Electronic Supplementary Information

Synthesis of unsymmetrical N'CN and PCN pincer palladacycles and their catalytic evaluation compared with a related SCN pincer palladacycle

Gavin W. Roffe,^a Graham J. Tizzard,^b Simon J. Coles,^b Hazel Cox^a and John Spencer.^{a*}

^{*a*} Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK. ^{*b*} UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.

Title Page Table 1 X-ray crystal structure data for palladacycle (5a) 2 Table 2 X-ray crystal structure data for palladacycle (5b) 3 Table 3 X-ray crystal structure data for palladacycle (5c) 4 5 X-ray crystal structure data for palladacycle (7a) Table 4 Table 5 X-ray crystal structure data for palladacycle (7b) 6 ¹H of 3-(Pyridin-2-yl)benzaldehyde (1) 7 Figure 1 Figure 2 ¹³C of 3-(Pyridin-2-yl)benzaldehyde (1) 7 Figure 3 HRMS of 3-(Pyridin-2-yl)benzaldehyde (1) 8 ¹H of N₂N-dimethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (2a) 9 Figure 4 Figure 5 ¹³C of N,N-dimethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (2a) 9 Figure 6 HRMS of N,N-dimethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (2a) 10 Figure 7 ¹H of N,N-Diethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (**2b**) 11 ¹³C of N,N-Diethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (2b) Figure 8 11 HRMS of N,N-Diethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (2b) Figure 9 12 Figure 10 ¹H of 4-(3-(Pyridin-2-yl)benzyl)morpholine (2c) 13 Figure 11 ¹³C of 4-(3-(Pyridin-2-yl)benzyl)morpholine (2c) 13 Figure 12 HRMS of 4-(3-(Pyridin-2-yl)benzyl)morpholine (2c) 14 Figure 13 ¹H of palladacycle (**5a**) 15 ¹³C of palladacycle (5a) 15 Figure 14 Figure 15 HRMS of palladacycle (5a) 16 Figure 16 Elemental analysis of palladacycle (5a) 17 Figure 17 ¹H of palladacycle (**5b**) 18 Figure 18 ¹³C of palladacycle (5b) 18 Figure 19 HRMS of palladacycle (5b) 19 Figure 20 Elemental analysis of palladacycle (5b) 20 Figure 21 ¹H of palladacycle (5c) 21 ¹³C of palladacycle (5c) Figure 22 21 Figure 23 HRMS of palladacycle (5c) 22 Figure 24 Elemental analysis of palladacycle (5c) 23 Figure 25 ¹H of 3-(pyridin-2-yl)phenol (6) 24 Figure 26 ¹³C of 3-(pyridin-2-yl)phenol (6) 25 Figure 27 HRMS of 3-(pyridin-2-yl)phenol (6) 26 ¹H of palladacycle (7a) 27 Figure 28 ¹³C of palladacycle (7a) 28 Figure 29 Figure 30 ³¹P of palladacycle (7a) 29 Figure 31 HRMS of palladacycle (7a) 30 Figure 32 Elemental analysis of palladacycle (7a) 31 Figure 33 ¹H of palladacycle (7b) 32 Figure 34 ¹³C of palladacycle (7b) 33 Figure 35 ³¹P of palladacycle (**7b**) 34 Figure 36 HRMS of palladacycle (7b) 35 Elemental analysis of palladacycle (7b) Figure 37 36

TABLE OF CONTENTS

Table 1 - X-ray crystal structure data for palladacycle (5a)

Crystal data and structure refinement details.

Identification code	2013ncs0430aa		
Empirical formula	$C_{14}H_{15}ClN_2Pd$		
Formula weight	353.13		
Temperature	100(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	Pc		
Unit cell dimensions	a = 9.4647(7) Å	<i>α</i> = 90°	
	<i>b</i> = 12.7252(9) Å	β=108.6240(10)°	
	c = 11.5908(8) Å	$\gamma = 90^{\circ}$	
Volume	1322.90(16) Å ³		
Ζ	4		
Density (calculated)	1.773 Mg / m ³		
Absorption coefficient	1.587 mm ⁻¹		
F(000)	704		
Crystal	Block; Pale Yellow		
Crystal size	$0.090 \times 0.050 \times 0.040 \text{ mm}^3$		
hetarange for data collection	2.910 - 27.480°		
Index ranges	$-12 \le h \le 12, -16 \le k \le 1$	6, $-14 \le l \le 15$	
Reflections collected	17067		
Independent reflections	$5364 [R_{int} = 0.0337]$		
Completeness to θ = 25.242°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.000 and 0.821		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5364 / 2 / 329		
Goodness-Of-fit on F ²	1.097		
Final <i>R</i> indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0331, wR2 = 0.0883		
<i>R</i> indices (all data)	R1 = 0.0332, wR2 = 0.088	R1 = 0.0332, wR2 = 0.0884	
Absolute structure parameter	0.034(16)		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.203 and −0.700 e Å ⁻³	2.203 and -0.700 e Å-3	

