Molecular engineering of thiostrepton via single "base"-based mutagenesis to generate side ring-derived variants

Panpan Duan^a, Qingfei Zheng^a, Zhi Lin^a, Shoufeng Wang^a, Dandan Chen^b, Wen Liu^{a,b,*}

^aState Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. ^bHuzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.

* To whom correspondence should be addressed: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., Shanghai 200032, China. Wen Liu, Email: wliu@mail.sioc.ac.cn, Tel: 86-21-54925111, Fax: 86-21-64166128.

Table of contents

1. Supplementary Methods	3
1.1. General materials and methods	3
1.2. Mutant construction	4
1.3. Chemical purification and characterization	4
1.4. Physical Property and Bioactivity of Tested Thiopeptides	4
1.5. Preparation of <i>M. marinum</i> Single Cells for Infection	5
1.6. Detection of Biomarkers Involved in ER Stress-Mediated Autophagy Pathways	5
2. Supplemental Results	6
Fig. S1. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Leu	6
Fig. S2. 1D and 2D NMR spectra of TSR-Ile1Leu	8
Table S1. ¹ H and ¹³ C NMR assignments of TSR-Ile1Leu (δ in ppm, J in Hz)	.14
Fig. S3. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Ala	.16
Fig. S4. 1D and 2D NMR spectra of TSR-Ile1Ala	.18
Table S2. ¹ H and ¹³ C NMR assignments of TSR-Ile1Ala (δ in ppm, J in Hz)	.23
Fig. S5. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Met	.26
Fig. S6. 1D and 2D NMR spectra of TSR-Ile1Met	.28
Table S3. ¹ H and ¹³ C NMR assignments of TSR-Ile1Met (δ in ppm, J in Hz)	.33
Fig. S7. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Phe	.36
Fig. S8. 1D and 2D NMR spectra of TSR-Ile1Phe	.38
Table S4. ¹ H and ¹³ C NMR assignments of TSR-Ile1Phe (δ in ppm, J in Hz)	.43
Fig. S9. HPLC-MS analysis, Ultraviolet absorption patterns and structures of SIO-Dha2	Ser
and SIO	.45
Fig. S10. 1D and 2D NMR spectra of SIO-Dha2Ser	.47
Table S5. ¹ H and ¹³ C NMR assignments of SIO-Dha2Ser (δ in ppm, J in Hz)	.52
Fig. S11. 1D and 2D NMR spectra of SIO	.55
Table S6. ¹ H and ¹³ C NMR assignments of SIO (δ in ppm, J in Hz)	.60
Fig. S12. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Pro	.62
Fig. S13. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Trp	.63
Table S7. MALDI High Resolution MS DATA of TSR analogs	.64
Table S8. Strains and plasmids used in this study	.64
Table S9. Primers used in this study	.66
Table S10. Aqueous solubilities of thiostrepton analogues	.67

1. Supplementary Methods

1.1. General materials and methods

Bacterial strains, plasmids, and reagents. The bacterial strains and plasmids used in this study are summarized in Table S6. The primer sequences are listed in Table S7. The biochemicals, chemicals, media, restriction enzymes, and other molecular biological reagents were purchased from standard commercial sources unless otherwise stated.

DNA isolation, manipulation, and sequencing. DNA isolation and manipulation in *Escherichia coli* and *streptomyces* were performed according to standard protocols.^{1,2} PCR amplifications were carried out on an Authorized Thermal TM Cycler (AG 22331; Eppendorf, Hamburg, Germany) using PrimeStar HS DNA polymerase (TaKaRa). Primer synthesis and DNA sequencing were performed at Shanghai GeneCore Biotechnology Inc. .

Sequence Analysis. Protein comparison was carried out by available BLAST methods (<u>http://www.ncbi.nlm.nih.gov/blast/</u>). Amino acid sequence alignment was performed by the CLUSTALW method, and the DRAWTREE and DRAWGRAM methods, respectively, from BIOLOGYWORKBENCH 3.2 software (<u>http://workbench.sdsc.edu</u>). DNA hairpin was determined by using the programs from Vector NTI Advance 11. 0 software (Invitrogen).

