Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Rhodium/Copper-Cocatalyzed Annulation of Benzylamine with Diazo

Compounds: Accesses to Fused Isoquinolines

Qiang Wang^{a,b} and Xingwei Li^{*,a}

^aDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China Email: <u>xwli@dicp.ac.cn</u>

Table of Contents

General information	S1
General procedures	S1
Product Characterization	S3
Copies of ¹ H NMR and ¹³ C NMR Spectra	S0

General information

Commercially available solvents were used as received. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 spectrometer. Chemical shifts are reported in δ units relative to CDCl₃ [¹H δ = 7.26, ¹³C δ = 77.00], CD₂Cl₂ [¹H δ = 5.32, ¹³C δ = 53.30]. Abbreviations used in the description of resonances are: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). High resolution mass spectra were recorded using the electrospray ionization (ESI) method. Benzylamines and other chemicals in the experimental section were purchased from commercial sources unless otherwise noted.

General procedures

Preparation of 2-diazo-1H-indene-1,3(2H)-dione

To a solution of 1*H*-indene-1,3(2*H*)-dione **S1** (2.92 g, 20 mmol) and TsN₃ (5.91 g, 30 mmol) in CH₃CN (30 ml) at 0 °C was added Et₃N (4.0 g, 40 mmol) dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 10 h. Afterwards, the reaction mixture was pre-adsorbed onto silica gel under reduced pressure and purified by flash column chromatography to afford the pure product **2a** (2.7 g, 81%) as a yellow solid.

Typical procedure for the annulation of benzylamines with diazo compounds

A dried Schlenk tube equipped with a stir bar was loaded with benzylamine (0.2 mmol), diazo compound (0.22 mmol), $[Cp*RhCl_2]_2$ (4 mol %, 0.0050 g), AgSbF₆ (16 mol %, 0.0110 g), Zn(OTf)₂ (20 mol %, 0.0150 g), Cu(OAc)₂ (20 mol %, 0.0072 g) and DCE (3 mL). The reaction mixture was then stirred at 80 °C under a balloon pressure of O₂ for 12 h. After cooled down to room temperature, the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography on silica gel to afford the pure product.

Mechanistic studies

The annulation of benzophenone imine with diazo compound 2a

Benzophenone imine **7** (0.0362 g, 0.2 mmol), diazo compound **2a** (0.0379 g, 0.22 mmol), $[Cp*RhCl_2]_2$ (4 mol %, 0.0050 g), AgSbF₆ (16 mol %, 0.0110 g), Zn(OTf)₂ (20 mol %, 0.0150 g) and Cu(OAc)₂ (20 mol %, 0.0072 g) were added to a dried Schlenk tube which equipped with a stir bar, then DCE (3 ml) was added. The mixture was stirred at 80 °C under a balloon pressure of O₂ for 12 h. After cooled down to room temperature, the solvent was evaporated in vacuum, and the residue was purified

through flash column chromatography on silica gel to afford the pure product **3s** in 61% yield.

The oxidation of benzylamine 1a via Rh/Cu catalysis

Benzylamine **1a** was added into a dried Schlenk tube under the standard conditions without the diazo compound. The reaction mixture was stirred at 80 °C under a balloon pressure of O_2 for 12 h, then the product *N*-benzylidene-1-phenylmethanamine **9** was detected by GC-MS.

KIE experiment

Benzylamine **1a** (0.0216 g, 0.2 mmol) and benzylamine- d_5 **1a**- d_5 (0.0226g, 0.2 mmol) were added to a dried Schlenk tube, along with diazo compound **2a** (0.0379 g, 0.22 mmol), [Cp*RhCl₂]₂ (4 mol%, 0.0050 g), AgSbF₆ (16 mol %, 0.0110 g), Zn(OTf)₂ (20 mol %, 0.0150 g), Cu(OAc)₂ (20 mol %, 0.0072 g) and DCE (3 mL). The mixture was stirred at 80 °C under a balloon pressure of O₂ for 1.5 h (13% conversion). The crude product was purified by flash column chromatography on silica gel. Then the product was analyzed by ¹H NMR to obtain a KIE value of 4.5.

