Silver-Mediated Oxidative Annulation of N-Arylthio Succinimides with Alkynes: Direct Access to Benzo[*b*]thiophenes

E. Ramesh, Majji Shankar, Suman Dana, and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad 500046, India

akhilchemistry12@gmail.com

SUPPORTING INFORMATION

Table of Contents	Page
General Experimental	S2
Materials	S2
Experimental Procedures, Spectral and Analytical data	S3-S20
References	S20
X-ray crystal structure and data	S21-S23
NMR data	S24-S107

General Experimental

All the reactions were performed in an oven-dried Schlenk flask / pressure tubes under an argon atmosphere. Commercial grade solvents were distilled prior to use. Column chromatography was performed using either 100-200 Mesh or 230-400 Mesh silica gel eluting with hexane and ethyl acetate mixture. Thin layer chromatography (TLC) was performed on silica gel GF254 plates. Visualization of spots on TLC plate was accomplished with UV light (254 nm) and staining over I_2 chamber.

Proton, carbon, and fluorine nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR) were recorded based on the resonating frequencies as follows: (¹H NMR, 400 MHz; ¹³C NMR, 101 MHz; ¹⁹F NMR, 376 MHz) and (¹H NMR, 500 MHz; ¹³C NMR, 126 MHz; ¹⁹F NMR, 470 MHz) having the solvent resonance as internal standard (¹H NMR, CHCl₃ at 7.26 ppm; ¹³C NMR, CDCl₃ at 77.0 ppm). Few cases tetramethylsilane (TMS) at 0.00 ppm was used as reference standard. Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = singlet; bs = broad singlet; d = doublet; bd = broad doublet, t = triplet; bt = broad triplet; q = quartet; m =multiplet), coupling constants, *J*, in (Hz), and integration. Data for ¹³C NMR, ¹⁹F NMR were reported in terms of chemical shift (ppm). IR spectra were obtained with ionization voltage of 70ev; data was reported in theform of *m/z* (intensity relative to base peak = 100). Elemental (C, H, N) analysis were carried out using FLASH EA 1112 analyzer. Melting points were determined by electro-thermal heating and are uncorrected.

Materials: Unless otherwise noted, all the reagents and intermediates were obtained commercially and used without purification. Following the standerd procedures, the solvents were dried and stored over molecular sieves under inert gas (nitrogen, argon) atmosphere.¹ Diphenyl acetylene (**2a**), 1-phenyl-1-propyne (**2h**), 1-phenyl-1-hexyne (**2i**), AgSbF₆, AgBF₄, AgoTf, and KPF₆ were purchased from Sigma Aldrich Ltd, and used as received. Analytical and spectral data of all the known compounds are exactly matching with the reported values.

Experimental Procedures:

Perparation of symmetrical diaryl alkynes (2b–g); General Procedure (GP–1):²

To a mixture of $PdCl_2(PPh_3)_2$ (6.0 mol %), CuI (10 mol %) and aryl iodide (1.0 mmol) in benzene (5.0 mL) was added DBU (6.0 mmol) followed by trimetyhylsilyl acetylene (0.5 mmol) and de-ionized water (40 mol %) under an argon atmosphere at rt. The resulting mixture was heated at 80 °C for 18 h in the absence of light. Upon completion, the reaction mixture was cooled to rt and diluted with diethyl ether. The organic layer was washed with water, 10% HCl (2 × 5.0 mL), and brine and dried over Na₂SO₄. Solvent was filtered and evaporated under the reduced pressure. The crude residue was purified using column chromatography on silica gel using hexane /ethyl acetate.

Following this procedure, compounds 2b-g were prepared.² Analytical and spectral data of these compounds are exactly matching with the reported values.

Preparation of unsymmetrical alkynes (2j-n); General Procedure (GP-2):³

To a mixture of $PdCl_2(PPh_3)_2$ (2.0 mol %), CuI (4.0 mol %) and aryl iodide (1.0 mmol) in THF (5.0 mL) was added Et₃N (3.0 mmol) followed by aryl/alkyl bearing acetylenes (1.0 mmol) under an argon atmosphere at rt. The resulting mixture was heated at 60 °C for 16 h in the absence of light. Upon completion, the reaction mixture was cooled to rt and diluted with diethyl ether. The organic layer was washed with water, 10% HCl (2 × 5.0 mL), and brine

and dried over Na₂SO₄. Solvent was filtered and evaporated under the reduced pressure. The crude residue was purified using column chromatography on silica gel using hexane /ethyl acetate.

Following this procedure, compounds **2j-n** were prepared.³ Analytical and spectral data of these compounds are exactly matching with the reported values.

Preparation of N-arylthio succinimide (1): General Procedure (GP-3):⁴

To a solution of N-chlorosuccinimide (NCS) (1.0 equiv) in CH_2Cl_2 (5.0 mL for 2.0 mmol) was added thiophenols (**1'**, 1.0 equiv) and Et_3N (1.0 equiv) drop wise under an argon atmosphere at 0 °C. The resulting mixture was stirred for 12 h at rt. After completion, the reaction mixture was quenched with saturated aqueous NH_4Cl solution. The organic layer was separated; the aqueous layer was extracted with CH_2Cl_2 (2 times). The combined extracts were washed with brine. The organic layer was dried over Na_2SO_4 . Solvent was filtered and evaporated under reduced pressure. The crude residue was purified using column chromatography on silica gel using hexane /ethyl acetate (4:1).

Following this procedure, the N-arylthio succinamides **1a**, **1b**, **1f**, **1g** and **1i** were prepared.⁴ Analytical and spectral data of these compounds are exactly matching with the reported values.

1-(4-*tert*-Butylphenylthio) pyrrolidine-2,5-dione (1c):

1c colorless solid (765 mg, 48%); mp = 138-139 °C; R_f = 0.38 (7:3) hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 2.77 (s, 4H), 1.27 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) &176.4, 153.7, 133.2, 130.3, 126.3, 34.7, 31.0, 28.5; IR (KBr) v_{max}

2958, 1736, 1435, 1298, 1139, 816 cm⁻¹; HRMS (ESI) for $C_{14}H_{18}NO_2S$ (M+H)⁺: calcd. 264.1058, found 264.1058.

1-(4-iso-Propylphenylthio) pyrrolidine-2,5-dione (1d):

1d colorless solid (812 mg, 51%); mp = 86–87 °C; $R_f = 0.43$ (7:3 hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 2.92–2.81 (m, 1H), 2.76 (s, 4H), 1.19 (d, *J* = 6.8 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 176.5, 151.5, 133.6, 130.5, 127.4, 33.9, 28.5, 23.6; IR (KBr) v_{max} 2958, 1720, 1599, 1353, 1139, 816 cm⁻¹; HRMS (ESI) for C₁₃H₁₆NO₂S (M+H)⁺: calcd. 250.0902, found 250.0900.