Compound Analysis. High performance liquid chromatography (HPLC) analysis was carried out on an AgilentTM 1200 HPLC system (Agilent Technologies Inc., USA). Measurement of UV-visible absorbance was carried out on a JASCO V-530 spectrophotometer (Tokyo, Japan). Electrospray ionization MS (ESI-MS) was performed on a Thermo Fisher LTQ Fleet ESI-MS S4 spectrometer (Thermo Fisher Scientific Inc., USA). NMR data were recorded on Bruker AV500 (Bruker Co. Ltd., Germany) with tetramethylsilane (TMS) as an internal standard. Chemical shifts were reported in parts per million (δ); coupling constants (*J*) in Hz; assignments were supported by COSY, HSQC, HMBC, and NOESY experiments. Electrospray ionization MS (ESIMS) was performed on a Thermo Fisher LTQ Fleet ESIMS spectrometer (Thermo Fisher Scientific Inc. , USA).

1.2. Mutant construction

Construction of SL-I1X (producing the precursor peptide TsrH-Ile1X). Using the recombinant plasmid pSL2050³ as the template, PCR amplification with the primers I1X-F/I1X-R was carried out for site-specific mutation of ATC (coding for Ile1 of the precursor peptide TsrH) into NNS(coding for X1), yielding the recombinant plasmid pSL-I1X. Site-specific integration of pSL-I1X onto the chromosome of the thiostrepton non-producing strain SL2051³ took place after the introduction via *E.coli-Streptomyces* conjugation, yielding the recombinant strain SL-I1X for producing the precursor peptide TsrH-I1X.

1.3. Chemical purification and characterization

Cultivation, production and analysis of thiostrepton variants were performed according to the methods described previously.^{4,5} Isolation and purification of the thiostrepton variants were performed according to the methods described previously.³

1.4. Physical Property and Bioactivity of Tested Thiopeptides

Water solubility. The solubility was measured according to a saturation shake-flask method described previously.⁴To determine the solubility of **TSR**, **SIO**, **SIO-Dha2Ser**, **TSR-Ile1Phe**, **TSR-Ile1Leu**, **TSR-Ile11Met**, or **TSR-Ile11Ala**, an excess amount of solid was added into 1 mL of water in a vial. The vial was gently stirred over a 24-hour period at the room temperature to ensure the equilibrium of the solution. A 0.22 µm centrifugal filter unit (Millipore Utrafree-MC, USA) was used for filtration to remove the excess solid. The saturated solution was then subjected to HPLC analysis to determine the concentration of the sample based on the established calibration curve.

To establish the calibration curve, a set of the solutions for TSR, SIO, SIO-Dha2Ser,

TSR-IIe1Phe, TSR-IIe1Leu, TSR-IIe11Met, or TSR-IIe11Ala varying in concentration were analyzed independently by HPLC. The peak areas correlated with the concentrations were fitted to a regression equation, resulting in a linear standard curve for estimating the concentration. *Minimum Inhibitory Concentrations (MICs).* The MICs were measured by broth dilution using a

modified method described previously.⁶ Each tested compound was dissolved in DMSO to produce a stock solution (100 µg/ml), which was serially diluted into 100 µL of Mueller-Hinton broth (Qingdao Hope Bio-Technology Co. Ltd., China) in a 96-well microtiter plate to a final concentration ranging from 1 to 0 µg/ml. Given the poor solubility of **TSR**, **SIO**, **SIO**-**Dha2Ser**, **TSR-Ile1Phe**, **TSR-Ile1Leu**, **TSR-Ile11Met**, or **TSR-Ile11Ala** in the aqueous medium, 2% DMSO (v/v) was added into the broth. 100 µL of the testing strain (10^7 - 10^8 cfu/ml, calculated according to the 0.5 McFarland standard ⁷) was then added into each well of the microtiter plate. After incubation at 37 °C for 18-24 hr(for *Mycobacterium. marinum*, the incubation was 7 days), The MIC was determined to be the lowest concentration of compound that inhibited visible bacterial growth. All testings were carried out in duplicate.