The reduction of product 3a

To a round-bottom flask, 11H-indeno[1,2-*c*]isoquinolin-11-one **3a** (0.0461 g, 0.2 mmol), NaOH (0.0160 g, 0.4 mmol) and diethylene glycol (5 ml) were added. To this mixture was added N₂H₄•H₂O (64%, 1 mL) dropwise. The reaction mixture was stirred at 130 °C for 3 h. After cooled down to rt, saturated aq NH₄Cl was added and the mixture was extracted by EtOAc for three times. The organic layers were collected, washed with aqueous NaCl, dried over anhydrous sodium sulfate, and concentrated by rotary evaporation under reduced pressure. The crude product was purified on silica gel column using petroleum ether and ethyl acetate (50/1) as the eluent to give the desired product **6** in 92% yield.

Product Characterization

11H-Indeno[1,2-c]isoquinolin-11-one **3a** was purified via silica

gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 93% yield (43.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.70 (d, *J* =

8.4 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.75 (t, J = 7.0 Hz, 2H), 7.63 (d, J = 7.2 Hz, 1H), 7.55 - 7.51 (m, 2H), 7.36 (t, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 162.0, 158.0, 143.5, 134.6, 134.3, 133.2, 132.1, 130.2, 128.8, 128.5, 127.3, 123.5, 123.2, 120.3, 119.4. HRMS (ESI): calcd for C₁₆H₁₀NO ([M+H]⁺) 232.0762, found 232.0762.

2-Methoxy-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3b** was

purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 89% yield (46.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1H), 8.03 (s, 1H), 7.89 - 7.75 (m, 2H), 7.67 (d, J = 7.2 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 163.6, 162.8, 156.6, 143.5, 134.7, 134.6, 134.5, 130.2, 130.2, 125.0, 123.3, 121.0, 120.4, 118.6, 100.5, 55.7. HRMS (ESI): calcd for C₁₇H₁₂NO₂ ([M+H]⁺) 262.0868, found 262.0869.

2-Methyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3c** was purified

via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 90% yield (44.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.43 (s, 1H), 7.75 (t, J = 7.8 Hz, 2H), 7.63 (d, J = 7.2 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 2.55 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 193.8, 162.1, 157.4, 144.4, 143.5, 134.5, 134.4, 132.4, 130.0, 129.6, 128.2, 127.4, 123.3, 122.0, 120.2, 118.8, 22.3. HRMS (ESI): calcd for C₁₇H₁₂NO ([M+H]⁺) 246.0919, found 246.0917.

2-Methyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3d** was

purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 82% yield (44.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.54 (s, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 7.3 Hz, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.54 - 7.46 (m, 1H), 7.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.32 (t, J = 8 Hz, 1H), 3.14 - 7.46 (m, 1H), 7.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.32 (t, J = 8 Hz, 1H), 3.14 - 7.46 (m, 1H), 7.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.32 (t, J = 8 Hz, 1H), 3.14 - 7.46 (m, 1H), 7.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.32 (t, J = 8 Hz, 1H), 3.14 - 7.46 (m, 1H), 7.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.32 (t, J = 8 Hz, 1H), 3.14 - 7.46 (m, 1.6 +3.08 (m, 1H), 1.35 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 162.2, 157.5, 155.1, 143.6, 134.6, 134.5, 132.8, 130.2, 128.6, 127.9, 127.4, 123.5, 120.4, 119.6, 119.3, 34.8, 23.5. HRMS (ESI): calcd for C₁₉H₁₆NO ([M+H]⁺) 274.1232, found 274.1232.