1-(4-Fluorophenylthio) pyrrolidine-2,5-dione (1e):

1-(o-Tolylthio) pyrrolidine-2,5-dione (1h):

1h colorless solid (2.2 g, 61%); mp = 99–100 °C; $R_f = 0.33$ (7:3 hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.0 Hz, 1H), 7.23–7.16 (m, 2H), 7.15-7.08 (m, 1H), 2.79 (s, 4H), 2.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ176.4, 139.2, 133.0, 131.7, 130.6, 129.4, 126.7, 28.5, 20.2; IR (KBr) v_{max} 3073, 1726, 1293, 1134,

745 cm⁻¹; HRMS (ESI) for C₁₁H₁₂NO₂S (M+H)⁺: calcd. 222.0589, found 222.0582.

Reaction optimization.

Table 1: Screening of Catalyst, Oxidant and Solvents.

Entry	Catalyst (30 mol %)	Oxidant (50 mol %)	Solvent (0.5 mL)	yield (%) ^b
1	AgCl	$K_2S_2O_8$	DCE	NR
2	Ag ₂ CO ₃	$K_2S_2O_8$	DCE	NR
3	AgSbF ₆	Benzoquinone	DCE	22
4	AgSbF ₆	CuO	DCE	18
5	AgSbF ₆	CuI	DCE	56
6	AgSbF ₆	$K_2S_2O_8$	Dioxane	NR
7	AgSbF ₆	$K_2S_2O_8$	THF	NR
8	AgSbF ₆	$K_2S_2O_8$	Ph-Cl	NR
9	AgSbF ₆	$K_2S_2O_8$	Toluene	12
10	AgSbF ₆	$K_2S_2O_8$	Benzene	9
11	AgSbF6	$K_2S_2O_8$	CH ₃ NO ₂	24

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.1 mmol). ^bConversion based on crude ¹H NMR of starting material. NR = no reaction

Comparison of structures 3a, X, and 3i.

Table 2: The H^{a/b/c} labeled ¹H-NMR data for compound 3a, Y, and 3i.

S.No	Compound	H^{1}	ppm	Splitting
1	3 a	H^{a}	7.67	singlet
2	Х	H^{b}	7.65	singlet
3	3i	Hc	7.37-7.44	multiplet

The reaction of N-arylthio succinimide (1) with unactivated alkynes (2); General Procedure (GP-4):

The N-arylthio succinimide (**1**, 0.5 mmol), diphenylacetylene (**2a**, 89 mg, 0.5 mmol) and $K_2S_2O_8$ (68 mg, 0.25 mmol) were taken in a Schlenk tube. Subsequently, AgSbF₆ (52 mg, 30 mol %) was introduced in to the flask in a glove box. Solvent 1,2-dichloroethane (2.0 mL) was added to the mixture and the resulting mixture was stirred at 80 °C for 6–8 h. Upon completion, the mixture was diluted with CH₂Cl₂ (10 mL) and filterd over a small pad of Celite. Solvent was evaporated under the reduced pressure and the crude residue was purified through slica gel column chromatography using *n*-hexane eluent to give the desired product.

6-Methyl-2,3-diphenylbenzo[*b*]thiophene (3a):

3a colorless solid (96 mg, 64%); mp = 165–167 °C; $R_f = 0.46$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.42–7.35 (m, 3H), 7.35–7.28 (m, 4H), 7.25–7.20 (m, 3H), 7.15 (dd, J = 8.4 & 1.2 Hz,

1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 138.8, 138.3, 135.7, 134.5, 134.4, 133.0, 130.4, 129.5, 128.6, 128.3, 127.5, 127.3, 126.1, 123.0, 121.9, 21.5; IR (KBr) v_{max} 2915, 1589, 1534, 812, 684 cm⁻¹; HRMS (ESI) for C₂₁H₁₆NaS (M+Na)⁺: calcd. 323.0870, found 323.0876.

6-Methoxy-2,3-diphenylbenzo[b]thiophene (3b):

3b Pale yellow solid (79 mg, 50%); mp = 149-150 °C; $R_f = 0.16$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.8 Hz, 1H), 7.40–7.28 (m, 8H), 7.23–7.17 (m, 3H), 6.94 (dd, J = 9.0 & 2.2 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) *δ*157.6, 140.1, 136.8, 135.7, 135.0, 134.4, 132.8,

130.3, 129.4, 128.6, 128.3, 127.4, 127.3, 124.0, 114.4, 104.5, 55.6; IR (KBr) ν_{max} 3019, 1589, 1457, 1276, 1068, 739 cm⁻¹; HRMS (ESI) for $C_{21}H_{16}NaOS$ (M+Na)⁺: calcd. 339.0820, found 339.0822.

6-*tert*-Butyl-2,3-diphenylbenzo[*b*]thiophene (3c):

3c colorless solid (131 mg, 76%); mp = 145–146 °C; $R_f = 0.5$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.42–7.29 (m, 8H), 7.25–7.20 (m, 3H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) *δ* 148.0, 139.0, 138.8, 138.7, 135.7, 134.4, 132.9, 130.4, 129.6, 128.6, 128.3, 127.5, 127.3, 122.8, 122.7, 118.2, 34.9, 31.5; IR (KBr) v_{max} 2953, 1594, 1441, 1260, 816 cm⁻¹; HRMS (ESI) for

6-*iso*-Propyl-2,3-diphenylbenzo[*b*]thiophene (3d):

 $C_{24}H_{22}NaS (M+Na)^+$: calcd. 365.1340, found 365.1340.

3d colorless solid (118 mg, 72%); mp = 123-124 °C; R_f = 0.4 (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 0.4 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.43–7.35 (m, 3H), 7.34–7.29 (m, 4H), 7.24–7.19 (m, 4H), 3.10–2.98

(m, 1H), 1.32 (d, J = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 139.1, 138.6, 135.7, 134.4, 133.0, 130.4, 129.6, 128.6, 128.3, 127.5, 127.3, 123.8, 123.1, 119.2, 34.3, 24.2; IR (KBr) v_{max} 2958, 1594, 1430, 1024, 827 cm⁻¹; HRMS (ESI) for $C_{23}H_{21}S$ (M+H)⁺: calcd. 329.1364, found 329.1366.

6-Fluoro-2,3-diphenylbenzo[*b*]thiophene (3e):

3e colorless solid (92 mg, 60%); mp = 162–163 °C; $R_f = 0.44$ (hexane); ¹H NMR (400 MHz, CDCl₃) & 7.57–7.49 (m, 2H), 7.43–7.35 (m, 3H), 7.33–7.27 (m, 4H), 7.26–7.22 (m, 3H), 7.07 (td, J = 9.0 & 2.4 Hz, 1H); ¹³C NMR (101

MHz, CDCl₃) δ 160.6 (d, J = 245 Hz), 139.6 (d, J = 10 Hz), 139.0 (d, J = 4 Hz), 137.4, 135.3, 134.0, 132.7, 130.3, 129.5, 128.7, 128.4, 127.8, 127.5, 124.4 (d, J = 9 Hz), 113.3 (d, J = 24 Hz), 108.1 (d, J = 25 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.28; IR (KBr) v_{max} 1589, 1479, 1232, 909, 695 cm⁻¹. HRMS (ESI) for C₂₀H₁₃FNaS (M+Na)⁺: calcd. 327.0620, found 327.0620.

