Supporting Information

Aliphatic C–H Azidation through Peroxydisulfate

Induced Radical Pathway

Xin Li,[†] and Zhang-Jie Shi^{*,†,‡}

⁺ Beijing National Laboratory of Molecular Sciences and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

^{*} State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Table of Contents

General Information	2
Experimental Procedures	2
1. Screening Experiments	2
1.1 Screening of azidation reagents	2
1.2 Screening of oxidants and initiators	3
1.3 Screening of other reaction conditions	4
1.4 Screening of other N-protecting groups	4
1.5 ¹ H-NMR analysis of crude products	5
2. Synthesis of Substrates	6
2.1 General procedure for protecting amines	6
2.2 Synthesis of <i>N</i> -Phth-amines 1d , 1f , 1j , 1k and 1l	6
2.3 Synthesis of compound 1i	7
2.4 Synthesis of amino acid methyl esters 1p and 1q	7
2.5 Synthesis of compounds 1r and 1s	7
2.6 Synthesis of compounds 1t and 1x	8
2.7 Synthesis of compounds 1u , 1v and 1w	8
2.8 Synthesis of dipeptides 1y and 1z	9
2.9 Spectral data for substrates	9
3. Azidation of Amines and Amino Acid Derivatives	12
3.1 General procedure for C–H bond azidations	12
3.2 Spectral data for azidation products	13
References	19
¹ H and ¹³ C NMR Spectra	20

General Information

Methods:

All the C–H azidation reactions were carried out in oven-dried vails sealed with Tefloncoated screw caps using vacuum line technique. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled silicone oil baths. Thin-layer chromatography (TLC) was conducted with 0.25 mm silica gel G plates and visualized by UV light (254 nm). Column chromatography was performed on silica gel 300 mesh using petrol ether/ethyl acetate or dichloromethane/methanol as eluents. **Equipment:**

GC analyses were performed on an Agilent 6820 GC equipped with an HP-5 column (25 m x 0.20 mm ID x 0.33 µm film) and an FID detector. ¹H NMR spectra were recorded on Bruck AVANCE III 400 MHz spectrometers or Bruck AVANCE III 500 MHz spectrometers using tetramethylsilane (TMS) as internal standard. ¹³C NMR spectra were recorded on Bruck AVANCE III 400 MHz spectrometers or Bruck AVANCE III 500 MHz spectrometers, with ¹³C operating frequencies of 100 MHz or 125 MHz, respectively. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), b (broad). High-resolution mass spectral data (HRMS) were recorded on Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer using electrospray ionization (ESI) by the State-authorized Analytical Center in Peking University. Specific optical rotation values were recorded on Perkin Elmer Model 341 Polarimeter.

Materials:

The following reagents were purchased at the highest commercial quality and used without further purification: Potassium persulfate (J&K), MeCN (Fisher). $3-PySO_2N_3$ was prepared as described in reference S1.

Cautions:

Azides are potentially explosive compounds. All azidation reactions and subsequent workups should be operated carefully and conducted behind safety shields. The synthesized organic azide compounds should be stored in a freezer and avoid of the input of energy from external sources such as heat, light, pressure, and shock.

Experimental Procedures

1. Screening Experiments

1.1 Screening of azidation reagents

NPhth	Na ₂ S ₂ O ₈ (2.0 eq.) [N ₃], Ar		N ₃ NPhi 2a		NPhth
1a	CH ₃ CN/H ₂ O = 2:1 50 °C, 4 h				
entry	[N ₃] (eq.)		yield	" (%)	-
1	NaN ₃ (2.0)		nd		-
2	TMSN ₃ (2.0)		nd		
3	3-PySO ₂ N ₃ (2.0)		45		
4	TsN ₃ (2.0)		37		
5	C ₁₂ H ₂₅ SO ₂ N ₃ (2.0)		33		
6	TPS-N ₃ (2.	.0)	23	3	
7	4-AcNH-PhCON ₃ (2.0)		nd		
8	(PhO) ₂ PON ₃ (2.0)		nd		
9	3-PySO ₂ N ₃ ((3.0)	49	Э	
ⁱ Pr ⁱ Pr	SO ₂ N ₃		IAc	C PhO〜F PhO´) N ₃
TPS-N ₃	3-PySO ₂ N ₃	4-AcNH-F	'nCON₃	(PhO) ₂	PON ₃
	^a GC Y	ields.			

Table S-1. Screening of azidation reagents

1.2 Screening of oxidants and initiators

\downarrow	initia NPhth3-PySO	tor, ₂ N ₃ , Ar N ₃	NPhth
1a	CH ₃ CN/H cond	CH ₃ CN/H ₂ O = 2:1 condition	
entry	initiator (eq.)	condition	yield ^a (%)
1	Na ₂ S ₂ O ₈ (2.0)	50 °C, 4 h	46
2	K ₂ S ₂ O ₈ (2.0)	50 °C, 4 h	54
3	(NH ₄) ₂ S ₂ O ₈ (2.0)	50 °C, 4 h	42
4	BPO	50 °C, 4 h	nd
5	AIBN	50 °C, 4 h	nd
6	TBP	50 °C, 4 h	nd
7 ^b	Na ₂ S ₂ O ₈ (2.0)	50 °C, 4 h	37
8 ^b	K ₂ S ₂ O ₈ (2.0)	50 °C, 4 h	44
9 ^b	(NH ₄) ₂ S ₂ O ₈ (2.0)	50 °C, 4 h	38

Table S-2. Screening of oxidants and initiators

^{*a*} GC Yields. ^{*b*} TsN₃ was used as azidation reagent.

1.3 Screening of other reaction conditions

\downarrow	NPhth	K ₂ S ₂ O ₈ (x eq.) 3-PySO ₂ N ₃ (2.0 eq.), Ar N ₃	∽ .NPhth
1a		CH ₃ CN/H ₂ O condition	2a
entry	х	condition	yield ^a (%)
1	2.0	60 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	56
2	2.0	70 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	60
3	2.0	80 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	68
4	2.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	75
5	2.0	100 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	72
6	3.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	87
7	4.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	78
8 ^b	3.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	88
9	3.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 1:1	67
10	3.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 1:2	51
11	3.0	90 °C, 6 h, CH ₃ CN/H ₂ O = 2:1	80
12 ^c	3.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	42
13 ^d	3.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	79
14 ^e	3.0	90 °C, 4 h, CH ₃ CN/H ₂ O = 2:1	nd

Table S-3. Screening of other reaction conditions

^{*a*} GC Yields.^{*b*} 3.0 eq. 3-PySO₂N₃ was used. ^{*c*} K₂CO₃ (1.0 eq.) was added. ^{*d*} Fe(OAc)₂ (0.1 eq.) was added. ^{*e*} The reaction was performed under air.