1.5. Preparation of M. marinum Single Cells for Infection

The *M. marinum* M strain (ATCC BAA-535), in which the GFPmut3 protein is constitutively expressed, was incubated in 7H9C medium at 32 °C for 5 to 7 d until the OD₆₀₀ reached 0.5 to 1.0. The pellet was re-suspended in 7H9OADC medium, sheared by passage through a syringe several times, and then filtered to remove bacterial aggregates. The prepared single cells were diluted in 7H9OADC medium to the final CFU of 2×10^8 .

1.6. Detection of Biomarkers Involved in ER Stress-Mediated Autophagy Pathways

The murine macrophage cell line RAW 264.7 (ATCC TIB-71) was maintained at 37 $^{\circ}$ C with 5% CO2 in DMEM supplemented with 10% fetal bovine serum and 10 mM HEPES. The cells, plated in 12-well plates (2 ×10⁵ cells per well), were infected with 2 3 106 cells of *M. marinum* for 2 hr at 32 $^{\circ}$ C. After treatment with 1 mM of each drug, the cells were maintained at 32 $^{\circ}$ C for 2 hr and then lysed in mammalian cell total protein lysis buffer containing 1% PMSF. After 5× protein loading buffer was added, the lysate was separated by 15% SDS-PAGE and transferred onto a PVDF membrane (Millipore) under a voltage of 100 V for 90 min. The primary antibodies used in this study included anti-phosphoPERK (Cell Signaling Technology, 1:500), anti-phospho-eIF2a (Cell Signaling Technology, 1:200), anti-LC3 (Sigma, 1:1,000), anti-IRE1 (Cell Signaling Technology, 1:500), and anti-ATF6 (Gene Tex, 1:500). The immunoreactive bands were visualized

by using a chemiluminescent detection reagent after incubation with the HRP-conjugated secondary antibody (Cell Signaling Technology, 1:5,000).

2. Supplemental Results

Fig. S1. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Leu

(A) Chromatogram extracted for m/z 832.7, the calculated $[M+2H]^{2+}$ ion of TSR-Ile1Leu.