6-Chloro-2,3-diphenylbenzo[b]thiophene (3f):

3f colorless crystalline solid (63 mg, 39%); mp = 188–189 °C; $R_f = 0.56$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 2.0 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.42–7.36 (m, 3H), 7.33–7.28 (m, 6H), 7.27–7.23 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ140.0, 139.8, 139.4, 135.1, 133.8, 132.9, 130.6, 130.3, 129.5, 128.8, 128.4, 127.9, 127.6, 125.3, 124.2, 121.6; IR (KBr) v_{max} 1484, 1441, 1101, 789, 690 cm⁻¹; HRMS (ESI) for C₂₀H₁₄ClS (M+H)⁺: calcd. 321.0505, found 321.0505.

2,3-Diphenylbenzo[b]thiophene (3g):

3g colorless crystalline solid (52 mg, 36%); mp = 127–128 °C; $R_f = 0.5$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.84 (m, 1H), 7.61–7.56 (m, 1H), 7.41–7.29 (m, 9H), 7.25–7.20 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 139.5, 138.8,

135.5, 134.2, 133.2, 130.4, 129.6, 128.6, 128.3, 127.7, 127.4, 124.5, 124.4, 123.3, 122.0; IR (KBr) v_{max} 1435, 1063, 750, 695 cm⁻¹; HRMS (ESI) for C₂₀H₁₅S (M+H)⁺: calcd. 287.0894, found 287.0887.**7-Methyl-2,3-diphenylbenzo**[*b*]thiophene(3h)and**4-Methyl-2,3-diphenylbenzo**[*b*]thiophene

Inseparable mixture of **3h/3h'** colorless crystalline solid (70:30) (69 mg, 46%); mp = 134–135 °C; R_f = 0.48 (hexane); Peaks for major isomer **3h:** ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.38–7.29 (m, 6H), 7.26–7.21 (m, 3H), 7.20–7.15 (m,

2H), 7.04 (d, J = 7.2 Hz, 1H), 1.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 139.6, 139.2, 138.5, 138.2, 134.4, 131.1, 129.6, 128.6, 128.3, 128.1, 127.9, 127.3, 127.1, 124.1, 120.0, 21.54; Representative peaks for minor isomer **3h':** ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 0.4H), 7.38-7.29 (m, 2H), 7.26-7.21 (m, 1H), 7.20-7.15 (m, 0.6H), 2.59 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 135.8, 134.52, 134.47, 134.4, 133.9, 131.6, 130.4, 127.6, 127.4, 127.3, 124.9, 124.8, 121.0, 20.2; IR (KBr) v_{max} 3051, 1599, 1440, 766, 695 cm⁻¹; MS (EI) m/z (%) 301 (M⁺ + 1, 100); Anal. Calcd. for C₂₁H₁₆S: C, 83.96; H, 5.37; S, 10.67. Found: C, 83.85; H, 5.41; S, 10.56.

Ratio of the both regioisomers **3h:3h'** was determined based on the characteristic Me-H¹ proton integretion. H¹ NMR (400 MHz, CDCl₃) H¹ for **3h/3h'**: $\delta = 1.96$ (s, 3H, 70%, major)/2.59 (s, 3H, 30%, minor).

6-Methyl-2,3-diphenylbenzo[*b*]thiophene (3a), 5-Methyl-2,3-diphenylbenzo[*b*]thiophene (3i) and 7-Methyl-2,3-diphenylbenzo[*b*]thiophene (3h):

The reaction between 1-(m-tolylthio)pyrrolidine-2,5-dione 1i and 2a under the optimization conditions provided inseparable mixture of 3a, 3i

and **3h** colorless crystalline solid (**50:18:32**) (61 mg, 41%); mp = 132–135 °C; $R_f = 0.38$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 4.0 Hz, 1H), 7.64 (bs, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.42–7.28 (m, 16H), 7.26–7.11 (m, 10H), 7.04 (d, J = 7.2 Hz, 1H), [2.46 (s, 3H), 2.39 (s, 1H), 1.96 (s, 2H)]; ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 139.7, 139.6, 139.2, 139.1, 138.7, 138.5, 138.3, 138.2, 136.0, 135.7, 134.51, 134.47, 134.45, 134.37, 134.2, 133.0, 132.9, 131.1, 130.44, 130.38, 129.6, 129.55, 129.52, 128.62, 128.59, 128.3, 128.1, 127.9, 127.6, 127.5, 127.4, 127.35, 127.27, 127.1, 126.2, 126.1, 124.1, 123.2, 123.0, 121.9, 121.7, 121.1, 120.0, 21.54 (**3h**), 21.5 (**3a**); IR (KBr) v_{max} 3052, 1600, 1446, 812, 690 cm⁻¹; HRMS (ESI) for C₂₁H₁₆NaS (M+Na)⁺: calcd. 323.0870, found 323.0876.

Ratio of the three regioisomers **3a:3i:3h** was determined based on the characteristic Me-H¹ proton integration. H¹ NMR (400 MHz, CDCl₃) H¹ for **3a/3i/3h**: $\delta = 2.46$ (s, 3H, 50%, major)/ 2.39 (s, 3H, 18%, minor)/ 1.96 (s, 3H, 32%, minor). The Me peak appeared at 2.46 and 1.96 is matching with the previously observed compound **3a** and **3h**, respectively.

2,3-bis(4-Fluorophenyl)-6-methylbenzo[b]thiophene (4a):

4a colorless crystalline solid (116 mg, 69%); mp = 176–177 °C; R_f = 0.46 (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (bs, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.30–7.24 (m, 4H), 7.17 (dd, *J* = 8.0 & 1.0 Hz, 1H), 7.13–7.08 (m, 2H), 6.98–6.93 (m, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, *J* = 250 Hz), 162.2 (d, *J* = 248 Hz), 139.0,

138.5, 137.4, 134.8, 132.0 (d, J = 8 Hz), 131.3 (d, J = 3 Hz), 131.2 (d, J = 8 Hz), 130.3 (d, J = 3 Hz), 126.3, 122.8, 121.9, 115.8 (d, J = 22 Hz), 115.5 (d, J = 23 Hz), 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.79, -114.43; IR (KBr) ν_{max} 2909, 1604, 1500, 1226, 1018, 837 cm⁻¹; HRMS (ESI) for C₂₁H₁₄F₂NaS (M+Na)⁺: calcd. 359.0682, found 359.0679.