1.4 Screening of other N-protecting groups

/	N(H)F Ţ CC 1p-1p''	$PG = \frac{K_2S}{3-PySO}$ $D_2Me = \frac{CH_3}{CH_3}$	₂ O ₈ (3.0 equiv) ₁₂ N ₃ (2.0 equiv), Ar CN/H ₂ O = 2:1 90 °C, 4 h	N(H)PG N3 CO2 2p-2p''') Me
	entry	PG	conversion (%) ^a	yield (%) ^b	
	1	Phth	100	78	
	2	Bz	100	66	
	3	Cbz	42	12	
	4	Ms	78	43	

Table S-4. Screening of other N-protecting groups

^{*a, b*} determined by ¹H-NMR

1.5 $^{1}\mathrm{H}\text{-}\mathrm{NMR}$ analysis of crude products

Figure S2

2. Synthesis of Substrates

2.1 General procedure for protecting amines

Phthalyol-protected amines were prepared as the following procedure: The appropriate amines and phthalic anhydride (recrystallized from chloroform) were heated at 120 °C in a sealed tube equipped with a stir bar for 2 h. After cooling to room temperature, the mixture was dissolved in ethyl acetate, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (petroleum ether:EtOAc = 4:1, v:v).

2.2 Synthesis of *N*-Phth-amines **1d**, **1f**, **1j**, **1k** and **1l**

N-Phth-Amines 1d, 1f, 1j, 1k and 1l were prepared as the following procedure: At 0 °C, to a stirring solution of alcohol (20 mmol) in dichloromethane (150 mL) was added Et₃N (4.04 g, 40 mmol) and methanesulfonyl chloride (3.44 g, 30 mmol). The reaction was warmed to room temperature and stirred overnight, then quenched with water. The aqueous phase was extracted with dichloromethane (100 mL × 3). The combined organic phases were washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and evaporated. The crude product was directly applied to the next step.

To a stirring solution of mesylate in DMF (150 mL) was added KI (0.33 g, 2 mmol) and PhthNK (5.56 g, 30 mmol). The solution was stired at 80 °C for 4 h and then was cool down to the room temperature. The mixture was poured into ice water and extracted with Et_2O (100 mL × 3), the organic phase was then washed by brine and dried over anhydrous Na_2SO_4 . The solvent was evaporated and the residue was purified by flash column chromatography (petroleum ether:EtOAc = 4:1, v:v) to give the *N*-Phth-amines.

2.3 Synthesis of compound 1i

Compound 1i was prepared as the following procedure: At 0 °C, to a stirring solution of isovaleraldehyde (0.86 g, 10 mmol) in anhydrous Et_2O (100 mL) was added ^{*n*}PrMgBr (2.0 M in THF, 5 mL, 10 mmol) dropwise. The reaction was warmed to room temperature and stirred for 2 h and then quenched with 1.0 M HCl. The aqueous phase was extracted with Et_2O (50 mL × 3). The combined organic phases were washed with brine, dried over anhydrous Na_2SO_4 and evaporated. The crude product was directly applied to the next step without further purification. The subsequent procedures were the same to section **2.2**.

2.4 Synthesis of amino acid methyl esters 1p and 1q

Amino acid methyl esters 1p and 1q were prepared as the following procedure: To a round-bottom flask containing a stir bar was added amino acid (10.0 mmol) and 25 mL of methanol. $SOCI_2$ (5.95 g, 50.0 mmol) was slowly added by syringe to the reaction mixture at 0 °C. The resulting mixture was heated to reflux for 2 h. After cooling to room temperature, the solvent was evaporated and ethyl acetate (25 mL) was added to dissolve the residue. The organic layer was sequentially washed with aqua ammonia (10 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was directly used for next step without further purification.

The appropriate amino acid esters and phthalic anhydride (recrystallized from chloroform) were heated at 140 °C in a 50 mL Schlenk tube equipped with a stir bar for 2 h. After cooling to room temperature, the mixture was dissolved in ethyl acetate, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (petroleum ether:EtOAc = 4:1, v:v).

2.5 Synthesis of compounds 1r and 1s

Compounds 1r and 1s were prepared as the following procedure: Amino alcohol (20 mmol)

and phthalic anhydride (2.96 g, 20 mmol) were heated at 130 °C in a Schlenk tube equipped with a stir bar for 2 h. After cooling to room temperature, the mixture was dissolved in ethyl acetate, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was directly applied to the next step without further purification.

At 0 °C, to a stirring solution of *N*-Phth-amino alcohol (20 mmol) and DMAP (0.24 g, 2 mmol) in dichloromethane (150 mL) was added Et₃N (3.03 g, 30 mmol) and benzoyl chloride (3.37 g, 24 mmol). The reaction was warmed to room temperature and stirred overnight, then quenched with water. The aqueous phase was extracted with dichloromethane (100 mL × 3). The combined organic phases were washed with saturated NaHCO₃ and brine, dried with anhydrous Na₂SO₄ and evaporated. The residue was purified by flash column chromatography (petroleum ether:EtOAc = 2:1, v:v).

2.6 Synthesis of compounds 1t and 1x

Compounds 1t and 1x were prepared as the following procedure: Leucinol (2.34 g, 20 mmol) and phthalic anhydride (2.96 g, 20 mmol) were heated at 130 °C in a Schlenk tube equipped with a stir bar for 2 h. After cooling to room temperature, the mixture was dissolved in ethyl acetate, washed with water and dried over anhydrous Na_2SO_4 . The solvent was evaporated and the residue was directly applied to the next step.

At 0 °C, to a stirring solution of *N*-Phth-leucinol (20 mmol) in dichloromethane (150 mL) was added Et₃N (4.04 g, 40 mmol) and methanesulfonyl chloride (3.44 g, 30 mmol). The reaction was warmed to room temperature and stirred overnight, then quenched with water. The aqueous phase was extracted with dichloromethane (100 mL × 3). The combined organic phases were washed with saturated NaHCO₃ and brine, dried with anhydrous Na₂SO₄ and evaporated. The residue was purified by flash column chromatography (petroleum ether:EtOAc = 2:1, v:v) to give compound **1t**.

To a stirring solution of compound **1t** in DMF was added NaN₃ (2.60 g, 40 mmol). The solution was stired at 100 °C for 8 h and then was cool down to the room temperature. The mixture was poured into ice water and extracted with Et_2O (100 mL × 3), the organic solvent was dried with anhydrous Na₂SO₄ and evaporated. The residue was purified by flash column chromatography (petroleum ether:EtOAc = 4:1, v:v) to give compound **1x**.

2.7 Synthesis of compounds 1u, 1v and 1w

Compound **1u** was synthesized according to reference S2. Compounds **1v** and **1w** were synthesized according to reference S3.

2.8 Synthesis of dipeptides 1y and 1z

Dipeptides 1y and 1z were synthesized according to reference S4.