2-*tert*-Butyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3e** was

purified via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) as a yellow solid in 83% yield (47.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.71 (s, 1H), 7.85 (d, *J* = 8.8 Hz, 1H), 7.76 (d, *J* = 7.3 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 162.2, 157.3, 157.2, 143.6, 134.6, 134.5, 132.8, 130.2, 128.1, 127.5, 126.6, 123.4, 120.4, 119.6, 118.3, 35.7, 30.8. HRMS (ESI): calcd for C₂₀H₁₈NO ([M+H]⁺) 288.1388, found 288.1390.

2-Ethoxy-11*H*-indeno[1,2-c]isoquinolin-11-one **3f** was

purified via silica gel column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) as a yellow solid in 79% yield (43.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 7.92 (d, *J* = 2.2 Hz, 1H), 7.73 (d, *J* = 9.0 Hz, 2H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.06 (dd, *J* = 9.0, 2.4 Hz, 1H), 4.21 (q, *J* = 7.0 Hz, 2H), 1.50 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 163.1, 162.7, 156.5, 143.5, 134.7, 134.7, 134.5, 130.2, 130.2, 124.9, 123.3, 121.3, 120.5, 118.6, 101.1, 64.2, 14.5. HRMS (ESI): calcd for C₁₈H₁₄NO₂ ([M+H]⁺) 276.1025, found 276.1028.

2-Fluoro-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3g** was purified

via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 87% yield (43.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.37 (d, J = 9.7 Hz, 1H), 8.06 – 7.94 (m, 1H), 7.82 (d, J = 7.1 Hz, 1H), 7.68 (d, J = 6.8 Hz, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.41 (dd, J = 9.9, 4.7 Hz, 1H), 7.34 (dd, J = 8.7, 2.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 165.5 (d, J = 256 Hz), 162.8, 157.5, 143.1, 134.7, 134.4, 133.8 (d, J = 5 Hz), 131.6 (d, J = 11 Hz), 130.5, 126.2, 123.6, 120.6, 118.2 (d, J = 26 Hz), 107.3, 107.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.13. HRMS (ESI): calcd for C₁₆H₉FNO ([M+H]⁺) 250.0668, found 250.0668.

2-Bromo-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3h** was

purified via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) as a yellow solid in 79% yield (49 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.92 (s, 1H), 7.83 – 7.80 (m, 2H), 7.75 – 7.62 (m, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.42 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 162.7, 157.8, 143.1, 134.8, 134.3, 132.8, 131.2, 130.6, 129.8, 129.2, 127.2, 125.7, 123.7, 120.7, 118.2. HRMS (ESI): calcd for C₁₆H₉BrNO ([M+H]⁺) 309.9868, found 309.9868, 311.9848.

3i 2-Chloro-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3i** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) as a yellow solid in 83% yield (43.9 mg). ¹H NMR (400 MHz, CD₂Cl₂) δ 9.25 (s, 1H), 8.69 (s, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 7.3 Hz, 1H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 193.0, 162.8, 157.9, 143.2, 140.0, 134.7, 134.3, 132.5, 130.5, 130.1, 128.5, 127.1, 123.4, 122.1, 120.6, 118.3. HRMS (ESI): calcd for C₁₆H₉ClNO ([M+H]⁺) 266.0373, found 266.0372.

2-(Trifluoromethyl)-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3**j

was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 73% yield (43 mg). ¹H NMR (400 MHz, CD₂Cl₂) δ 9.36 (s, 1H), 9.01 (s, 1H), 8.13 (d, *J* = 8.6 Hz, 1H), 7.78 (m, 2H), 7.67 (d, *J* = 7.3 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 192.8, 162.9, 158.2, 143.1, 134.9, 134.2, 134.1 (q, *J* = 32 Hz), 131.1, 130.7, 129.7, 129.4, 123.5 (q, *J* = 271 Hz), 123.6, 122.9 (q, *J* = 3 Hz), 120.9 (q, *J* = 5 Hz), 120.7, 119.5. HRMS (ESI): calcd for C₁₇H₉F₃NO ([M+H]⁺) 300.0636, found 300.0638.