2,3-bis(4-Chlorophenyl)-6-methylbenzo[b]thiophene (4b):

4b colorless crystalline solid (138 mg, 75%); mp = 228–229 °C; $R_f = 0.56$ (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.40–7.37 (m, 2H), 7.26–7.20 (m, 6H), 7.17 (dd, J = 8.5 & 1.0 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 138.3, 137.3, 135.0, 133.8, 133.5, 132.6, 132.1, 131.6, 130.7, 129.1, 128.7, 126.5, 122.8, 122.0, 21.5; IR (KBr) v_{max} 2920, 1533, 1495,

1084, 1013, 804 cm⁻¹; HRMS (ESI) for $C_{21}H_{15}Cl_2S$ (M+H)⁺: calcd. 369.0272, found 369.0269.

2,3-bis(4-Bromophenyl)-6-methylbenzo[b]thiophene (4c):

4c colorless crystalline solid (170 mg, 74%); mp = 235–236 °C; $R_f = 0.53$ (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.54 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 1H), 7.39 (d, J = 8.5 Hz, 2H), 7.20–7.13 (m, 5H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 138.2, 137.3, 135.1, 134.3, 133.0, 132.1, 132.0, 131.9,

131.7, 131.0, 126.5, 122.8, 122.03, 122.00, 121.7, 21.5; IR (KBr) v_{max} 2920, 1522, 1462, 1232, 1007, 826 cm⁻¹; HRMS (ESI) for C₂₁H₁₄Br₂SNa (M+Na)⁺: calcd. 478.9081, found 478.9079.

6-tert-Butyl-2,3-bis(4-fluorophenyl)benzo[b]thiophene (4d):

4d colorless crystalline solid (157 mg, 83%); mp = 168–169 °C; R_f = 0.51 (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.88 (bd, J = 1.5 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.43 (dd, J = 8.5 & 2.0 Hz, 1H), 7.31–7.24 (m, 4H), 7.13–7.08 (m, 2H), 6.99–6.94 (m, 2H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J = 250 Hz), 162.2 (d,

J = 248 Hz), 148.3, 138.9, 138.4, 137.9, 132.0 (d, J = 8 Hz), 131.3 (d, J = 4 Hz), 131.2 (d, J = 8 Hz), 130.3 (d, J = 3 Hz), 122.9, 122.6, 118.2, 115.8 (d, J = 22 Hz), 115.5 (d, J = 22 Hz), 35.0, 31.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.77, -114.45; IR (KBr) ν_{max} 2958, 1605, 1512, 1221, 816 cm⁻¹; HRMS (ESI) for C₂₄H₂₁F₂S (M+H)⁺: calcd. 379.1332, found 379.1329.

6-tert-Butyl-2,3-bis(4-chlorophenyl)benzo[b]thiophene (4e):

4e colorless crystalline solid (161 mg, 78%); mp = 233–234 °C; R_f = 0.6 (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (bs, 1H), 7.50 (d, *J* = 9.0 Hz, 1H), 7.43 (dd, *J* = 8.5 & 1.5 Hz, 1H), 7.40–7.37 (m, 2H), 7.26–7.21 (m, 6H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 148.5, 139.0, 138.1, 137.8, 133.8, 133.5, 132.6, 132.0, 131.6,

130.7, 129.0, 128.7, 123.0, 122.6, 118.3, 35.0, 31.5; IR (KBr) ν_{max} 2958, 1489, 1259, 1095, 897 cm⁻¹; HRMS (ESI) for C₂₄H₂₀C₁₂NaS (M+Na)⁺: calcd. 433.0560, found 433.0553.

6-tert-Butyl-2,3-bis(4-bromophenyl)benzo[b]thiophene (4f):

4f colorless crystalline solid (198 mg, 79%); mp = 233–234 °C; $R_f = 0.58$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.4 Hz, 1H), 7.45–7.36 (m, 3H), 7.22–7.12 (m, 4H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 148.5, 139.0, 138.1, 137.8, 134.3, 133.8, 133.1, 132.0, 131.9, 131.7, 131.0, 123.1,

122.6, 122.0, 121.7, 118.3, 35.0, 31.5; IR (KBr) v_{max} 2958, 1467, 1385, 1002, 793 cm⁻¹; HRMS (ESI) for C₂₄H₂₁Br₂S (M+H)⁺: calcd. 498.9731, found 498.9736.

6-Methyl-2,3-di-*p*-tolylbenzo[*b*]thiophene (4g):

4g colorless crystalline solid (80 mg, 48%); mp = 148–150 °C; R_f = 0.34 (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 0.4 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.25–7.20 (m, 6H), 7.15 (d, J= 8.4 Hz, 1H), 7.06 (d, J = 8.0 Hz, 2H), 2.49 (s, 3H), 2.41 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 138.96, 138.2, 137.3, 136.8, 134.3, 132.8, 132.6, 131.6, 130.2, 129.35, 129.33,

129.0, 126.0, 122.9, 121.8, 21.5, 21.3, 21.2; IR (KBr) v_{max} 2914, 1561, 1445, 1226, 815 cm⁻¹; MS (EI) m/z (%) 329 (M⁺ + 1, 100); Anal. Calcd. for C₂₃H₂₀S: C, 84.10; H, 6.14; S, 9.76. Found: C, 84.17; H, 6.18; S, 9.69.

6-*tert*-Butyl-2,3-di-*p*-tolylbenzo[*b*]thiophene (4h):

4h colorless crystalline solid (97 mg, 52%); mp = 160–162 °C; R_f = 0.36 (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 1.6 Hz, 1H), 7.55 (d, J = 8.4 Hz 1H), 7.41 (dd, J = 8.8 & 1.8 Hz, 1H), 7.25–7.20 (m, 6H), 7.08 (d, J = 7.6 Hz, 2H), 2.43 (s, 3H), 2.34 (s, 3H) 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 138.84,

138.82, 138.6, 137.3, 136.8, 132.8, 132.4, 131.7, 130.2, 129.4, 129.3, 129.0, 122.8, 122.5, 118.1, 34.9, 31.5, 21.3, 21.2; IR (KBr) v_{max} 2964, 2915, 1517, 1463, 1254, 816 cm⁻¹; HRMS (ESI) for C₂₆H₂₇S (M+H)⁺: calcd. 371.1833, found 371.1835.

6-Fluoro-2,3-bis(4-fluorophenyl)benzo[b]thiophene (4i):

4i colorless crystalline solid (106 mg, 62%); mp = 138–140 °C ; R_f = 0.46 (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (dd, *J* = 8.5 & 2.5 Hz, 1H), 7.48 (dd, *J* = 9.0 & 5.0Hz 1H), 7.29–7.22 (m, 4H), 7.14–7.08 (m, 3H), 6.99–6.94 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, *J* = 250 Hz), 162.3(d, *J* = 248 Hz), 160.7 (d, *J* = 247 Hz), 139.5 (d, *J*

= 10 Hz), 138.1 (d, J = 4 Hz), 137.1, 131.9 (d, J = 8 Hz), 131.7, 131.2 (d, J = 8 Hz), 130.9 (d, J = 4 Hz), 129.8 (d, J = 3 Hz), 124.2 (d, J = 9 Hz), 115.9 (d, J = 22 Hz), 115.6 (d, J = 23 Hz), 113.6 (d, J = 24 Hz), 108.2 (d, J = 25 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -113.26, -113.89, -116.84; IR (KBr) v_{max} 1600, 1506, 1221, 1156, 838 cm⁻¹; HRMS (ESI) for C₂₀H₁₁F₃NaS (M+Na)⁺: calcd. 363.0431, found 363.0432.