2.9 Spectral data for substrates

Compound $1a-c^{s_4}$, $1e^{s_4}$, $1h^{s_5}$, $1o^{s_6}$, $1p^{s_7}$, $1q^{s_4}$ and $1y^{s_4}$ are known products. NPhth

Compound 1d: white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.68 (t, *J* = 7.5 Hz, 2H), 1.66 (p, *J* = 7.7 Hz, 2H), 1.52 (dp, *J* = 13.3, 6.6 Hz, 1H), 1.34 (dtd, *J* = 9.8, 7.5, 5.3 Hz, 2H), 1.21 (dt, *J* = 8.6, 6.9 Hz, 2H), 0.86 (d, *J* = 6.6 Hz, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.4, 133.8, 132.2, 123.1, 38.4, 38.1, 28.8, 27.8, 24.7, 22.5; **HRMS** (ESI+) calcd for [C₁₅H₂₀NO₂]⁺ (M+H)⁺: *m/z* 246.14886, found 246.14954.

Compound 1f: colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.39 – 4.25 (m, 1H), 2.05 (dddd, *J* = 14.0, 11.2, 9.2, 4.9 Hz, 1H), 1.75 (ddt, *J* = 13.6, 11.3, 5.7 Hz, 1H), 1.54 (dp, *J* = 13.3, 6.7 Hz, 1H), 1.47 (d, *J* = 6.9 Hz, 3H), 1.20 (dddd, *J* = 13.3, 11.6, 6.6, 5.3 Hz, 1H), 1.08 (dddd, *J* = 13.2, 11.5, 7.0, 4.9 Hz, 1H), 0.86 (d, *J* = 4.0 Hz, 3H), 0.85 (d, *J* = 4.0 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.4, 133.7, 132.0, 123.0, 47.7, 35.9, 31.6, 27.7, 22.6, 22.4, 18.7; **HRMS** (ESI+) calcd for [C₁₅H₂₀NO₂]⁺ (M+H)⁺: *m/z* 246.14886, found 246.14928.

NPhth

Compound 1g: white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.70 (ddd, *J* = 8.2, 6.7, 1.7 Hz, 2H), 1.75 – 1.66 (m, 1H), 1.52 – 1.44 (m, 1H), 1.44 – 1.37 (m, 2H), 1.21 (dtd, *J* = 14.9, 7.5, 1.6 Hz, 1H), 0.96 (d, *J* = 6.3 Hz, 3H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.3, 133.7, 132.2, 123.1, 36.3, 35.1, 32.2, 29.2, 18.8, 11.1; **HRMS** (ESI+) calcd for [C₁₄H₁₈NO₂]⁺ (M+H)⁺: *m/z* 232.13358, found 232.13321.

NPhth

Compound 1i: pale yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.81 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.33 (tt, *J* = 9.9, 4.7 Hz, 1H), 2.19 – 2.11 (m, 1H), 2.11 – 2.00 (m, 1H), 1.63 (dddd, *J* = 14.1, 9.5, 6.7, 5.1 Hz, 1H), 1.52 – 1.39 (m, 2H), 1.35 – 1.21 (m, 2H), 0.95 – 0.87 (m, 9H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.8, 133.8, 131.9, 123.0, 49.9, 41.4, 34.9, 25.3, 23.2, 21.8, 19.8, 13.7; **HRMS** (ESI+) calcd for $[C_{16}H_{22}NO_2]^+$ (M+H)⁺: *m/z* 260.16451, found 260.16431.

Compound 1j: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70

(dd, J = 5.4, 3.1 Hz, 2H), 3.67 – 3.55 (m, 2H), 1.73 (dddd, J = 15.0, 11.2, 6.1, 3.8 Hz, 2H), 1.38 (dqd, J = 15.0, 7.6, 5.4 Hz, 1H), 1.23 (dp, J = 14.3, 7.2 Hz, 1H), 0.97 (d, J = 6.7 Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H), 0.92 (d, J = 6.7 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.7, 133.8, 132.2, 123.1, 44.3, 39.5, 27.6, 20.9, 19.1, 18.5, 11.8; **HRMS** (ESI+) calcd for $[C_{15}H_{20}NO_2]^+$ (M+H)⁺: m/z 246.14886, found 246.14926.

Compound 1k: colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (dd, J = 5.4, 3.0 Hz, 2H), 7.71 (dd, J = 5.4, 3.0 Hz, 2H), 3.64 (dd, J = 13.5, 6.5 Hz, 1H), 3.51 (dd, J = 13.5, 8.6 Hz, 1H), 1.93 (ddtd, J = 11.0, 8.6, 6.9, 4.1 Hz, 1H), 1.65 (dtd, J = 13.6, 6.8, 4.1 Hz, 1H), 0.95 (d, J = 6.9 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.82 (d, J = 6.9 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.7, 133.8, 132.1, 123.1, 42.4, 37.7, 29.9, 20.5, 17.3, 12.8; **HRMS** (ESI+) calcd for [C₁₄H₁₈NO₂]⁺ (M+H)⁺: m/z 232.13320, found 232.13290.

Compound 1I: colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 5.4, 3.0 Hz, 2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 3.70 (t, J = 6.8 Hz, 2H), 1.70 (q, J = 8.0 Hz, 1H), 1.56 – 1.43 (m, 3H), 1.38 – 1.20 (m, 3H), 1.19 – 1.09 (m, 3H), 0.97 (d, J = 6.1 Hz, 3H), 0.85 (d, J = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 133.7, 132.2, 123.0, 39.2, 36.9, 36.3, 35.5, 30.7, 27.8, 24.5, 22.6, 22.5, 19.3; HRMS (ESI+) calcd for $[C_{18}H_{26}NO_2]^+$ (M+H)⁺: m/z 288.19581, found 288.19623.

Compound 1m: white solid. ¹H NMR (400 MHz, $CDCl_3$) δ 7.81 (dd, J = 5.4, 3.0 Hz, 2H), 7.69 (dd, J = 5.4, 3.0 Hz, 2H), 4.38 (tt, J = 12.7, 4.0 Hz, 0.2H), 4.15 (tt, J = 12.3, 3.9 Hz, 0.8H), 2.47 (td, J = 12.6, 4.9 Hz, 0.2H), 2.14 (qd, J = 12.8, 3.9 Hz, 1H), 1.99 – 1.80 (m, 1.8H), 1.77 – 1.31 (m, 6H), 1.10 (d, J = 7.3 Hz, 0.6H), 0.95 (d, J = 6.5 Hz, 2.4H); ¹³C NMR (100 MHz, $CDCl_3$) δ 168.5, 133.7, 132.1, 123.0, 50.6, 38.1, 33.8, 32.6, 29.2, 25.4, 22.3 (diastereoisomer A); 168.6, 133.7, 132.1, 123.0, 46.3, 34.9, 30.4, 30.1, 28.1, 20.4, 17.6 (diastereoisomer B); HRMS (ESI+) calcd for $[C_{15}H_{18}NO_2]^+$ (M+H)⁺: m/z 244.13321, found 244.13279.