Diffractometer: *Rigaku AFC12* goniometer equipped with an enhanced sensitivity (HG) *Saturn724+* detector mounted at the window of an *FR-E+ SuperBright* molybdenum rotating anode generator with VHF *Varimax* optics (70µm focus). Cell determination and data collection: *CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013)*. Data reduction, cell refinement and absorption correction: *CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013)*. Structure solution: *SUPERFLIP* (Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790). Structure refinement: *SHELXL-2012* (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Graphics: *OLEX2* (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341).

Table 2 - X-ray crystal structure data for palladacycle (5b)

Crystal data and structure refinement details.

Identification code	2013ncs0882aa		
Empirical formula	$C_{16}H_{19}Cl_1N_2Pd_1$		
Formula weight	381.18		
Temperature	100(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	P121/c1		
Unit cell dimensions	a = 9.6575(7) Å	$\alpha = 90^{\circ}$	
	b = 11.6750(8) Å	β=92.0790(10)°	
	c = 26.2578(18) Å	$\gamma = 90^{\circ}$	
Volume	2958.7(4) Å ³	,	
Ζ	8		
Density (calculated)	1.711 Mg / m ³		
Absorption coefficient	1.426 mm ⁻¹		
F(000)	1536		
Crystal	Block; Colorless		
Crystal size	$0.14 imes 0.07 imes 0.06 \ mm^3$		
θ range for data collection	$2.574 - 27.485^{\circ}$		
Index ranges	$-12 \le h \le 12, -15 \le k \le 14, -34 \le l \le 34$		
Reflections collected	20832		
Independent reflections	$6748 [R_{int} = 0.0348]$	$6748 [R_{int} = 0.0348]$	
Completeness to θ = 27.500°	99.2 %	99.2 %	
Absorption correction	Semi–empirical from equivalents		
Max. and min. transmission	1.000 and 0.686		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F^2	
Data / restraints / parameters	6748 / 0 / 365	6748 / 0 / 365	
Goodness-of-fit on F ²	1.067	1.067	
Final <i>R</i> indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0229, wR2 = 0.0604		
<i>R</i> indices (all data)	R1 = 0.0257, wR2 = 0.0616	R1 = 0.0257, wR2 = 0.0616	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.455 and −0.568 e Å - 3	0.455 and –0.568 e Å ⁻³	

Diffractometer: *Rigaku AFC12* goniometer equipped with an enhanced sensitivity (HG) *Saturn724*+ detector mounted at the window of an *FR-E+ SuperBright* molybdenum rotating anode generator with HF *Varimax* optics (100µm focus). Cell determination and data collection: *CrystalClear-SM Expert 3.1 b27* (Rigaku, 2013). Data reduction, cell refinement and absorption correction: *CrystalClear-SM Expert 3.1 b27* (*Rigaku, 2013*). Structure solution: *SUPERFLIP* (Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790). Structure refinement: *SHELXL-2012* (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Graphics: *OLEX2* (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341).

Table 3 - X-ray crystal structure data for palladacycle (5c)

ails.	
2013ncs0828r1a	
$C_{16}H_{17}Cl_1N_2O_1Pd_1$	
395.18	
100(2) K	
0.71075 Å	
Crystal system Monoclinic	
P121/n1	
a = 6.9704(5) Å	α=
<i>b</i> = 17.1706(11) Å	$\beta =$
c = 12.2014(9) Å	$\gamma =$
1446.33(18) Å ³	,
4	
1.815 Mg / m ³	
1.467 mm ⁻¹	
792	
Block; Colourless	
$0.09\times0.06\times0.04\ mm^3$	
	ails. 2013ncs0828r1a $C_{16}H_{17}Cl_1N_2O_1Pd_1$ 395.18 100(2) K 0.71075 Å Monoclinic P121/n1 a = 6.9704(5) Å b = 17.1706(11) Å c = 12.2014(9) Å 1446.33(18) Å ³ 4 1.815 Mg / m ³ 1.467 mm ⁻¹ 792 Block; Colourless 0.09 × 0.06 × 0.04 mm ³