(B) Ultraviolet absorption pattern of TSR-Ile1Leu

(C) Structure of TSR-Ile1Leu

Fig. S2. 1D and 2D NMR spectra of TSR-Ile1Leu

(A) ¹H spectrum of TSR-Ile1Leu

(B) ¹³C NMR spectrum of TSR-Ile1Leu

(C) COSY spectrum of TSR-Ile1Leu

Assigment	$\delta_{\rm H}$	δ_{C}	HMBC	COSY
Leu1-1		175.7		
Leu1-2	3.11 m	60.3	Leu1-3	Leu1-3-H _a ; Leu1-3-H _b
Leu1-3	H _a 1.61 m	44.2		Leu1-2; Leu1-3-H _b ; Leu1-4
	H _b 1.32 m			Leu1-2; Leu1-3-H _a ; Leu1-4
Leu1-4	1.80 m	25.6		Leu1-3- H_a ; Leu1-3- H_b ;
				Leu1-5: Leu1-6
Leu1-5	1.03 d (6.52)	22.0	Leu1-3; Leu1-4	Leu1-4
Leu1-6	1.00 d (6.60)	23.7	Leu1-3: Leu1-4	Leu1-4
Ala2-1	× ,	169.5	,	
Ala2-2	3.81 m	50.0	Leu1-1: Ala2-1: Ala2-3	Ala2-3
Ala2-3	1.18 d (6.73)	19.4	Ala2-1: Ala2-2	Ala2-2
Ala2-NH	7.61 bs	-,		
Dha3-1	1101 00	163.5		
Dha3-2		132.8		
Dha3-3	H. 5 85 bs [.]	103.8	Dha3-1. Dha3-2	Dha3-3-H
Dilus 5	$H_{1} = 5.05 \text{ bs},$ $H_{1} = 5.36 \text{ bs}$	105.0	Dha3-1: Dha3-2	Dha3-3-H
Dha3-NH	110 5.50 05		Dhus 1, Dhus 2	
Ala4-1		174.0		
Ala4-2	4 76 m	52.8	Ala4-1: Dha3-1	Ala4-3: Ala4-NH
Ala4-3	1 46 d (6 52)	19.8	Ala $4-1$: Ala $4-2$	Ala4-2
Ala4-NH	7 14 d (7 94)	17.0	Dha3-1	Ala4-2
Pin5-1	5 32 s	64 9	Pin5-2: Pin5-5:	Thu 12
1100 1	5.52 6	01.7	Thz13-1. Thz13-2.	
			Thz 13 1, Thz 13 2, Thz $14-4$	
Pin5-2		162.6		
Pin5-3	H 294 m	24.5		Pin5-4- H · Pin5-4- H.
1 105 5	$H_a 2.94 \text{ m}$ $H_1 3.47 \text{ m}$	27.5		Pin5-4-H
Pin5-4	$H_{0} 3.47 \text{ m}$	29.8	Pin5-3: Pin5-1	$Pin5-3-H \cdot Pin5-3-H \cdot$
1 100 4	(12.64)	27.0	Pin5_3: Pin5_5: Pin5_1:	Pin5-4-H:
	(12.04) H. 4.10 m		Pin5_2: Thz6_4	$Pin5_3 H : Pin5_4 H$
Pin5-NH	9.90 hs		1 ip5 2, 1 ii20 4	11p3 5 11 _a , 11p5 4 11 _a
Pin5-5	7.70 05	583		
Thz6-1		162 /		
Thz_{0-1} Thz_6_2		102.4 1/7.0		
Thz6-3	8 18 c	147.0	Th_{76-1} · Th_{76-2} ·	
11120-5	0.10 5	125.0	Thzo-1, Thzo-2, Thz6 Λ	
Thz6-4		170 5	11120-4	
Thz_{-1}		1663		
Thr $7-7$	1.11 m	100.J	$Thr7_1 \cdot Thr7_3$	Thr7-3. Thr7-NH.
Thr $7-2$	4.44 III 1.51 m	50.0 67.3	1 m /-1, 1 m /-3	The $7-3$, The $7-1011$, The $7-2$. The $7-4$
Thr 7.4	1.31 m 0.87 d (6.02)	10.8	Thr7 2. Thr7 3	Thr $7 - 2$, Thr $7 - 4$
T III 7 - 4 Thr7 NU	0.87 d (0.02)	19.0	The $7-2$, The $7-3$	The $7-3$
$\frac{1117}{111}$	7.08 u (7.57)	120.1	11120-1, 11117-1	11117-5
D1100-1 Dhb8 2	$6.24 \circ (6.80)$	129.1	Dhh 1. Dhh 2.	Dhbg 2
D1108-2	0.24 q (0.80)	155.4	DII00-1, $DII00-3$, The 7 1, Tag 0.4	D1108-3
Dhh9 2	1614(690)	16.0	11117-1, 12119-4	Dhhe 2
2-00110	1.04 U (0.80)	10.0	$D_{1100-1}, D_{1100-2};$	D1100-2
DHP6 MIT	8 60 ha		1 2117-4	
DIIU0-INH Tap 0.1	0.09 08	172 0		
12119-1 Tap 0.2	5 00 m	172.0	T_{2} Tap 0.2	T_{an} (2) $U \cdot T_{an}$ (2) U
12119-2	5.00 III	17.1	12119-1, 12119-3;	$12119-5-\Pi_a$, $12119-5-\Pi_b$
			1 2117-4	

Table S1. ¹H and ¹³C NMR assignments of TSR-Ile1Leu (δ in ppm, J in Hz)