6-Fluoro-2,3-bis(4-bromophenyl)benzo[b]thiophene) (4j):

4j light yellow solid (149 mg, 64%); mp = 176–177 °C ; $R_f = 0.53$ (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.57–7.53 (m, 3H), 7.49 (dd, J = 9.0 & 5.0Hz 1H), 7.42–7.39 (m, 2H), 7.19–7.13 (m, 4H), 7.10 (td, J = 8.9 & 2.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 160.8 (d, J = 245 Hz), 139.7 (d, J = 10 Hz), 138.1 (d, J = 4 Hz), 136.9, 133.8, 132.6, 132.2, 131.9, 131.8, 130.9, 124.3 (d, J = 9 Hz), 122.3,

122.0, 113.7 (d, J = 24 Hz), 108.3 (d, J = 25 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -116.26; IR (KBr) v_{max} 1534, 1457, 1249, 1068, 1002, 805 cm⁻¹; HRMS (ESI) for C₂₀H₁₂Br₂FS (M+H)⁺: calcd. 460.9010, found. 460.9010.

6-tert-Butyl-2,3-bis(3-(trifluoromethyl)phenyl)benzo[b]thiophene (4k):

4k colorless crystalline solid (120 mg, 50%); mp = 141–142 °C; R_f = 0.55 (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.97 (s, 1H), 7.73–7.68 (m, 2H), 7.62–7.49 (m, 7H), 7.41 (t, *J* = 7.75 Hz, 1H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 139.2, 137.9, 137.8, 136.0,

134.7, 133.6, 132.7, 132.4, 131.3 (q, J = 32 Hz), 131.0 (q, J = 32 Hz), 129.4, 129.0, 127.1 (q, J = 3.0 Hz), 126.3 (q, J = 3.0 Hz), 125.2 (d, J = 22 Hz), 124.47 (q, J = 4.0 Hz), 123.4, 122.6, 118.4, 35.0, 31.4; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.78, -63.06; IR (KBr) ν_{max} 2969, 1605, 1358, 1326, 1117, 673 cm⁻¹; HRMS (ESI) for C₂₆H₂₀F₆NaS (M+Na)⁺: calcd. 501.1088, found 501.1087.

6-tert-Butyl-2,3-bis(3,4-dichlorophenyl)benzo[b]thiophene (4l):

41 pale yellow solid (178 mg, 74%); mp = 144–145 °C ; $R_f = 0.63$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (bs, 1H), 7.51–7.44 (m, 5H), 7.33 (d, J = 8.4 Hz, 1H), 7.10 (dd, J = 8.4 & 2.0 Hz, 1H), 7.04 (dd, J = 8.4 & 2.0 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 139.1, 137.7, 136.9, 135.0, 133.8, 133.0, 132.8, 132.2, 132.0, 131.8, 131.4, 131.1, 130.9, 130.5, 129.7, 128.6, 123.4,

122.6, 118.4, 35.1, 31.4; IR (KBr) v_{max} 2964, 1583, 1463, 1134, 1030, 810 cm⁻¹; HRMS (ESI) for C₂₄H₁₉Cl₄S (M+H)⁺: calcd. 478.9962, found 478.9961.

6-Methyl-2,3-bis(3,4-dichlorophenyl)benzo[b]thiophene (4m):

4m colorless crystalline solid (83 mg, 38%); mp = 147–148 °C; R_f = 0.56 (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.47–7.45 (m, 2H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.20 (dd, *J* = 8.4 & 0.8 Hz, 1H), 7.10 (dd, *J* = 8.0 & 2.0 Hz, 1H), 7.03 (dd, *J* = 8.4 & 2.0 Hz, 1H), 2.50 (s, 3H); ¹³C NMR

(101 MHz, CDCl₃) δ 139.1, 137.8, 136.4, 135.6, 135.0, 133.8, 133.0, 132.8, 132.2, 132.0, 131.9, 131.4, 131.1, 130.9, 130.5, 129.7, 128.6, 126.8, 122.7, 122.1, 21.5; IR (KBr) ν_{max} 2915, 1457, 1123, 1035, 816 cm⁻¹; HRMS (ESI) for C₂₁H₁₃Cl₄S (M+H)⁺: calcd. 436.9492, found 436.9499.

6-iso-Propyl-2-methyl-3-phenylbenzo[b]thiophene (5a):

The reaction between 1-(4-*iso*-propylphenylthio)pyrrolidine-2,5-dione (1d) and 1-phenyl-1-propyene under the optimized conditions provided **5a** along with an unidentified product. The compounds **5a** and unidentified product are inseparable, forming 4:1 ratio.

5a pale yellow viscous liquid (64 mg, 48%); $R_f = 0.52$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.59–7.50 (m, 3H), 7.49–7.45 (m, 3H), 7.25–7.21 (m, 1H), 3.15–3.03 (m, 1H), 2.55 (s, 3H), 1.39 (d, J = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 138.53, 138.46, 135.5, 135.0, 133.5, 130.0, 128.4, 127.1, 123.4, 122.2, 119.2, 34.1, 24.2, 14.4; Representative peaks for the inseparable unidentified product: ¹H NMR (400 MHz, CDCl₃) δ 2.99–2.89 (m, 0.3H), 1.30 (d, J = 6.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 134.3, 128.2, 127.2, 122.7, 121.7, 119.9, 33.7, 23.9; IR (KBr) IR (Neat) v_{max} 3052, 2958, 2915, 2865, 1600, 1479, 816 cm⁻¹; HRMS (ESI) for C₁₈H₁₉S (M+H)⁺: calcd. 267.1207, found 267.1209.

The ratio of **5a**:unidentified product (UP) was determined based on the characteristic H¹ proton integretion; $\delta = 3.15-3.03$ (m, 1H, 78%, for **5a**)/ 2.99–2.89 (m, 1H, 22%, minor).

2-Butyl-6-isopropyl-3-phenylbenzo[b]thiophene (5b):

The reaction between 1-(4-*iso*-Propylphenylthio)pyrrolidine-2,5-dione (1d) and 1-phenyl-1-hexyne under the optimized conditions provided **5a** along with an unidentified product. The compounds **5a** and unidentified product are inseparable, forming 6:1 ratio.