 $\alpha = 90^{\circ}$ $\beta = 97.943(2)^{\circ}$ $\gamma = 90^{\circ}$

 θ range for data collection $2.372 - 27.484^{\circ}$ Index ranges $-9 \le h \le 8, -21 \le k \le 22, -15 \le l \le 15$ Reflections collected 9733 Independent reflections 3305 [$R_{int} = 0.0246$] Completeness to θ = 27.500° 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.000 and 0.796 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 3305 / 0 / 190 Goodness-of-fit on F^2 1.187 Final *R* indices $[F^2 > 2\sigma(F^2)]$ R1 = 0.0229, wR2 = 0.0556*R* indices (all data) R1 = 0.0249, wR2 = 0.0562Extinction coefficient n/a Largest diff. peak and hole 0.480 and -0.628 e Å-3

Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum rotating anode generator with VHF Varimax optics (70µm focus). Cell determination and data collection: CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013). Data reduction, cell refinement and absorption correction: CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013). Structure solution: SUPERFLIP (Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790).. Structure refinement: SHELXL-2014 (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Graphics: OLEX2 (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341).

Table 4 - X-ray crystal structure data for palladacycle (7a)

. Crystal data and structure refinement details.

Identification code	2014ncs0269a		
Empirical formula	C ₂₄ H ₁₉ ClNOPPd		
Formula weight	510.22		
Temperature	100(2) K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	P121/n1		
Unit cell dimensions	a = 12.2800(8) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 9.9230(6) Å	β=109.746(2)°	
	c = 17.4483(12) Å	$\gamma = 90^{\circ}$	
Volume	2001.1(2) Å ³		
Ζ	4		
Density (calculated)	1.694 Mg / m ³	1.694 Mg / m ³	
Absorption coefficient	1.157 mm ⁻¹		
F(000)	1024		
Crystal	Shard; Yellow		
Crystal size	$0.14\times0.08\times0.04\ mm^3$		
heta range for data collection	2.474 – 27.526°		
Index ranges	$-15 \le h \le 15, -12 \le k \le 12, -19 \le l \le 22$		
Reflections collected	13519	13519	
Independent reflections	$4570 [R_{int} = 0.0389]$	$4570 [R_{int} = 0.0389]$	
Completeness to θ = 25.242°	99.6 %	99.6 %	
Absorption correction	Semi–empirical from equi	Semi–empirical from equivalents	
Max. and min. transmission	1.000 and 0.742		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on <i>F</i> ²	
Data / restraints / parameters	4570 / 0 / 262	4570 / 0 / 262	
Goodness-of-fit on F^2	1.070		
Final <i>R</i> indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0329, wR2 = 0.0813		
R indices (all data)	R1 = 0.0385, wR2 = 0.085	6	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	1.002 and –0.602 e Å - 3	1.002 and −0.602 e Å ^{−3}	

Diffractometer: *Rigaku AFC12* goniometer equipped with an enhanced sensitivity (HG) *Saturn724*+ detector mounted at the window of an *FR-E+ SuperBright* molybdenum rotating anode generator with HF *Varimax* optics (100µm focus). Cell determination and data collection: *CrystalClear-SM Expert 3.1 b27* (Rigaku, 2013). Data reduction, cell refinement and absorption correction: *CrystalClear-SM Expert 2.1 b31* (*Rigaku, 2014*). Structure solution: *SUPERFLIP* (Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790). Structure refinement: *SHELXL-2014* (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Graphics: *OLEX2* (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341).