3-Methyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3k** was purified

via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 78% yield (38 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 8.59 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.61 – 7.51 (m, 2H), 7.37 (t, J = 7.4 Hz, 1H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 161.3, 157.2, 143.7, 137.5, 135.6, 134.6, 134.4, 130.4, 129.9, 129.2, 127.2, 123.4, 123.0, 120.2, 119.5, 21.7. HRMS (ESI): calcd for C₁₇H₁₂NO ([M+H]⁺) 246.0919, found 246.0916.

3-Methoxy-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3** was

purified via silica gel column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) as a yellow solid in 83% yield (43.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 7.78 (d, *J* = 7.3 Hz, 1H), 7.63 (d, *J* = 7.2 Hz, 1H), 7.52 – 7.41 (m, 3H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 7.3 Hz, 1H), 4.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.3, 162.8, 158.0, 155.7, 142.8, 134.3, 134.1, 130.6, 130.3, 127.9, 125.5, 123.5, 121.1, 120.7, 119.9, 111.5, 55.8. HRMS (ESI): calcd for C₁₇H₁₂NO₂ ([M+H]⁺) 262.0868, found 262.0870.

1-Fluoro-11H-indeno[1,2-c]isoquinolin-11-one **3m** was purified via

silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 71% yield (35.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.26 (d, *J* = 1.6 Hz, 1H), 7.78 (d, *J* = 7.3 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.47 – 7.41 (m, 1H), 7.38 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 163.3, 158.2, 157.5 (d, *J* = 261 Hz), 142.7, 134.6, 133.8, 130.7, 130.5 (d, *J* = 7 Hz), 127.7 (d, *J* = 7 Hz), 124.9 (d, *J* = 4 Hz), 123.8, 122.3 (d, *J* = 21 Hz), 120.3, 118.9, 117.9 (d, *J* = 21 Hz). HRMS (ESI): calcd for C₁₆H₉FNO ([M+H]⁺) 250.0668, found 250.0668.

³ⁿ 4-Methyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3n** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 73% yield (35.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.55 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 7.3 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 6.9 Hz, 1H), 2.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 161.6, 154.6, 143.4, 136.3, 134.6, 134.5, 133.2, 132.7, 130.2,

128.3, 128.0, 123.5, 121.5, 120.3, 119.5, 18.7. HRMS (ESI): calcd for $C_{17}H_{12}NO$ ([M+H]⁺) 246.0919, found 246.0919.

³⁰ 4-Fluoro-11*H*-indeno[1,2-*c*]isoquinolin-11-one was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) afforded **30** as a yellow solid (40.3 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 8.46 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.16 – 7.06 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 162.8, 159.6 (d, J = 257 Hz), 151.9 (d, J = 5 Hz), 143.2, 134.8, 134.2, 133.9 (d, J = 8 Hz), 133.2, 130.6, 123.6, 120.7, 119.3 (d, J = 4 Hz), 118.7 (d, J = 2 Hz), 111.2 (d, J = 19 Hz), 105.0. HRMS (ESI): calcd for C₁₆H₉FNO ([M+H]⁺) 250.0668, found 250.0668.

4-Chloro-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3p** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 73% yield (38.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 8.69 (d, *J* = 8.3 Hz, 1H), 7.81 (d, *J* = 7.3 Hz, 1H), 7.67 – 7.63 (m, 2H), 7.58 – 7.49 (m, 2H), 7.37 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 162.8, 155.3, 143.1, 134.9, 134.5, 133.8, 133.5, 133.3, 130.6, 127.7, 126.1, 123.7, 122.4, 120.8, 119.0. HRMS (ESI): calcd for C₁₆H₉CINO ([M+H]⁺) 266.0373, found 266.0371.