Compound 1n: white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.69 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.09 (tt, *J* = 12.5, 4.2 Hz, 1H), 2.45 (tt, *J* = 12.6, 8.7 Hz, 1.3H), 2.27 (qd, *J* = 12.8, 3.6 Hz, 0.7H), 1.99 (tt, *J* = 7.3, 3.6 Hz, 0.7H), 1.88 – 1.67 (m, 1.6H), 1.64 (dt, *J* = 7.8, 3.8 Hz, 2.8H), 1.57 – 1.43 (m, 1.7H), 1.11 (d, *J* = 7.3 Hz, 2H), 1.12 – 1.03 (m, 0.7H), 0.93 (d, *J* = 6.5 Hz, 1H) (mixture of diastereoisomers); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.5, 168.4, 133.7, 132.1, 123.0, 51.0, 50.7, 34.5, 31.5, 31.2, 29.5, 26.1, 23.9, 22.2, 17.1 (mixture of diastereoisomers); **HRMS** (ESI+) calcd for [C₁₅H₁₈NO₂]⁺ (M+H)⁺: *m/z* 244.13321, found

244.13276.

Compound 1r: colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.86 (m, 2H), 7.84 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.54 – 7.43 (m, 1H), 7.34 (t, *J* = 7.8 Hz, 2H), 4.83 (dd, *J* = 11.4, 9.8 Hz, 1H), 4.74 (dd, *J* = 11.4, 4.2 Hz, 1H), 4.30 (td, *J* = 10.1, 4.1 Hz, 1H), 2.61 (dp, *J* = 10.6, 6.7 Hz, 1H), 1.16 (d, *J* = 6.7 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 132C NMR (101 MHz, CDCl3) δ 168.5, 166.1, 134.0, 132.9, 131.6, 129.7, 129.5, 128.3, 123.3, 63.2, 57.0, 27.6, 20.3, 20.0; HRMS (ESI+) calcd for $[C_{20}H_{20}NO_4]^+$ (M+H)⁺: *m/z* 338.13869, found 338.13950.

Compound 1s: colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.83 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.71 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 2H), 4.80 – 4.73 (m, 2H), 4.59 – 4.52 (m, 1H), 2.25 (tt, *J* = 8.9, 2.6 Hz, 1H), 1.66 – 1.51 (m, 2H), 0.97 (d, *J* = 6.4 Hz, 3H), 0.96 (d, *J* = 6.4 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.4, 166.1, 134.0, 132.9, 131.8, 129.7, 129.6, 128.3, 123.3, 64.7, 49.0, 37.3, 25.1, 23.1, 21.7; **HRMS** (ESI+) calcd for [C₂₁H₂₂NO₄]⁺ (M+H)⁺: *m/z* 352.15433, found 352.15498.

Compound 1t: white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.78 (t, *J* = 10.1 Hz, 1H), 4.67 (ddt, *J* = 14.5, 9.7, 4.5 Hz, 1H), 4.40 (dd, *J* = 10.5, 4.5 Hz, 1H), 2.96 (s, 3H), 2.12 (ddd, *J* = 13.5, 10.5, 4.2 Hz, 1H), 1.59 – 1.41 (m, 2H), 0.95 (d, *J* = 6.4 Hz, 3H), 0.93 (d, *J* = 6.4 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.2, 134.2, 131.6, 123.4, 68.3, 48.9, 37.6, 36.9, 24.9, 23.0, 21.6; **HRMS** (ESI+) calcd for [C₁₅H₂₀NO₅S]⁺ (M+H)⁺: *m/z* 326.10567, found 326.10660.

NPhth CI

Compound 1u: yellow solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.4, 3.1 Hz, 2H), 4.57 (tdd, J = 10.4, 5.0, 4.1 Hz, 1H), 4.15 (dd, J = 11.2, 10.2 Hz, 1H), 3.72 (dd, J = 11.2, 5.0 Hz, 1H), 2.20 – 2.09 (m, 1H), 1.57 – 1.48 (m, 2H), 0.95 (d, J = 6.0 Hz, 3H), 0.92 (d, J = 6.0 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.3, 134.0, 131.7, 123.3, 51.7, 44.4, 39.0, 25.3, 23.1, 21.6; **HRMS** (ESI+) calcd for $[C_{14}H_{17}CINO_2]^+$ (M+H)⁺: m/z 266.09423, found 266.09472.

Compound 1v: yellow solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.59 (tt, *J* = 10.6, 4.7 Hz, 1H), 4.05 (t, *J* = 10.5 Hz, 1H), 3.61 (dd, *J* = 10.5, 4.9 Hz, 1H), 2.16 (ddd, *J* = 13.2, 10.6, 4.0 Hz, 1H), 1.61 – 1.46 (m, 2H), 0.95 (d, *J* = 6.3 Hz, 3H), 0.91 (d, *J* = 6.3 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.2, 134.1, 131.7, 123.4, 51.6, 40.0, 32.8, 25.6, 23.1, 21.6; **HRMS** (ESI+) calcd for [C₁₄H₁₇BrNO₂]⁺ (M+H)⁺: *m/z* 310.04372, found 310.04417.

Compound 1w: yellow solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.55 (tt, *J* = 10.6, 4.7 Hz, 1H), 3.88 (t, *J* = 10.5 Hz, 1H), 3.48 (dd, *J* = 10.3, 4.9 Hz, 1H), 2.17 (ddd, *J* = 13.8, 10.5, 4.5 Hz, 1H), 1.62 (ddd, *J* = 13.8, 9.4, 4.6 Hz, 1H), 1.56 – 1.44 (m, 1H), 0.95 (d, *J* = 6.5 Hz, 3H), 0.90 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 134.1, 131.7, 123.4, 52.0, 41.0, 25.9, 23.1, 21.7, 6.5; **HRMS** (ESI+) calcd for $[C_{14}H_{17}INO_2]^+$ (M+H)⁺: *m/z* 358.03064, found 358.02985.

Compound 1x: colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.4, 3.1 Hz, 2H), 4.48 (tt, J = 10.0, 4.8 Hz, 1H), 3.95 (dd, J = 12.4, 10.0 Hz, 1H), 3.55 (dd, J = 12.5, 5.2 Hz, 1H), 2.13 (ddd, J = 13.2, 10.6, 4.0 Hz, 1H), 1.58 – 1.39 (m, 2H), 0.94 (d, J = 6.3 Hz, 3H), 0.91 (d, J = 6.4 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.4, 134.1, 131.7, 123.3, 52.4, 49.3, 38.4, 25.1, 23.1, 21.6; **HRMS** (ESI+) calcd for [C₁₄H₁₇N₄O₂]⁺ (M+H)⁺: m/z 273.13460, found 273.13508.