Table 5 - X-ray crystal structure data for palladacycle (7b)

Identification code	2014ncs0361a		
Empirical formula	C ₂₃ H ₁₇ ClNOPPd		
Formula weight	496.20		
Temperature	100(2) K		
Wavelength	0.71075 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 9.0914(6) Å	<i>α</i> = 91.511(3)°	
	<i>b</i> = 9.7126(6) Å	β=10 8.195(3) °	
	c = 12.7482(8) Å	$\gamma = 112.221(2)^{\circ}$	
Volume	976.53(11) Å ³	, ()	
Ζ	2		
Density (calculated)	1.688 Mg / m ³		
Absorption coefficient	1.183 mm ⁻¹		
F(000)	496		
Crystal	Block; Colorless		
Crystal size	$0.13 \times 0.12 \times 0.07 \text{ mm}^3$		
heta range for data collection	2.551 – 27.509°		
Index ranges	$-11 \le h \le 11, -12 \le k \le 12, -16 \le l \le 16$		
Reflections collected	13193		
Independent reflections	4472 [$R_{int} = 0.0431$]	4472 $[R_{int} = 0.0431]$	
Completeness to θ = 25.242°	99.8 %		
Absorption correction	Semi–empirical from equivalents		
Max. and min. transmission	1.000 and 0.657		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	4472 / 0 / 253		
Goodness-of-fit on F^2	1.039		
Final <i>R</i> indices $[F^2 > 2\sigma(F^2)]$	<i>R1</i> = 0.0275, <i>wR2</i> = 0.0738		
R indices (all data)	R1 = 0.0294, wR2 = 0.075	50	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.904 and –0.650 e Å - 3		

Diffractometer: *Rigaku AFC12* goniometer equipped with an enhanced sensitivity (HG) *Saturn724+* detector mounted at the window of an *FR-E+ SuperBright* molybdenum rotating anode generator with HF *Varimax* optics (100µm focus). Cell determination and data collection: *CrystalClear-SM Expert 3.1 b27* (Rigaku, 2013). Data reduction, cell refinement and absorption correction: *CrystalClear-SM Expert 2.1 b31* (*Rigaku, 2014*). Structure solution: *SUPERFLIP* (Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790). Structure refinement: *SHELXL-2014* (Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122). Graphics: *OLEX2* (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341).

yl)benzaldehyde(1)

yl)benzaldehyde(1)

Figure 3 – HRMS of 3-(Pyridin-2-yl)benzaldehyde(1)

Bruker Daltonics DataAnalysis 3.4

printed: 21/05/2013 15:38:24

Page 1 of 1

yl)phenyl)methanamine (2a)

Figure 5 – 13 C NMR of N,N-dimethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (2a)

Figure 6 – HRMS of N,N-dimethyl-1-(3-(pyridin-2-yl)phenyl)methanamine (**2a**)

yl)phenyl)methanamine (**2b**) Figure 8 – ¹³C NMR of N,N-Diethyl-1-(3-(pyridin-2yl)phenyl)methanamine (**2b**)

yl)phenyl)methanamine (2b)

Bruker Daltonics DataAnalysis 3.4

printed: 11/11/2013 17:04:01

Page 1 of 1

yl)benzyl)morpholine (2c)

Figure $11 - {}^{13}C$ of 4-(3-(Pyridin-2-yl)benzyl)morpholine (2c)

Figure 12 - HRMS of 4-(3-(Pyridin-2-yl)benzyl)morpholine (2c)

Bruker Daltonics DataAnalysis 3.4

printed: 12/11/2013 15:22:48

Page 1 of 1

Figure 13 - ¹H NMR of palladacycle (5a)

palladacycle (5a)

Figure 15 – HRMS of palladacycle (5a)

Table 'GenFormulaResults' could not be found in this analysis

Bruker Daltonics DataAnalysis 3.4	printed:	29/01/2013 13:25:58	Page 1 of 1
GRI	26.		

Figure 16 – Elemental Analysis of palladacycle (5a)

Please send completed form and sample

Stephen Boyer School of Human Sciences Science Centre London Metropolitan University 29 Hornsey Road London N7 7DD

Telephone: 020 7133 3605 Fax: 020 7133 2577 Email: <u>s.boyer@londonmet.ac.uk</u>

	A DESCRIPTION OF THE PROPERTY OF THE REPORT OF		
Sample submitted by: Gavin Roffe			
Address: Department of Chemistry, Brighton, BN1 9RH	Arundel building,	Sussex University,	Falmer,
Telephone: 07584 291754 Email: gwr20@sussex.ac.uk			
Date Submitted: 12/7/13			

Please submit ca. 5 mg of sample.