^{3q} 2,3-Dimethyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3q** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 87% yield (45.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.33 (s, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.53 (s, 1H), 7.50 – 7.42 (m, 1H), 7.29 (t, J = 7.4 Hz, 1H), 2.39 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 161.3, 156.6, 144.7, 143.8, 137.6, 134.5, 134.5, 131.1, 129.9, 128.2, 127.6, 123.3, 122.6, 120.1, 118.8, 20.8, 20.2. HRMS (ESI): calcd for C₁₈H₁₄NO ([M+H]⁺) 260.1075, found 260.1079.

5-Methyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3r** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 30/1, v/v) as a yellow solid in 75% yield (36.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 8.2 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.88 – 7.75 (m, 2H), 7.68 (d, J = 7.0 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 3.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 166.1, 161.3, 143.6, 134.7, 134.3, 132.6, 132.3, 130.1, 127.4, 127.1, 126.4, 123.9, 123.3, 120.2, 118.2, 23.4. HRMS (ESI): calcd for C₁₇H₁₂NO ([M+H]⁺) 246.0919, found 246.0918.

³⁸ 5-Phenyl-11*H*-indeno[1,2-*c*]isoquinolin-11-one **3s** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) as a yellow solid in 78% yield (47.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.86 (d, *J* = 7.3 Hz, 1H), 7.78 – 7.74 (m, 3H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.59 – 7.57 (m, 3H), 7.53 – 7.42 (m, 2H), 7.35 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 166.7, 161.3, 143.5, 139.0, 134.8, 134.5, 133.5, 132.7, 130.2, 130.2, 129.5, 128.7, 128.4, 127.1, 126.9, 123.6, 123.4, 120.7, 118.4. HRMS (ESI): calcd for C₂₂H₁₄NO ([M+H]⁺) 308.1075, found 308.1075.

5a 79% Methyl 3-methylisoquinoline-4-carboxylate **5a** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 60/1, v/v) as a white solid in 79% yield (31.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.73 – 7.69 (m, 1H), 7.57 (t, J = 7.5 Hz, 1H), 4.05 (s, 3H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 153.4, 149.7, 133.2, 131.5, 127.9, 126.8, 126.4, 123.7, 122.9, 52.5, 23.0. HRMS (ESI): calcd for C₁₂H₁₂NO₂ ([M+H]⁺) 202.0868, found 202.0867.

5b Methyl 3-methyl-6-(trifluoromethyl)isoquinoline-4-carboxylate
5b was purified via silica gel column chromatography (petroleum ether/ethyl acetate =

60/1, v/v) as a white solid 70% yield (37.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 8.19 (s, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 1H), 4.08 (s, 3H), 2.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 153.5, 151.7, 132.9 (q, *J* = 33 Hz), 132.5, 129.1, 127.0, 123.6 (q, *J* = 271 Hz), 123.3, 122.6 (q, *J* = 3 Hz), 121.7 (q, *J* = 5 Hz), 52.7, 23.3. HRMS (ESI): calcd for C₁₃H₁₁F₃NO₂ ([M+H]⁺) 270.0740, found 270.0742.

^{5C} Methyl 3,7-dimethylisoquinoline-4-carboxylate **5c** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 60/1, v/v) as a white solid in 71% yield (30.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.72 (s, 1H), 7.55 (d, *J* = 8.6 Hz, 1H), 4.05 (s, 3H), 2.72 (s, 3H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 152.8, 148.8, 136.8, 133.7, 131.5, 126.6, 126.6, 123.5, 122.7, 52.4, 22.9, 21.5. HRMS (ESI): calcd for C₁₃H₁₄NO₂ ([M+H]⁺) 216.1025 found 216.1027.