Compound 1y: $[\alpha]_{D}^{20}$ -16.8° (*c* 1.35, MeOH) [literature: ^{S8} $[\alpha]_{D}^{24}$ -17.7° (*c* 1.36, MeOH)].

Compound 1z: colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.1 Hz, 2H), 6.74 (d, *J* = 9.2 Hz, 1H), 4.96 (dd, *J* = 11.2, 5.1 Hz, 1H), 4.57 (dd, *J* = 8.5, 4.7 Hz, 1H), 3.70 (s, 3H), 2.39 (ddd, *J* = 13.9, 11.4, 4.7 Hz, 1H), 2.18 (pd, *J* = 6.8, 4.4 Hz, 1H), 1.90 (ddd, *J* = 14.4, 9.5, 5.2 Hz, 1H), 1.48 (dtd, *J* = 10.9, 6.7, 4.1 Hz, 1H), 1.00 – 0.93 (m, 6H), 0.93 – 0.89 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 169.2, 168.2, 134.4, 131.6, 123.7, 57.3, 53.5, 52.2, 37.7, 31.3, 25.3, 23.1, 21.3, 18.9, 17.7; $[\alpha]_{D}^{20}$ -7.2° (*c* 1.09, MeOH); HRMS (ESI+) calcd for $[C_{20}H_{27}N_2O_5]^+$ (M+H)⁺: *m/z* 375.19144, found 375.19222.

3. Azidation of Amines and Amino Acid Derivatives

3.1 General procedure for C–H bond azidations

Phthalyol-protected amine (0.10 mmol), 3-PySO₂N₃ (36.8 mg, 0.20 mmol) and potassium peroxydisulfate (81.0 mg, 0.30 mmol) were added to a vial containing a stir bar, then water (0.5 mL) and acetonitrile (1.0 mL) were added respectively. The vial was degassed and refilled with argon for 3 times and sealed with a screw cap. Then the vial was heated at 90 °C in an oil bath for 4 h. After cooling to room temperature, the solvent was evaporated and the product was purified by flash column chromatography.

3.2 Spectral data for azidation products

N₃NPhth

Compound 2a: Following the general procedure, compound **2a** was obtained as colorless oil, 19.3 mg, 71% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.70 (t, *J* = 7.1 Hz, 2H), 1.82 – 1.71 (m, 2H), 1.59 – 1.48 (m, 2H), 1.26 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 133.9, 132.1, 123.2, 61.1, 38.6, 38.0, 25.9, 23.6; **HRMS** (ESI+) calcd for $[C_{14}H_{16}N_4NaO_2]^+$ (M+Na)⁺: *m/z* 295.11655, found 295.11688.

N₃ NPhth

Compound 2b: Following the general procedure, compound **2b** was obtained as colorless oil, 11.9 mg, 49% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.74 (s, 2H), 1.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 134.1, 131.8, 123.5, 61.8, 46.3, 24.7; **HRMS** (ESI+) calcd for [C₁₂H₁₂N₄NaO₂]⁺ (M+Na)⁺: *m/z* 267.08525, found 267.08589.

N_3

Compound 2c: Following the general procedure, compound **2c** was obtained as colorless oil, 19.6 mg, 76% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.5, 3.0 Hz, 2H), 3.79 (t, *J* = 7.8 Hz, 1H), 1.86 (t, *J* = 7.8 Hz, 2H), 1.37 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.1, 133.9, 132.1, 123.2, 60.2, 39.2, 33.8, 25.9; **HRMS** (ESI+) calcd for [C₁₃H₁₄N₄NaO₂]⁺ (M+Na)⁺: *m/z* 281.10090, found 281.10122.

N₃

///NPhth

`NPhth

Compound 2d: Following the general procedure, compound **2d** was obtained as colorless oil, 18.3 mg, 64% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.5, 3.1 Hz, 2H), 3.70 (t, *J* = 7.3 Hz, 2H), 1.69 (p, *J* = 7.4 Hz, 2H), 1.58 – 1.48 (m, 2H), 1.42 (ddt, *J* = 13.6, 9.8, 6.9 Hz, 2H), 1.25 (s, 6H); ¹³C **NMR** (100 MHz, CDCl₃) δ 168.4, 133.9, 132.1, 123.2, 61.4, 40.9, 37.7, 28.8, 25.9, 21.5; **HRMS** (ESI+) calcd for [C₁₅H₁₉N₄O₂]⁺ (M+H)⁺: *m/z* 287.15025, found 287.14994.

Compound 2e: Following the general procedure, compound **2e** was obtained as colorless oil, 19.9 mg, 73% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.0 Hz, 2H), 4.59 (dqd, *J* = 10.3, 7.0, 3.4 Hz, 1H), 2.56 (dd, *J* = 15.0, 9.7 Hz, 1H), 1.69 (dd, *J* = 15.0, 3.4 Hz, 1H), 1.48 (d, *J* = 7.0 Hz, 3H), 1.32 (s, 3H), 1.28 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 168.4, 133.8, 132.0, 123.1, 60.5, 43.7, 43.2, 26.6, 25.6, 20.4; **HRMS** (ESI+) calcd for [C₁₄H₁₆N₄NaO₂]⁺ (M+Na)⁺: *m/z* 295.11655, found 295.11692.

Compound 2f: Following the general procedure, compound **2f** was obtained as colorless oil, 14.9 mg, 52% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.31 (ddq, *J* = 12.6, 9.6, 6.8 Hz, 1H), 2.18 (dddd, *J* = 13.9, 12.4, 9.6, 4.5 Hz, 1H), 1.81 (tdd, *J* = 13.1, 5.7, 4.4 Hz, 1H), 1.51 (td, *J* = 13.1, 4.4 Hz, 1H), 1.49 (d, *J* = 6.9 Hz, 3H), 1.35 (td, *J* = 13.1, 4.6 Hz, 1H), 1.24 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.4, 133.9, 131.9, 123.1, 61.1, 47.6, 38.5, 28.5, 26.1, 25.7, 18.8; **HRMS** (ESI+) calcd for [C₁₅H₁₈N₄NaO₂]⁺ (M+Na)⁺: *m/z* 309.13220, found 309.13260.

Compound 2g: Following the general procedure, compound **2g** was obtained as colorless oil, 12.5 mg, 46% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.77 (t, *J* = 8.0 Hz, 2H), 1.91 – 1.80 (m, 2H), 1.66 (q, *J* = 7.4 Hz, 2H), 1.34 (s, 3H), 0.99 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 133.9, 132.1, 123.2, 63.0, 36.7, 33.6, 32.1, 22.7, 8.3; **HRMS** (ESI+) calcd for [C₁₄H₁₆N₄NaO₂]⁺ (M+Na)⁺: *m/z* 295.11655, found 295.11678.