5b colorless viscous liquid (80 mg, 52%); $R_f = 0.64$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 0.8 Hz, 1H), 7.62–7.54 (m, 2H), 7.54–7.47 (m, 4H), 7.31–7.27 (m, 1H), 3.12–3.06 (m, 1H), 2.96 (t, J = 7.6 Hz, 2H), 1.83–1.74 (m, 2H), 1.43 (d, J = 6.8 Hz, 6H), 1.38–1.32 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 141.5, 138.6, 138.4, 135.8, 133.2, 130.0, 128.4, 127.1, 123.3, 121.9, 119.3, 34.2, 33.9, 28.5, 24.2, 22.2, 13.8; Representative peaks for the inseparable unidentified product: ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.32 (m, 0.26H), 7.27–7.25 (m, 0.24H), 1.47 (d, J = 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 134.3, 128.2, 126.1, 122.3, 33.7, 23.9; IR (KBr) ν_{max} 3057, 2953, 2865, 1600, 1479, 816, 701 cm⁻¹; ; HRMS (ESI) for C₂₁H₂₅S (M+H)⁺: calcd. 309.1677, found 309.1673.

The ratio of **5b**:unidentified product (UP) was determined based on the characteristic H¹ proton integretion; $\delta = 1.43$ (d, 6H, 85%, for **5b**)/1.47 (d, 6H, 15%, minor).

2-Hexyl-6-methyl-3-phenylbenzo[*b*]thiophene (5c):

The reaction between 1-(4-*iso*-Propylphenylthio)pyrrolidine-2,5-dione (1d) and 1-phenyl-1-octyne under the optimized conditions provided **5a** along with an unidentified product. The compounds **5a** and unidentified product are inseparable, forming 7:1 ratio.

5c as colorless viscous thick liquid (48 mg, 30%); $R_f = 0.64$ (hexane); Representative peaks for major isomer **5c**: ¹H NMR (400 MHz, CDCl₃) δ7.63 (bs, 1H), 7.53–7.47 (m, 2H), 7.45–7.36 (m, 4H), 7.15–7.10 (m, 1H), 2.85 (t, *J* = 7.8 Hz, 2H), 2.48 (s, 3H), 1.74–1.65 (m, 2H), 1.36–1.22 (m, 6H), 0.88 (t, *J* = 7.0 Hz 3H); ¹³C NMR (101 MHz, CDCl₃) δ141.3, 138.4, 138.3, 135.8, 133.6, 133.2, 130.0, 128.4, 127.1, 125.7, 122.1, 121.9, 31.7, 31.5, 28.8, 28.7, 22.5, 21.4, 14.0; Representative peaks for the inseparable unidentified product: ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.70 (m, 0.14H), 2.34 (s, 0.42H); ¹³C NMR (101 MHz, CDCl₃) δ 137.5, 137.4, 133.9, 130.2, 130.1, 129.8, 128.5, 21.0; IR (Neat) v_{max} 2953, 2849, 1468, 810, 706 cm⁻¹; HRMS (ESI) for C₂₁H₂₅S (M+H)⁺: calcd. 309.1677, found 309.1679. The ratio of **5c**:unidentified product (UP) was determined based on the characteristic H¹ proton integretion; $\delta = 2.48$ (s, 3H, 88%, for **5c**)/ 2.34 (s, 3H, 12%, minor).

3-(4-Fluorophenyl)-6-methyl-2-phenylbenzo[*b*]**thiophene (5d)** and **2-(4-Fluorophenyl)-6**methyl-3-phenylbenzo[*b*]**thiophene (5d')**:

Inseparable mixture of **5d** and **5d'** colorless crystalline solid (1:1, 89 mg, 56%); mp = 150–151 °C; $R_f = 0.46$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.49–7.33 (m, 2H), 7.31–7.21 (m, 6H), 7.18–7.04 (m, 2H),

6.96–6.88 (m, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 250 Hz), 162.1 (d, J = 248 Hz), 139.1, 139.0, 138.6, 137.1, 135.5, 134.6, 134.2, 133.1, 132.0 (d, J = 8 Hz), 131.9, 131.6, 131.2 (d, J = 8 Hz),130.3, 129.5, 128.7, 128.4, 127.6, 127.4, 126.2, 123.0, 122.7, 122.0, 121.9, 115.6 (d, J = 22 Hz), 115.3 (d, J = 22 Hz), 21.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -114.08, -114.70 (1:1); IR (KBr) v_{max} 2914, 1599, 1501, 1227, 816, 690 cm⁻¹; HRMS (ESI) for C₂₁H₁₅FNaS (M+Na)⁺: calcd. 341.0776, found 341.0776.

Both the regioisomeric products **5d** and **5d'** are indistinguishable by 1H NMR, however, the 13C NMR studies clearly reveals the formation of both regioisomers **5d** and **5d'** as inseparable mixture.

3-(4-Chlorophenyl)-6-methyl-2-phenylbenzo[*b*]**thiophene (5e)** and **2-(4-Chlorophenyl)-6**methyl-3-phenylbenzo[*b*]**thiophene (5e'):**

Inseparable mixture of **5e** and **5e'** colorless crystalline solid (1:1, 97 mg, 58%); mp = 193–195 °C; $R_f = 0.5$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.65, (s, 1H), 7.45 (d, J = 8.4 Hz 1H), 7.42–7.33 (m, 3H),

7.31–7.22 (m, 4H), 7.19 (bd, J = 4.0 Hz, 2H), 7.17–7.12 (m, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 139.0, 138.8, 138.7, 138.4, 136.8, 135.4, 134.8, 134.7, 134.2, 134.1, 133.53, 133.50, 133.3, 132.9, 131.7, 131.6, 130.7, 130.3, 129.6, 128.9, 128.7, 128.5, 128.4, 127.7, 127.5, 126.3, 123.1, 122.7, 122.0, 121.9, 21.51, 21.50; IR (KBr) v_{max} 2914, 1594, 1484, 1441, 1227, 1084, 810 cm⁻¹; HRMS (ESI) for C₂₁H₁₅ClNaS (M+Na)⁺: calcd. 357.0481, found 357.0481.

Both the regioisomeric products **5e** and **5e'** are indistinguishable by 1H NMR, however, the 13C NMR studies clearly reveals the formation of both regioisomers **5e** and **5e'** as inseparable mixture.

3-(4-Bromophenyl)-6-methyl-2-phenylbenzo[*b*]**thiophene (5f)** and **2-(4-Bromophenyl)-6**methyl-3-phenylbenzo[*b*]**thiophene (5f')**:

Inseparable mixture of **5f** and **5f'** colorless crystalline solid (1:1; 112 mg, 59%); mp = 202-205 °C; R_f = 0.48 (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.53-7.50 (m, 1H), 7.46 (d, *J* = 8.8 Hz

1H), 7.43–7.34 (m, 3H), 7.32–7.26 (m, 3H), 7.22–7.14 (m, 3H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 139.0, 138.8, 138.6, 138.3, 136.8, 135.3, 134.9, 134.7, 134.6, 134.0, 133.5, 133.4, 133.0, 132.1, 131.8, 131.6, 131.5, 131.0, 130.3, 129.8, 129.6, 128.8, 128.5, 127.8, 127.5, 126.3, 123.1, 122.6, 122.0, 121.9, 121.7, 121.4, 21.53, 21.51; IR (KBr) v_{max} 2909, 1594, 1441, 1238, 1002, 816, 690 cm⁻¹; MS (EI) m/z (%) 377 (M⁺ – 1, 100); Anal. Calcd. for C₂₁H₁₅BrS: C, 66.50; H, 3.99; S, 8.45 Found: C, 66.42; H, 3.91; S, 8.38.