Sample Reference No.: GR 15b_4	
Name of Compound: NCN' Pincer Palladacycle - pyrNMe2	
Molecular Formula:C ₁₄ H ₁₅ ClN ₂ Pd	
Stability: Stable to air and moisture	
Hazards: Unknown. Standard PPE.	
Other Remarks:	

Element	Expected %	Found (1)	Found (2)
Carbon	47.61	43,54	47,52
Hydrogen	4.28	4.34	4.39
Nitrogen	7.93	7-84	7,87

palladacycle (5b)

Figure 18 – ¹³C NMR of palladacycle (**5b**)

Figure 19 – HRMS of palladacycle (5b)

Table 'GenFormulaResults' could not be found in this analysis

Bruker Daltonics DataAnalysis 3.4 printed: 19/08/2014 11:59:20 Page 1 of 1

Figure 20 – Elemental analysis of palladacycle (5b)

Elemental Analysis Service

Please send completed form and samples to:

Stephen Boyer School of Human Sciences Science Centre London Metropolitan University 29 Hornsey Road London N7 7DD

Telephone: 020 7133 3605 Fax: 020 7133 2577 Email: <u>s.boyer@londonmet.ac.uk</u>

Good Paffe				
Sample submitted by: Cracco (COT) C .				
Address: Department of Chemistry, Arundel building, Sussex University, Faimer,				
Brighton BN1 9BH				
Bigiton, Bitt oth				
Telephone: 67154291754				
and Q SUSPEX, ac. VR.				
Email: your we end and a				
Data Submitted: 15/5/14				
Date Submitted. 15 (31.1.				

Please submit ca. 5 mg of sample.

Sample Reference No.: GRS6b
Name of Compound: NEE palladacycle.
Malagular Formula: Cu H a (LN2) (Cl.
Molecular Formata. The First State S
and the second moisture
Stability: Stable to all and molecule
Hazards; Unknown. Standard PPE.
Other Domarke'
Other Remarks.

Element	Expected %	Expected % Found (1) Found (2)			
Carbon	50,41	50.27	50.74		
Hydrogen	5.02	4,93	4.92		
Nitrogen	7:35	7-41	7-46		

Figure NMR

^{21 – &}lt;sup>1</sup>H of

palladacycle (5c)

Figure $22 - {}^{13}C$ NMR of palladacycle (5c)

Figure 23 – HRMS of palladacycle (5c)

Table 'GenFormulaResults' could not be found in this analysis

Figure 24 – Elemental Analysis of palladacycle (5c)

Elemental Analysis Service

Please send completed form and samples to:

Stephen Boyer School of Human Sciences Science Centre London Metropolitan University 29 Hornsey Road London N7 7DD

4 8 4 M

Telephone: 020 7133 3605 Fax: 020 7133 2577 Email: <u>s.boyer@londonmet.ac.uk</u>

Sample submitted by: Gavin Roffe	
Address: Department of Chemistry, Arundel building, Sussex University, Falmer, Brighton, BN1 9RH	
Telephone: 07584291754 Email: <u>gwr20@sussex.ac.uk</u>	
Date Submitted: 4/4/14	

Please submit ca. 5 mg of sample.

Sample Reference No.: GR 65b
Name of Compound: Morph palladacycle
Molecular Formula: C ₁₆ H ₁₇ CIN ₂ OPd
Stability: Stable to air and moisture
Hazards: Unknown. Standard PPE.
Other Remarks:

Element	Expected %	Found (1)	Found (2)	
Carbon	48.63	48.51	45.19	
Hydrogen	4.34	4.38	4.42	
Nitrogen	7.09	6. 35	6-92	

Figure $25 - {}^{1}H$ of 3-(pyridin-2-yl)phenol (6)

Figure $26 - {}^{13}C$ NMR of 3-(pyridin-2-yl)phenol (6)

Figure 27 – HRMS of 3-(pyridin-2-yl)phenol (6)

Bruker Daltonics DataAnalysis 3.4

printed: 23/04/2014 16:03:47

Page 1 of 1

Figure $28 - {}^{1}H$ NMR of palladacycle (7a)

Figure $29 - {}^{13}C$ NMR of palladacycle (7a)

Figure $30 - {}^{31}P$ NMR of palladacycle (7a)

Figure 31 – HRMS of palladacycle (7a)