Compound 2h: Following the general procedure, compound **2h** was obtained as colorless oil, 13.0 mg, 50% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.77 (dd, *J* = 8.6, 7.3 Hz, 2H), 1.95 – 1.76 (m, 2H), 1.66 (q, *J* = 7.4 Hz, 2H), 1.34 (s, 3H), 0.99 (t, *J* = 7.5 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 168.4, 134.2, 131.9, 123.5, 64.6, 45.3, 30.8, 21.0, 8.1; **HRMS** (ESI+) calcd for [C₁₃H₁₄N₄NaO₂]⁺ (M+Na)⁺: *m/z* 281.10090, found 281.10129.

N₃ NPhth

Compound 2i: Following the general procedure, compound **2i** was obtained as colorless oil, 22.8 mg, 76% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.5, 3.1 Hz, 2H), 4.42 (tdd, *J* = 10.1, 5.4, 2.9 Hz, 1H), 2.54 (dd, *J* = 15.1, 10.0 Hz, 1H), 2.15 – 2.03 (m, 1H), 1.67 (dd, *J* = 15.1, 2.9 Hz, 1H), 1.65 – 1.57 (m, 1H), 1.31 (s, 3H), 1.29 – 1.22 (m, 2H), 1.28 (s, 3H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.7, 133.8, 131.9, 123.1, 60.6, 47.5, 42.6, 35.8, 26.7, 25.6, 19.5, 13.6; **HRMS** (ESI+) calcd for $[C_{16}H_{21}N_4O_2]^+$ (M+H)⁺: *m/z* 301.16590, found 301.16647.

N₃ NPhth

Compound 2j: Following the general procedure, compound **2j** was obtained as colorless oil, 12.9 mg, 45% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H

NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.5, 3.1 Hz, 2H), 3.80 (dd, *J* = 13.9, 5.8 Hz, 1H), 3.66 (dd, *J* = 13.9, 7.9 Hz, 1H), 1.96 (tdd, *J* = 7.5, 5.7, 3.4 Hz, 1H), 1.56 (dtp, *J* = 15.2, 7.6, 3.8 Hz, 1H), 1.37 (s, 3H), 1.34 (s, 3H), 1.29 (dt, *J* = 14.5, 7.5 Hz, 1H), 0.97 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.6, 133.9, 132.0, 123.2, 63.9, 47.1, 39.0, 24.5, 22.9, 21.9, 13.4; **HRMS** (ESI+) calcd for [C₁₅H₁₈N₄NaO₂]⁺ (M+Na)⁺: *m/z* 309.13220, found 309.13263.

Compound 2k: Following the general procedure, compound **2k** was obtained as colorless oil, 18.5 mg, 68%. ¹H **NMR** (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.72 (dd, *J* = 5.4, 3.0 Hz, 2H), 3.82 (dd, *J* = 13.6, 4.0 Hz, 1H), 3.58 (dd, *J* = 13.5, 10.3 Hz, 1H), 2.10 (ddq, *J* = 13.9, 6.9, 4.1, 3.5 Hz, 1H), 1.39 (s, 3H), 1.34 (s, 3H), 0.91 (d, *J* = 6.9 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 168.5, 134.0, 132.0, 123.2, 63.3, 41.2, 40.1, 24.4, 22.6, 13.1; **HRMS** (ESI+) calcd for [C₁₄H₁₆N₄NaO₂]⁺ (M+Na)⁺: *m/z* 295.11655, found 295.11671.

Compound 2I: Following the general procedure, compound **2I** was obtained as colorless oil, 21.8 mg, 66% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹³C **NMR** (100 MHz, CDCl₃) δ 168.3, 133.8, 132.1, 123.1, 61.6, 41.6, 36.9, 36.2, 35.4, 30.5, 25.9, 25.9, 21.4, 19.2 (regioisomer **a**); δ 168.1, 133.9, 132.1, 123.2, 62.8, 39.6, 39.1, 37.1, 33.6, 27.8, 23.2, 22.5, 22.5, 21.6 (regioisomer **b**); **HRMS** (ESI+) calcd for [C₁₈H₂₄N₄NaO₂]⁺ (M+Na)⁺: *m/z* 351.17915, found 351.17997.

$$N_3$$
 NPhth
dr = 6.1

Compound 2m: Following the general procedure, compound **2m** was obtained as colorless oil, 13.6 mg, 48% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.71 (dd, *J* = 5.4, 3.0 Hz, 2H), 4.45 (tt, *J* = 12.6, 3.7 Hz, 1H), 2.35 (t, *J* = 12.8 Hz, 1H), 2.09 (td, *J* = 12.5, 5.3 Hz, 1H), 1.85 – 1.67 (m, 5H), 1.49 – 1.42 (m, 1H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 133.9, 131.9, 123.1, 62.4, 46.6, 39.2, 35.1, 28.5, 27.1, 21.2; **HRMS** (ESI+) calcd for [C₁₅H₁₆N₄NaO₂]⁺ (M+Na)⁺: *m/z* 307.11655, found 307.11704.

Compound 2n: Following the general procedure, compound **2n** was obtained as a colorless solid, 17.1 mg, 60% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.10 (tt, *J* = 12.6, 3.9 Hz, 1H), 2.57 (qd, *J* = 13.0, 3.5 Hz, 2H), 1.99 – 1.82 (m, 2H), 1.60 (ddt, *J* = 10.6,

4.1, 2.0 Hz, 2H), 1.51 (td, J = 13.8, 4.0 Hz, 2H), 1.37 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.2, 133.9, 131.9, 123.1, 60.0, 49.6, 36.0, 26.9, 25.2; **HRMS** (ESI+) calcd for $[C_{15}H_{16}N_4NaO_2]^+$ (M+Na)⁺: m/z 307.11655, found 307.11682.

Compound 2o: Following the general procedure, compound **2o** was obtained as colorless oil, 3.0 mg, 12% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v, then further purified by PTLC, CH₂Cl₂); ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 5.6, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.6, 3.1 Hz, 2H), 3.79 (dd, *J* = 7.8, 6.2 Hz, 2H), 3.54 (h, *J* = 6.7 Hz, 1H), 1.83 (q, *J* = 6.9 Hz, 2H), 1.34 (d, *J* = 6.5 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.3, 134.0, 132.1, 123.3, 55.7, 35.1, 34.9, 19.4; **HRMS** (ESI+) calcd for [C₁₂H₁₄N₄O₂]⁺ (M+H)⁺: *m/z* 245.10330, found 245.10374.

N₃ NPhth

Compound 2o': Following the general procedure, compound **2o'** was obtained as colorless oil, 2.5 mg, 10% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v, then further purified by PTLC, CH₂Cl₂); ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.6, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.6, 3.1 Hz, 2H), 3.82 (dd, *J* = 13.6, 8.8 Hz, 1H), 3.70 (dd, *J* = 13.6, 4.4 Hz, 1H), 3.68 – 3.63 (m, 1H), 1.77 – 1.55 (m, 2H), 1.09 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.2, 134.2, 131.9, 123.5, 61.9, 41.1, 25.4, 10.3; **HRMS** (ESI+) calcd for [C₁₂H₁₄N₄O₂]⁺ (M+H)⁺: *m/z* 245.10330, found 245.10299.