Assigment	$\delta_{\rm H}$	$\boldsymbol{\delta}_C$	HMBC	COSY
Tzn9-3	H _a 3.19 m H _b 3.66 m	35.6	Tzn9-1; Tzn9-2; Tzn9-4	Tzn9-2; Tzn9-3- H _b Tzn9-2; Tzn9-3- H _a
Tzn9-4 Ile10-1	5.77 d (10.00)	170.9 53.6	Ile10-2; Tzn9-1; Thz11-4	Ile10-NH
Ile10-2 Ile10-3	3.83 m	77.8 68.3	Ile10-1; Ile10-2; Ile10-4	Ile10-4
Ile10-4 Ile10-5	1.33 d (6.38) 1.18 s	16.6 18.9	Ile10-2; Ile10-3 Ile10-1; Ile10-2; Ile10-3	Ile10-3
Ile10-NH	7.60 bs		ne10-5	Ile10-1
Thz11-1		162.7		
Thz11-2 Thz11-3	8.31 s	150.8 126.3	Thz11-1; Thz11-2; Thz11-4	
Thz11-4		167 1	111211-4	
Thr12-1	5.80 s	56.5	Thz11-1: Thz13-3	
Thr12-2	6.39 m	72.6	Thr12-1; Thz13-3; Q-1	Thr12-3
Thr12-3	1.75 d (6.55)	19.5	Thr12-1; Thr12-2	Thr12-2
Thr12-NH	8.82 m			
Thz13-1		157.8		
Thz13-2	7.58 s	118.9	Thz13-1; Thz13-3; Pip5-1	
Thz13-3		170.8		
Thz14-1		160.3		
1 nz 14-2 Thz 14-3	8 32 s	130.0	That $A \rightarrow That A$	
Thz14- 3	0.52.8	169.0	111214-2, 111214-4	
Dha15-1		162.7		
Dha15-2		134.8		
Dha15-3	H _a 6.72 d (2.23)	104.0	Dha15-1; Dha15-2	Dha15-3- H _b
	H _b 5.64 d (2.20)		Dha15-1; Dha15-2	Dha15-3- H _a
Dha15-NH	10.00 bs			
Dha16-1		166.8		
Dha16-2 Dha16-3	$H_a 6.55 d$	133.4 105.1	Dha16-1; Dha16-2	Dha16-3- H _b
	$H_b 5.70 d$ (1.72)		Dha16-1; Dha16-2	Dha16-3- H _a
Q-1		161.4		
Q-2		144.4		
Q-3 Q-4	7.33 s	123.1 154.4	Q-1; Q-10; Q-11	
Q-5	6.90 d (10.09)	123.9	Q-7; Q-9; Q-10	Q-6
Q-6	6.39 m	130.8	Q-7; Q-8; Q-10	Q-5; Q-7
Q-7	3.69 m	59.3	Q-5; Q-6; Q-8; Q-9;	Q-6; Q-8
Q-8 Q-9 Q-10	4.45 m	68.2 155.1 127.9	Leu1-2 Q-6; Q-7; Q-9; Q-10	Q-7
0-11	5 35 m	127.9 65 1	0-3.0-12	0-12
Q-12	1.39 d (6.54)	23.3	Q-4; Q-11	Q-11
×			- / -	

Fig. S3. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Ala

(A) Chromatogram extracted for m/z 811.7, the calculated $[M+2H]^{2+}$ ion of TSR-Ile1Ala.