Methyl 8-chloro-3-methylisoquinoline-4-carboxylate **5d** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 60/1, v/v) as a white solid in 61% yield (28.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.92 – 7.65 (m, 1H), 7.67 – 7.44 (m, 2H), 4.06 (s, 3H), 2.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 150.6, 150.3, 149.7, 134.7, 132.9, 131.3, 127.2, 123.5, 122.8, 52.6, 23.0. HRMS (ESI): calcd for C₁₂H₁₁ClNO₂ ([M+H]⁺) 236.0478, found 236.0478.

Ethyl 3-methylisoquinoline-4-carboxylate **5e** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 60/1, v/v) as a white solid in 73% yield (31.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 4.54 (q, J = 7.1 Hz, 2H), 2.74 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 153.3, 149.5, 133.2, 131.4, 127.9, 126.8, 126.4, 123.6, 123.2, 61.6, 22.9, 14.3. HRMS (ESI): calcd for C₁₃H₁₄NO₂ ([M+H]⁺) 216.1025, found 216.1025.

⁵⁷ Benzyl 3-methylisoquinoline-4-carboxylate **5f** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) as a white solid

in 51% yield (29.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 1H), 7.67 (d, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.45 – 7.34 (m, 3H), 5.52 (s, 2H), 2.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 153.5, 149.6, 135.2, 133.2, 131.5, 128.7, 128.7, 128.6, 127.9, 126.8, 126.4, 123.6, 122.8, 67.5, 23.0. HRMS (ESI): calcd for C₁₈H₁₆NO₂ ([M+H]⁺) 278.1181, found 278.1183.

^{5g} *tert*-Butyl 3-methylisoquinoline-4-carboxylate **5g** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) as a white solid in 63% yield (30.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 2.74 (s, 3H), 1.69 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 152.7, 148.5, 133.0, 131.1, 127.7, 126.6, 126.4, 124.5, 123.4, 82.8, 28.2, 22.6. HRMS (ESI): calcd for C₁₅H₁₈NO₂ ([M+H]⁺) 244.1338, found 244.1339.

⁵ⁿ 3,3-Dimethyl-3,4-dihydrophenanthridin-1(2H)-one **5h** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) as a white solid in 63% yield (30.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.39 (d, *J* = 8.7 Hz, 1H), 9.28 (s, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.82 (t, *J* = 7.8 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 3.22 (s, 2H), 2.65 (s, 2H), 1.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 159.6, 157.3, 133.5, 133.2, 128.2, 127.7, 127.1, 125.7, 119.7, 54.1, 47.7, 32.8, 28.1. HRMS (ESI): calcd for C₁₅H₁₆NO ([M+H]⁺) 226.1232, found 226.1235.

⁶ *11*H-Indeno[1,2-*c*]isoquinoline **6** was purified via silica gel column chromatography (petroleum ether/ethyl acetate = 50/1, v/v) as a white solid in 92% yield (40.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.11 (d, *J* = 7.5 Hz, 1H), 8.00 – 7.89 (m, 1H), 7.84 (dd, *J* = 8.2, 4.5 Hz, 1H), 7.72 – 7.61 (m, 1H), 7.57 – 7.55 (m, 1H), 7.52 – 7.42 (m, 2H), 7.36 (td, *J* = 7.4, 1.2 Hz, 1H), 4.02 – 3.93 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 152.5, 142.8, 142.0, 133.5, 131.1, 130.7, 128.8, 127.5, 127.5, 127.2, 126.2, 124.9, 123.1, 120.2, 33.1. HRMS (ESI): calcd for C₁₆H₁₂N ([M+H]⁺) 218.0970, found 218.0973.

Copies of ¹H NMR and ¹³C NMR Spectra

- 193. 14 - 162. 78 - 157. 88 - 157. 88 - 157. 88 - 139. 69 - 139. 23 - 139. 24 - 139. 25 - 139.

- 193. 02 - 162. 81 - 157. 89 - 157. 89 - 157. 89 - 157. 89 - 157. 89 - 157. 89 - 157. 89 - 127. 94 - 128. 94

132 1 1 1 1 132 1</t

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