Compound 2p: Following the general procedure, compound **2p** was obtained as colorless oil, 20.5 mg, 65% (purified by column chromatography, petroleum ether:EtOAc = 4:1, v:v); ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.07 (dd, *J* = 10.1, 2.9 Hz, 1H), 3.73 (s, 3H), 2.54 (dd, *J* = 15.3, 10.1 Hz, 1H), 2.43 (dd, *J* = 15.3, 2.9 Hz, 1H), 1.38 (s, 3H), 1.31 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 167.6, 134.2, 131.9, 123.6, 60.2, 53.1, 48.5, 39.0, 26.8, 25.2; **HRMS** (ESI+) calcd for [C₁₅H₁₆N₄NaO₄]⁺ (M+Na)⁺: *m/z* 339.10638, found 339.10684.

Compound 2q: Following the general procedure, compound **2q** was obtained as colorless oil, 21.9 mg, 66% (purified by column chromatography, petroleum ether:EtOAc = 4:1, v:v); ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.77 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.82 (dd, *J* = 9.4, 5.8 Hz, 1H), 3.75 (s, 3H), 2.43 – 2.23 (m, 2H), 1.58 (ddd, *J* = 13.7, 10.0, 6.2 Hz, 1H), 1.39 (ddd, *J* = 13.6, 10.1, 6.4 Hz, 1H), 1.27 (s, 3H), 1.26 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.5, 167.6, 134.3, 131.7, 123.6, 61.0, 52.8, 52.2, 38.0, 25.9, 25.7, 24.0; **HRMS** (ESI+) calcd for [C₁₆H₁₈N₄NaO₄]⁺ (M+Na)⁺: *m/z* 353.12213, found 353.12203.

Compound 2r: Following the general procedure, compound **2r** was obtained as colorless oil, 17.4 mg, 46% (purified by column chromatography, petroleum ether:EtOAc = 1:2, v:v); ¹H **NMR** (500 MHz, CDCl₃) δ 7.87 (m, 2H), 7.85 – 7.81 (m, 2H), 7.75 (dd, *J* = 5.6, 3.0 Hz, 2H), 7.52 – 7.45 (m, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 5.20 (dd, *J* = 11.5, 10.0 Hz, 1H), 4.85 (dd, *J* = 11.5, 4.4 Hz, 1H), 4.63 (dd, *J* = 9.9, 4.3 Hz, 1H), 1.50 (s, 3H), 1.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 168.3, 165.9, 134.5, 134.2, 133.1, 131.8, 131.1, 129.51, 129.47, 128.3, 123.7, 123.5, 63.1, 60.3, 57.8, 24.7, 24.2; **HRMS** (ESI+) calcd for [C₂₀H₁₉N₄O₄]⁺ (M+H)⁺: *m/z* 379.14008, found 379.13965.

Compound 2s: Following the general procedure, compound **2s** was obtained as colorless oil, 20.1 mg, 51% (purified by column chromatography, petroleum ether:EtOAc = 1:2, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.55 – 7.48 (m, 1H), 7.37 (t, *J* = 7.8 Hz, 2H), 4.87 (tdd, *J* = 9.1, 5.1, 3.3 Hz, 1H), 4.72 (dd, *J* = 11.1, 9.4 Hz, 1H), 4.55 (dd, *J* = 11.1, 5.1 Hz, 1H), 2.56 (dd, *J* = 15.0, 9.2 Hz, 1H), 1.84 (dd, *J* = 15.0, 3.4 Hz, 1H), 1.38 (s, 3H), 1.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 166.0, 134.1, 133.1, 131.7, 129.6, 129.5, 128.4, 123.4, 64.6, 60.3, 46.7, 39.0, 26.5, 25.7; HRMS (ESI+) calcd for [C₂₁H₂₀N₄NaO₄]⁺ (M+Na)⁺: *m/z* 415.13768, found 415.13776.

N3 NPhth

Compound 2t: Following the general procedure, compound **2t** was obtained as colorless oil, 27.6 mg, 75% (purified by column chromatography, petroleum ether:EtOAc = 1:2, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.5, 3.1 Hz, 2H), 4.76 (tt, *J* = 8.5, 4.2 Hz, 1H), 4.69 (t, *J* = 9.8 Hz, 1H), 4.44 (dd, *J* = 10.1, 4.9 Hz, 1H), 2.98 (s, 3H), 2.38 (dd, *J* = 15.0, 8.7 Hz, 1H), 1.76 (dd, *J* = 15.0, 3.5 Hz, 1H), 1.37 (s, 3H), 1.33 (s, 3H); ¹³C NMR δ 168.1, 134.3, 131.6, 123.5, 68.0, 60.1, 46.6, 38.8, 37.7, 26.3, 25.7; HRMS (ESI+) calcd for [C₁₅H₁₉N₄O₅S]⁺ (M+H)⁺: *m/z* 367.10707, found 367.10717.

N3 NPhth

Compound 2u: Following the general procedure, compound **2u** was obtained as colorless oil, 19.9 mg, 65% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (500 MHz, CDCl₃) δ 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.64 (tdd, *J* = 9.4, 5.9, 3.3 Hz, 1H), 4.06 (dd, *J* = 11.1, 9.6 Hz, 1H), 3.78 (dd, *J* = 11.1, 5.9 Hz, 1H), 2.44 (dd, *J* = 15.0, 9.3 Hz, 1H), 1.84 (dd, *J* = 14.9, 3.3 Hz, 1H), 1.35 (s, 3H), 1.32 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 168.1, 134.1, 131.7, 123.4, 60.2, 49.3, 44.6, 40.5, 26.4, 25.7; **HRMS** (ESI+) calcd for [C₁₄H₁₅ClN₄NaO₂]⁺ (M+Na)⁺: *m/z* 329.07757, found 329.07828.

Na NPhth

Compound 2v: Following the general procedure, compound **2v** was obtained as colorless oil, 21.4 mg, 61% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.67 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.59 (tdd,

J = 9.5, 5.6, 3.2 Hz, 1H), 3.89 (t, J = 10.1 Hz, 1H), 3.59 (dd, J = 10.4, 5.7 Hz, 1H), 2.39 (dd, J = 15.0, 9.4 Hz, 1H), 1.80 (dd, J = 15.0, 3.3 Hz, 1H), 1.28 (s, 3H), 1.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 134.1, 131.6, 123.4, 60.2, 49.1, 41.2, 33.0, 26.5, 25.6; HRMS (ESI+) calcd for $[C_{14}H_{16}BrN_4O_2]^+$ (M+H)⁺: *m/z* 351.04511, found 351.04543.