(B) Ultraviolet absorption pattern of TSR-Ile1Ala

(C)Structure of TSR-Ile1Ala

Fig. S4. 1D and 2D NMR spectra of TSR-Ile1Ala

(A)¹H spectrum of TSR-Ile1Ala

1.40 0.00 SINE MHz Ηz

MHZ ZHM ters

ters

Assigment	$\delta_{\rm H}$	$\delta_{\rm C}$	HMBC	COSY
Ala1-1		176.2		
Ala1-2	3.15 m	57.8	Ala1-3; Q-7	Ala1-3
Ala1-3	1.36 d (7.10)	20.9	Ala1-1; Ala1-2	Ala1-2
Ala2-1	. ,	169.7		
Ala2-2	3.83 m	50.0	Ala2-1; Ala2-3	Ala2-3
Ala2-3	1.19 d (6.70)	19.4	Ala2-1: Ala2-2	Ala2-2
Ala2-NH	7.63 s		· · · · · ·	
Dha3-1		163.5		
Dha3-2		132.7		
Dha3-3	H. 5 87 d	103.7	Dha3-1. Dha3-2	
Dilus 5	(1.80)	105.7	Dhus 1, Dhus 2	
	(1.00), H ₁ 5 38 d		Dha3-1. Dha3-2	
	(1.70)		Dhu5 1, Dhu5 2	
Dha3_NH	(1.70)			
$\Delta l_{a} l_{-1}$		17/1		
$\Delta \ln 4 - 1$	177 a (6.60)	52.5	$Dha3_1\cdot Ala4 \cdot Ala4 \cdot$	A19/1-3
$A \ln 4 = 2$	+.// q (0.00)	J2.J 10 4	Λ_{10}^{-1} , Λ_{1	$A \ln A 2$
Ala4-5	1.43 d (0.00)	19.4	Ala4-1, Ala4-2	Ala4-2
Alia4-INH Din5 1	5 25 0	610	Tha12 1. Tha12 2.	
гирэ-1	5.25 8	04.9	1 IIZ1 5-1; 1 IIZ1 5-2; Din 5-2	
D:5 0		162.0	r1p5-2	
P1p5-2	11.2.00	162.9		
P1p5-3	$H_a 2.98 \text{ m}$	25.7		Pip5-3- H_b ; Pip5-4- H_a ;
	H _b 3.48 m		P1p5-2;	$P_{1}p_{5}-4-H_{b}$
D . d	TT 0 0 4	a a a		P1p5-3-H _a ; P1p5-4-H _a
P1p5-4	$H_a 2.34 m$	30.3	P1p5-3	$P_{1}p_{5}-3-H_{a}; P_{1}p_{5}-3-H_{b};$
	H _b 4.10 m		Pip5-1; Pip5-2; Pip5-3;	Pip5-4-H _b
			Pip5-5; Thz6-4;	Pip5-3-H _a ; Pip5-4-H _a
			Thz13-1; Thz14-4	
Pip5-5		58.3		
Pip5-NH	9.89 s		Ala4-1	
Thz6-1		162.6		
Thz6-2		147.1		
Thz6-3	8.21 s	125.8	Thz6-1; Thz6-2;	
			Thz6-4	
Thz6-4		170.7		
Thr7-1		166.3		
Thr7-2	4.44 m	56.6	Thr7-1	Thr7-3; Thr7-NH
Thr7-3	1.63 m	67.2		Thr7-2; Thr7-4
Thr7-4	0.84 d (6.10)	19.6	Thr7-2; Thr7-3	Thr7-3
Thr7-NH	7.15 d (7.30)		Thz6-1; Thr7-1	Thr7-2
Dhb8-1		129.3		
Dhb8-2	6.26 q (7.00)	133.6	Dhb8-1; Dhb8-3;	Dhb8-3
	1 ()		Tzn9-4	
Dhb8-3	1.64 d (7.00)	16.0	Dhb8-1: Dhb8-2:	Dhb8-2
0	, (<i></i>)	10.0	Tzn9-4	
Dhb8-NH	8 69 s		Dhb8-2	
$T_{7n}Q_1$	0.07 8	172.6	D1100-2	
$T_{7n}0_{2}$	5 01 dd	707	$Dhh_{1} T_{7} 0 1$	Т7n0-3-Ц · Т7n0 2 Ц
1 2117-2	(0.25, 12, 65)	17.1	$T_{7n}Q_{-3}$, $T_{2n}Q_{-1}$	$12119-3-11_a, 12119-3-\Pi_t$
$T_{2n}0$ 2	(3.23,12.03) H 2 21 +	25 6	12117-3, $12117-4Tan0 1. Tan0 2$	Тар0 2. Тар0 2 Ц
1 2117-3	(12.05)	55.0	12117-1, 12117-2	1 лия-2, 1 лия-3-п _b
	(12.03)		T0 2	T0 2. T- 0 2 H
	$H_{1} \rightarrow h/m$		17119-7	1719_/ 1719_3_H

Table S2. ¹H and ¹³C NMR assignments of TSR-Ile1Ala (δ in ppm, J in Hz)