Bruker Daltonics DataAnalysis 3.4

printed; 23/04/2014 15:59:53

Page 1 of 1

Figure 32 – Elemental analysis of palladacycle (7a)

Please send completed form and samples to:

Stephen Boyer School of Human Sciences Science Centre London Metropolitan University 29 Hornsey Road London N7 7DD

Telephone: 020 7133 3605 Fax: 020 7133 2577 Email: s.boyer@londonmet.ac.uk

Sample submitted by: Gavin Roffe	
Address: Uni of Sussex, Chemistry, BN1 9QJ	
Telephone: Email:gwr20@sussex.ac.uk	
Date Submitted: 4-4-14	

Please submit ca. 5 mg of sample.

Sample Reference No.: GR 75b	
Name of Compound: CH2OPPh2pyr	
Molecular Formula: C24H19CINOPPd	
Stability: ok	
Hazards:none	

Element	Expected %	Found (1)	Found (2)	
Carbon	56.49	56.48	J-6 48	

Hydrogen	3.75	3.02	7.88	
Nitrogen	2.75	2.33	ス・タテ	

Authorising Signature:

Date Completed: Signature:	030214	B	
Comments:			

Figure $33 - {}^{1}H$ NMR of palladacycle (7b)

-380	-360	-340	-320	-300	-280	-260	-240	-220	-200	-180	-160	-140	-120	-100	-80	-60	-40	-20		
																				- 5
																			1	
																				- ;
																				- 6
																			1	- 6
																			1	- 4
																		+		- 5
																		+	1	- 5
				9		1														- 6
										T									٦	- 6
113.4																		1	1	- 8
9'8II- 9'8II- 9'8II-				t			+	t								1				- 5
1 221 - 1 231 - 6 921 - 7 758 9				t		1								1				-	-	- 11
5'9ZI- 5'TET- 5'TET-				1		T		1				Ť		t		t	-			120
ZET J				t				1			T			t		-	-	35.00		130
142 142																1	-	_	1	- 140
TST>																		-	+	150
L 102																		-	-	- 160
191.5																		1		120
				t					+					t			1	t	-	- 81
1							1									+	1	t		190
1																1				200
									t											210
3b_13(1		-											220
GR_8				t			+												1	230

Figure $34 - {}^{13}C$ NMR of palladacycle (7b)

Figure $35 - {}^{31}P$ NMR of palladacycle (7b)

Figure 35 – HRMS of palladacycle (7b)

Table 'GenFormulaResults' could not be found in this analysis

Bruker Daltonics DataAnalysis 3.4

printed: 09/02/2016 15:19:13

Page 1 of 1

Figure 36 – Elemental analysis of palladacycle (7b)

Elemental Analysis Service

Please send completed form and samples to:

Stephen Boyer School of Human Sciences Science Centre London Metropolitan University 29 Hornsey Road London N7 7DD

Telephone: 020 7133 3605 Fax: 020 7133 2577 Email: <u>s.boyer@londonmet.ac.uk</u>

Sample submitted by: Grain Noffe.	
Address: Lite Scence Stoker, Uni of Suskex, Failmer,	Brighton BUI 999
Telephone: 07584 291754 Email: 9 wr 2005 USER. 9(.UR.	
Date Submitted: 9/2//C	

Please submit ca. 5 mg of sample.

Sample Reference No.: GR 836
Name of Compound: Py'r-OPPhz Chloro pallacycle.
Molecular Formula: C231-1,7 CLNOPdP
Stability:
Hazards:
Other Remarks:

Element	Expected %	Found (1)	Found (2)	
Carbon	55.67	55.76	17.81	
Hydrogen	3.45	2.58	7.55	
Nitrogen	2.82	2-84	2.92	

Figure 37 – Aldol condensation cis/trans mixture ¹H NMR. Performed using **5c** achieving a *trans/cis* ratio of 58/42, using the peaks at 5.10 and 4.65 ppm.

-250 Ģ -10 59'75-91'52----21.28-120 110 100 f1 (ppm) ~152'46 5758'68 758'68 88'bci -- 126,38 EZ.071-CARBON_01 GR_236b

Figure 38 - Aldol condensation cis/trans mixture ¹³C NMR

Figure 39 - Aldol condensation cis/trans mixture MS

Figure 41 – Vinyl epoxide coupling linear/branched mixture ${}^{13}C$ NMR

48