Compound 2w: Following the general procedure, compound **2w** was obtained as colorless oil, 19.7 mg, 49% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.0 Hz, 2H), 4.62 (tdd, *J* = 9.5, 5.4, 3.0 Hz, 1H), 3.83 (t, *J* = 10.2 Hz, 1H), 3.52 (dd, *J* = 10.2, 5.7 Hz, 1H), 2.51 (dd, *J* = 14.9, 9.6 Hz, 1H), 1.92 (dd, *J* = 14.9, 3.3 Hz, 1H), 1.34 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 134.2, 131.7, 123.5, 60.2, 49.5, 42.1, 26.5, 25.5, 6.8; **HRMS** (ESI+) calcd for [C₁₄H₁₅IN₄NaO₂]⁺ (M+Na)⁺: *m/z* 421.01319, found 421.01417.

Compound 2x: Following the general procedure, compound **2x** was obtained as colorless oil, 21.7 mg, 69% (purified by column chromatography, petroleum ether:EtOAc = 6:1, v:v); ¹H **NMR** (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.67 (dd, *J* = 5.4, 3.1 Hz, 2H), 4.48 (tdd, *J* = 9.5, 5.9, 3.2 Hz, 1H), 3.82 (dd, *J* = 12.3, 9.7 Hz, 1H), 3.52 (dd, *J* = 12.3, 5.9 Hz, 1H), 2.35 (dd, *J* = 15.0, 9.5 Hz, 1H), 1.65 (dd, *J* = 15.0, 3.3 Hz, 1H), 1.28 (s, 3H), 1.24 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 168.3, 134.2, 131.7, 123.5, 60.3, 52.6, 47.0, 40.0, 26.5, 25.7; **HRMS** (ESI+) calcd for [C₁₄H₁₅N₇NaO₂]⁺ (M+Na)⁺: *m/z* 336.11794, found 336.11864.

Compound 2y: Following the general procedure, compound **2y** was obtained as colorless oil, 28.3 mg, 73% (purified by column chromatography, CH_2CI_2 :MeOH = 120:1, v:v); ¹H NMR (400 MHz, CDCI₃) δ 7.89 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.86 (d, *J* = 7.3 Hz, 1H), 5.02 (dd, *J* = 8.5, 3.6 Hz, 1H), 4.61– 4.53 (m, 1H), 3.71 (s, 3H), 2.48 (dd, *J* = 15.3, 8.6 Hz, 1H), 2.37 (dd, *J* = 15.5, 3.6 Hz, 1H), 1.40 (s, 3H), 1.39 (d, *J* = 6.8 Hz, 3H), 1.35 (s, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 173.1, 168.2, 168.0, 134.3, 131.8, 123.7, 60.6, 52.5, 50.4, 48.5, 39.6, 26.3, 25.4, 18.2; $[\alpha]_{D}^{20}$ -5.1° (*c* 0.85, MeOH); HRMS (ESI+) calcd for $[C_{18}H_{22}N_5O_5]^+$ (M+H)⁺: *m/z* 388.16155, found 388.16205.

Compound 2z: Following the general procedure, compound **2z** was obtained as colorless oil, 25.8 mg, 64% (purified by column chromatography, CH_2CI_2 :MeOH = 120:1, v:v); ¹H NMR (400 MHz, CDCI₃) δ 7.90 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.1 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 1H), 5.04 (dd, *J* = 8.3, 3.8 Hz, 1H), 4.55 (dd, *J* = 8.6, 4.7 Hz, 1H), 3.69 (s, 3H), 2.49 (dd, *J* = 15.4, 8.3 Hz, 1H), 2.40 (dd, *J* = 15.5, 3.9 Hz, 1H), 2.17 (pd, *J* = 6.9, 4.6 Hz, 1H), 1.40 (s, 3H), 1.36 (s, 3H), 0.93 (d, *J* = 6.9 Hz, 3H), 0.86 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 172.1, 168.7,

168.1, 134.3, 131.8, 123.7, 60.7, 57.4, 52.2, 50.5, 39.9, 31.2, 26.3, 25.4, 18.9, 17.5; $[\alpha]_D^{20}$ +2.9° (*c* 0.42, MeOH); **HRMS** (ESI+) calcd for $[C_{20}H_{26}N_5O_5]^+$ (M+H)⁺: *m/z* 416.19285, found 416.19358.

Compound 2z': Following the general procedure, compound **2z'** was obtained as colorless oil, 5.6 mg, 12% (purified by column chromatography, CH_2Cl_2 :MeOH = 120:1, v:v); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.77 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.97 (d, *J* = 9.2 Hz, 1H), 5.03 (dd, *J* = 8.3, 3.9 Hz, 1H), 4.60 (d, *J* = 9.2 Hz, 1H), 3.75 (s, 3H), 2.47 (dd, *J* = 15.4, 8.3 Hz, 1H), 2.39 (dd, *J* = 15.4, 3.9 Hz, 1H), 1.40 (s, 6H), 1.35 (s, 3H), 1.33 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 168.7, 168.0, 134.5, 131.7, 123.8, 62.7, 60.6, 59.2, 52.6, 50.3, 39.6, 26.4, 25.4, 24.0; $[\alpha]_{D}^{20}$ +3.3° (*c* 0.48, MeOH); HRMS (ESI+) calcd for $[C_{20}H_{25}N_8O_5]^+$ (M+H)⁺: *m/z* 457.19424, found 457.19434.

References

- S1. P. Panchaud, P. Renaud, Adv. Synth. & Catal. 2004, 345, 925–928.
- A. Carocci, A. Catalano, F. Corbo, A. Duranti, R. Amoroso, C. Franchini, G. Lentinia, V. Tortorellaa, *Tetrahedron: Asymmetry*, 2000, 11, 3619–3634.
- S3. A. Boerner, G. Voβ, *Synthesis* **1990**, 573–574.
- S4. X. Li, X, Che, G.-H. Chen, J. Zhang, J.-L. Yan, Y.-F. Zhang, L.-S. Zhang, C.-P. Hsu, Y. Q. Gao, Z.-J. Shi, Org. Lett. 2016, 18, 1234–1237.
- S5. M. V. Khedkar, S. R. Khan, D. N. Sawant, D. B. Bagal, B. M. Bhanage, *Adv. Synth. & Catal.* **2011**, *353*, 3415–3422.
- S6. C.-J. Wang, X. Sun, X. Zhang, Angew. Chem. Int. Ed. 2005, 44, 4933–4935.
- S7. L. D. Tran, O. Daugulis, Angew. Chem. Int. Ed. 2012, 51, 5188–5191.
- S8. K.-L. Yu, R. L. Johnson, J. Org. Chem. 1987, 52, 2051–2059.

¹H and ¹³C NMR Spectra