Both the regioisomeric products **5f** and **5f'** are indistinguishable by 1H NMR, however, the 13C NMR studies clearly reveals the formation of both regioisomers **5f** and **5f'** as inseparable mixture.

3-(2-Bromophenyl)-6-methyl-2-phenylbenzo[*b*]**thiophene (5g) and 2-(2-Bromophenyl)-6-methyl-3-phenylbenzo**[*b*]**thiophene (5g'):**

Inseparable mixture of **5g** and **5g'** pale yellow solid (5:1; 119 mg, 63%); mp = 93–94 °C; R_f = 0.4 (hexane); Representative peaks for major isomer **5g:** ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.69 (m, 2H), 7.39–7.32 (m, 4H),

7.28–7.25 (m, 4H), 7.23–7.18 (m, 2H), 2.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 138.6, 138.3, 137.1, 134.6, 134.2, 133.0, 132.5, 129.9, 129.3, 128.8, 128.4, 127.7, 127.6, 126.1, 125.0, 122.9, 121.9, 21.56; Representative peaks for minor isomer **5g'**: ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.4 Hz, 0.19H), 7.59 (dd, *J* = 8.0 & 1.2 Hz, 0.2H), 7.31–7.28 (m, 1H), 7.18–7.14 (m, 0.38H), 2.53 (s, 0.5H); ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 136.8, 135.4, 135.0, 134.8, 133.2, 132.8, 132.0, 129.7, 128.2, 127.1, 126.9, 123.1, 122.0, 21.52; IR (KBr) ν_{max} 2920, 1599, 1430, 1030, 810, 684 cm⁻¹; HRMS (ESI) for C₂₁H₁₉BrNS (M+NH₄)⁺: calcd. 396.0422, found 396.0422.

The ratio of **5g** : **5g'** was determined based on the characteristic H¹ proton integretion; $\delta = 2.52$ (s, 3H, 84%, major)/ 2.53 (s, 3H, 16%, minor).

General procedure for the Suzuki reaction of 4c; Synthesis of 6 (GP 5):⁵

A mixture of compound **4c** (100 mg, 0.218 mmol), phenyl boronic acid (80 mg, 0.655 mmol), $Pd(PPh_3)_4$ (15 mg, 0.013mmol) and Na_2CO_3 (69 mg, 0.654 mmol) in toluene and H_2O (1:1, 3.0 mL) was heated at 80 °C for 12h. The reaction mixture was extracted with ethylacetate (3 × 15 mL), dried over Na_2SO_4 and concentrated under vacuum to give a light yellow solid. The crude material was purified by silica gel column chromatograpy eluting with hexane to give compound **6** as colorless crystalline solid.

2,3-di(Biphenyl-4-yl)-6-methylbenzo[b]thiophene (6):

6 colorless crystalline solid (73 mg, 74%); mp = 218–219 °C; R_f = 0.24 (hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.73–7.68 (m, 5H), 7.62–7.57 (m, 3H), 7.54–7.33 (m, 12H), 7.21 (d, *J* = 8.0 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 140.6, 140.3, 140.2, 140.0, 139.1, 138.8, 138.0, 134.8, 134.6, 133.4, 132.7, 130.8, 129.9, 128.81, 128.76, 127.40, 127.36, 127.3, 127.0, 126.9, 126.2, 123.0,

121.9, 21.5; IR (Neat) v_{max} 2920, 1643, 1523, 1008, 756, 690 cm⁻¹; HRMS (ESI) for C₃₃H₂₅S (M+H)⁺: calcd. 453.1677, found 453.1677.

General procedure for the Sonogashira reaction of 4c; Synthesis of 7 (GP 6):³

Phenylacetylene (52 μ L, 0.479 mmol) was added to a stirred suspension of compound **4c** (100 mg, 0.218 mmol), PdCl₂(PPh₃)₂ (15 mg, 0.0218 mmol), CuI (4.0 mg, 0.0218 mmol) and PPh₃ (6.0 mg, 0.0218 mmol) in Et₃N (4 mL) under nitrogen atmosphere. The reaction mixture was heated at 100 °C for 48 h. After cooling to room temperature, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with CH₂Cl₂ (3 × 15 mL), dried over Na₂SO₄ and concentrated under vacuum to give a light yellow solid. The crude material was purified by silica gel column chromatograpy eluting with hexane/EtOAc (95:5) to give compound **7** as a pale yellow crystalline solid.

6-Methyl-2,3-bis(4-(phenylethynyl)phenyl)benzo[b]thiophene (7):

7 yellow solid (66 mg, 60%); mp = 213–215 °C; R_f = 0.2 (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.62–7.55 (m, 4H), 7.54–7.48 (m, 3H), 7.44–7.40 (m, 2H), 7.38–7.27 (m, 10H), 7.19 (dd, *J* = 8.2 & 1.0 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 138.3, 138.0, 135.6, 135.0, 134.1, 132.8, 132.0, 131.63, 131.61, 130.4, 129.4, 128.4, 128.3, 126.4,

123.2, 123.1, 122.9, 122.5, 122.4, 122.0, 90.5, 90.1, 89.2, 89.1, 21.5; IR (Neat) v_{max} 2920, 1594, 1435, 838, 750, 684 cm⁻¹; HRMS (ESI) for C₃₇H₂₅S (M+H)⁺: calcd. 501.1677, found 501.1677.

General procedure for the benzylic azidation of 3a; Synthesis of 8 (GP 7):^{6a, 6b}

A mixture of N-bromosuccinimide (65 mg, 0.36 mmol), AIBN (3 mg, 0.01 mmol), and 6-methyl-2,3diphenylbenzo[*b*]thiophene **3a** (100 mg, 0.33 mmol) in dry CCL₄ (2.0 mL) were placed in a sealed tube and stirred at room temperature for 18 h. Upon complete consumption of **3a**, the solvent was evaporated and the crude material was subjected to azidation. Accordingly, sodium azide (32 mg, 0.5 mmol) and water-acetone mixture (1:4, 2 mL) was added to the crude material and the resulting mixture was stirred overnight. The solvent was evaporated and the crude mixture was purified by neutral alumina column chromatograpy eluting with hexane/EtOAc (97:3) mixture to provide compound **8** as colorless crystalline solid.

