.15(18)	B1 02 C4 C1	-3.85(19)
N2 N1 C13C8	-81.81(18)	B1 02 C4 C6	-126.77(18)
C16C17C18O3	-179.16(13)	B1 02 C4 C5	115.62(18)
C16C17C18C19	0.0(2)	B1 C7 C8 C9	-175.90(16)
C16C15C14N1	-178.60(15)	B1 C7 C8 C13	3.7(3)
C16 C21 C20 C19	0.1(2)	C13N1 N2 N3	-178.61(13)
C2403 C18C17	-177.25(13)	C13N1 C14C15	178.20(15)
C2403 C18C19	3.6(2)	C6 C4 C1 O1	120.29(19)
C20 C19 C22 C23	178.09(15)	C6 C4 C1 C2	-125.2(2)
C20C21C16C17	0.0(2)	C6 C4 C1 C3	3.6(2)
C20C21C16C15	179.86(14)	C5 C4 C1 O1	-111.28(18)
C9 C8 C13N1	81.84(18)	C5 C4 C1 C2	3.2(2)
C14N1 N2 N3	-0.09(18)	C5 C4 C1 C3	132.0(2)
C14N1 C13C8	99.97(19)		

Table 7 Hydrogen Atom Coordinates (Å \times 10⁴) and Isotropic Displacement Parameters (Å 2 \times 10³) for COMPOUND 13A.

Atom	X	У	Z	U(eq)
H17	7651	760	10356	25
H22	7729	-5048	10296	27

H21	7063	-778	8393	27
H23	8257	-5414	11559	28
H20	7312	-3217	9036	27
H9	5017	7559	7995	32
H14	6771	1768	7745	26
H12	383	7123	6466	31
H11	-468	9281	7140	35
H10	1821	9482	7934	36
H13A	7139	4361	6911	28
H13B	7697	5491	7370	28
H2A	6245	81	6665	66
H2B	4626	-103	6180	66
H2C	3937	913	6872	66
H6A	1500	3975	4561	82
H6B	3302	2360	4508	82
H6C	3733	3922	4544	82
НЗА	6744	2645	5063	71
H3B	6522	1009	5010	71
НЗС	7919	1144	5610	71
H5A	1035	2303	6422	78
H5B	1495	1338	5715	78
H5C	-116	3062	5671	78

Experimental

Single crystals of $C_{24}H_{24}BN_3O_4$ **13a** were obtained from a solution of hexane and ethylacetate. A suitable crystal was selected and studied on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at 99.9(2) K during data collection. Using Olex2,⁸ the structure was solved with the ShelXS¹² structure solution program using Direct Methods and refined with the ShelXL¹² refinement package using Least Squares minimisation.

Crystal structure determination of 13a

Crystal Data for $C_{24}H_{24}BN_{3}O_{4}$ (*M* =429.27 g/mol): triclinic, space group P-1 (no. 2), *a* = 7.1065(4) Å, *b* = 9.0913(6) Å, *c* = 17.6850(11) Å, *a* = 81.994(5)°, β = 84.409(5)°, γ = 68.790(6)°, *V* = 1053.43(12) Å³, *Z* = 2, *T* = 99.9(2) K, μ (CuK α) = 0.750 mm⁻¹, *Dcalc* = 1.353 g/cm³, 6836 reflections measured (10.116° $\leq 2\Theta \leq 136.484^{\circ}$), 3847 unique ($R_{int} = 0.0249$, $R_{sigma} = 0.0340$) which were used in all calculations. The final R_1 was 0.0443 (I > 2 σ (I)) and wR_2 was 0.1232 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

```
1. Fixed Uiso
At 1.2 times of:
All C(H) groups, All C(H,H) groups
At 1.5 times of:
All C(H,H,H) groups
2.a Secondary CH2 refined with riding coordinates:
C13(H13A,H13B)
2.b Aromatic/amide H refined with riding coordinates:
C17(H17), C22(H22), C21(H21), C23(H23), C20(H20), C9(H9), C14(H14),
C12(H12),
C11(H11), C10(H10)
2.c Idealised Me refined as rotating group:
C2(H2A,H2B,H2C), C6(H6A,H6B,H6C), C3(H3A,H3B,H3C), C5(H5A,H5B,H5C
```

9. References for ESI

- 1. D. D. Perrin and B. Dempsey, *Chapman and Hall: London*, 1974.
- D. K. Scrafton, J. E. Taylor, M. F. Mahon, J. S. Fossey and T. D. James, J. Org. Chem., 2008, 73, 2871-2874.
- 3. K. Mulla, P. Dongare, N. Zhou, G. Chen, D. W. Thompson and Y. Zhao, *Org. Biomol. Chem.*, 2011, **9**, 1332-1336.
- 4. L. Zhu, S. H. Shabbir, M. Gray, V. M. Lynch, S. Sorey and E. V. Anslyn, *J. Am. Chem. Soc.*, 2006, **128**, 1222-1232.
- 5. F. Xu, L. Peng, A. Orita and J. Otera, *Org. Lett.*, 2012, **14**, 3970-3973.
- 6. T. Kaufmann, M. T. Gokmen, S. Rinnen, H. F. Arlinghaus, F. Du Prez and B. J. Ravoo, J. Mater. Chem., 2012, **22**, 6190-6199.
- M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger, M. Robitzer, F. Quignard and F. Taran, Angew. Chem., 2009, 121, 6030-6034.
- 8. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, **42**, 339-341.
- 9. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786-790.
- 10. L. Palatinus and A. van der Lee, J. Appl. Crystallogr., 2008, 41, 975-984.
- 11. L. Palatinus, S. J. Prathapa and S. van Smaalen, J. Appl. Crystallogr., 2012, 45, 575-580.
- 12. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122.