6-(Azidomethyl)-2,3-diphenylbenzo[b]thiophene (8):

8 colorless crystalline solid (102 mg, 90%); mp = 126–127 °C; $R_f = 0.12$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.60 (bd, J = 8.0 Hz, 1H), 7.45–7.22 (m, 11H), 4.46 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.8,

140.4, 139.1, 135.2, 134.0, 133.0, 131.8, 130.4, 129.6, 128.7, 128.4, 127.8, 127.5, 124.8, 123.7, 121.8, 54.9; IR (Neat) v_{max} 3057, 2098, 1441, 1238, 690 cm⁻¹; MS (EI) m/z (%) 342 (M⁺ + 1, 100); Anal. Calcd. for C₂₁H₁₅N₃S: C, 73.87; H, 4.43; N, 12.31; S, 9.39. Found: C, 73.96; H, 4.38; N, 12.25; S, 9.25.

General procedure for the oxidation of benzo[*b*]thiophenes (GP 8):⁷

To a solution of **3** (1.0 mmol) in dry CH_2Cl_2 (10 mL) was added *m*-CPBA (1.2 mmol) under an argon atmosphere. The resulting mixture was stirred at room temperature overnight. Upon completion, solvent was evaporated and the crude material was purified by flash column chromatography eluting with hexane/EtOAc 95:5 to give the desired sulfones.

6-Methyl-2,3-diphenylbenzo[b]thiophene-1,1-dioxide (10):

10 colorless crystalline solid (503 mg, 91%); mp = 166–168 °C; $R_f = 0.44$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.36–7.26 (m, 7H), 7.20–7.15 (m, 3H), 7.10 (d, J = 8.4 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 138.7, 138.3, 135.7, 134.5, 134.3, 133.0,

130.4, 129.5, 128.6, 128.3, 127.5, 127.3, 126.1, 122.9, 121.9, 21.5; IR (Neat) ν_{max} 2350, 1600, 1446, 1238, 1024, 810, 690 cm⁻¹; HRMS (ESI) for C₂₁H₁₆NaO₂S (M+Na)⁺: calcd. 355.0769, found 355.0770.

2,3-di(Biphenyl-4-yl)-6-methylbenzo[b]thiophene-1,1-dioxide (11):

11 yellow color solid (92 mg, 86%); mp = 270–271 °C; $R_f = 0.50$ (40:10 hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.72–7.69 (m, 3H), 7.67–7.64 (m, 2H), 7.61–7.53 (m, 6H), 7.50–7.43 (m, 5H), 7.43–7.39 (m, 2H), 7.38–7.33 (m, 2H), 7.27 (d, J = 8.0 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 142.1, 141.0, 140.1,

139.9, 137.7, 136.5, 136.2, 134.0, 130.6, 130.0, 129.6, 129.5, 128.9, 128.8, 127.9, 127.8, 127.7, 127.4, 127.0, 126.1, 124.0, 122.2, 21.5; IR (Neat) v_{max} 2920, 1736, 1484, 1298, 1150, 860, 591cm⁻¹; HRMS (ESI) for C₃₃H₂₄NaO₂S (M+Na)⁺: calcd. 507.1395, found 507.1388.

References

1. Armarego, W. L. F.; Chai, C. L. L.; *purification of laboratory chemicals*; 5th ed.; Butterwarth-Heineman, London, 2003.

2. Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. *Org. Lett.* **2002**, *4*, 3199.

- 3. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
- 4. Shimada, H.; Kikuchi, S.; Okuda, S.; Haraguchi, K.; Tanaka, H. *Tetrahedron*. **2009**, *65*, 6008.
- 5. Miyaura, N.; Suziki, A. Chem. Rev. 1995, 95, 2457.
- (a) Mataka, S.; Liu, G-B.; Sawada, T.; Kurisu, M.; Tashiro, M. Bulletin of the chemicalsociety of jappan. 1994, 67, 1113. (b) Alvarer, S. G.; Alvarez, M. T. Synthesis. 1977, 413.
- 7. Furukawa, N.; Hoshiai, H.; Shibutani, T.; Higaki, M.; Iwasaki, F.; Fujihara, H. *Heterocycles*. **1992**, *34*, 1085.

X-ray crystallography: Single crystal X-ray data for the compound **3d** and **3e** were collected using the detector system [λ (Mo-K α) = 0.71073 Å] at 293K, graphite monochromator with a ω scan width of 0.3°, crystal-detector distance 60 mm, collimator 0.5 mm. The SMART software¹ was used for the intensity data acquisition and the SAINTPLUS Software¹ was used for the data extraction. In each case, absorption correction was performed with the help of SADABS program,¹ an empirical absorption correction using equivalent reflections was performed with the program. The structure was solved using SHELXS-97,² and full-matrix least-squares refinement against F² was carried out using SHELXL-97.² All non-hydrogen atoms were refined anisotropically. Aromatic and methyl hydrogens were introduced on calculated positions and included in the refinement riding on their respective parent atoms.

X-ray crystal structure and data for 3d and 3e:

Figure 1. Thermal ellipsoidal plot of compound 3d and 3e with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level except for the H atoms, which are shown as circles of arbitrary radius.

Table 1. Crystal data for 3d and 3e

Compound			
Identification code	3d	Зе	
Formula	$C_{23}H_{20}S$	$C_{20}H_{13}FS$	
F _w	328.45	304.36	
Т (К)	296	296	
λ (Å)	0.71073	0.71073	

Crystal system	triclinic	monoclinic
Space group	P -1	P 21/c
a (Å)	9.756(4)	6.0606(6)
b (Å)	10.716(5)	13.4845(14)
<i>c</i> (Å)	10.881(4)	18.390(2)
α (°)	65.921	90
β(°)	68.070	91.360
γ(°)	63.361	90
∨ (ų)	902.7(7)	1502.5(3)
Z	2	4
$ ho_{calcd}$ (Mg m $^{ ext{-3}}$)	1.208	1.345
μ (mm ⁻¹)	0.179	0.219
F (000)	348.0	632
Reflections collected	3777	3446
Unique reflections	2835	1829
Completeness to $2 heta$ (%)	98.7(100.0)	94.0(100)
T _{max} , T _{min}	0.977,0.986	0.974,0.983
GOF (F ²)	1.076	1.012
R1[I>2ơ(I)]	0.0453	0.0626
wR2 (all data)	0.1232	0.1349
Diffractometer	Xcalibur Gemini Eos CCD	Xcalibur Gemini Eos CCD
CCDC Number	1479463	1479468

References:

1. Bruker SMART V5.630 and SAINT-PLUS V6.45, Bruker-Nonius Analytical X-ray Systems Inc.: Madison, Wisconsin, USA 2003. SADABS, Empirical absorption correction program, Bruker AXS Inc., Madison, Wisconsin, USA 1997.

2. Sheldrick G M, Acta Crystallogr 64A (2008) 112.

Ę.

,

.

,

.

.

,

,

,

•

-

,

.

٠

ų

.

.

,

•

.

S87.

.

.

.

.