Assigment	δ_{H}	$\boldsymbol{\delta}_C$	HMBC	COSY
Tzn9-4		170.7		
Ile10-1	5.79 s	53.7	Tzn9-1; Ile10-2; Thz11-4	Ile10-NH
Ile10-2		77.8		
Ile10-3	3.85 m	68.4	Ile10-1; Ile10-2;	Ile10-4
Ile10_4	1 33 4 (6 40)	16.8	IIe10-4; IIe10-5 IIe10-2; IIe10-3	IIe10-3
Ile10-5	1.18 s	10.0	Ile10-1: Ile10-2:	1010-5
		1771	Ile10-3	
Ile10-NH	7.63 s			Ile10-1
Thz11-1		162.8		
Thz11-2		150.6		
Thz11-3	8.32 s	126.5	Thz11-1; Thz11-2;	
Thall 4		167.2	Thz11-4	
THZ11-4	5.01	107.5		
1hr12-1	5.81 s	56.4	Thr12-3; Thz11-1; Thz12 1: Thz12 2	Inr12-NH
Thr12-2	6.38 m	72.8	Thr12-3; Thr13-3; Q-1	Thr12-3
Thr12-3	1.74 d (6.55)	19.8	Thr12-1; Thr12-2;	Thr12-2
Thr12_NH	8 85 d (8 60)		1hz13-3	$Thr 12_1$
The $12 - 1$	0.05 û (0.00)	150 1		111112-1
THZ15-1	7 (0)	130.1		
Thz13-2	/.60 s	119.3	Thz13-1; Thz13-3; Pip5-1	
Thz13-3		171.0		
Thz14-1		160.5		
Thz14-2		150.8		
Thz14-3	8.33 s	128.5	Thz14-1; Thz14-2; Thz14-4	
Thz14-4		169.1		
Dha15-1		162.8		
Dha15-2		135.0		
Dha15-3	H _a 6.71 d	104.2	Dha15-1; Dha15-2	Dha15-3- H _b
	(2.15),		DI 15 1 DI 15 2	DI 15 2 U
	H_b 5.64 d		Dna15-1; Dna15-2	Dha15-3- H _b
Dha15-N	10.02s			
Н				
Dha16-1		167.0		
Dha16-2		133.8		
Dha16-3	$H_a 6.54 d$	106.4	Dha16-1; Dha16-2	Dha16-3- H _b
	(1.55), H. 5.73 d		Dha16-1. Dha16-2	Dha16-3- H
	(1.50)		Dhuio I, Dhuio 2	Diario 5 ma
Q-1	. /	161.5		
Q-2		144.4		
Q-3	7.34 s	123.1	Q-1; Q-10; Q-11	
Q-4 Q-5	$6.00 \pm (0.05)$	154.5 123 7	0_{-7} , 0_{-9} , 0_{-10}	0-6
Q-6	6.40 m	131.2	Q^{-7}, Q^{-9}, Q^{-10} 0-7: 0-8: 0-10	0-5: 0-7
Q-7	3.74 m	58.9	Q-5; Q-6; Q-8; Q-9;	Q-6; Q-8
-			Ala1-2	-
Q-8	4.41 s	68.3	Q-6; Q-7; Q-9; Q-10	Q-7

Assigment	$\delta_{\rm H}$	$\boldsymbol{\delta}_C$	HMBC	COSY
Q-9		155.4		
Q-10		128.1		
Q-11	5.34 m	65.3	Q-3; Q-10; Q-12	Q-12
Q-12	1.40 d (6.57)	23.4	Q-4; Q-11	Q-11

Fig. S5. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Met

(A)Chromatogram extracted for m/z 842.3, the calculated $[M+2H]^{2+}$ ion of TSR-Ile1Met.

(B) Ultraviolet absorption pattern of TSR-Ile1Met

(C) structure of TSR-Ile1Met

Fig. S6. 1D and 2D NMR spectra of TSR-Ile1Met

(A)¹H spectrum of TSR-Ile1Met

Assigment	δ_{H}	δ_{C}	HMBC	COSY
Met1-1		175.0		
Met1-2	3.29 m	60.6		Met1-3- H _a
Met1-3	H _a 1.72 m	33.5	Met1-2	Met1-2; Met1-3-H _b ;
	$H_{\rm h}^{\rm u}$ 2.13 m			Met1-4- H _a
	0			Met1-2; Met1-3-H _a ;
				Met1-4- H _a
Met1-4	H ₃ 2.63 m	31.3	Met1-2: Met1-3:	Met1-3-H _a : Met1-3-H _b :
	H _b 2.71 m		Met1-5	Met1-4- H_b
	0		Met1-2: Met1-5	Met1-4- H ₂
Met1-5	2.15 s	15.6	Met1-4	u u
Ala2-1		169.9		
Ala2-2	3.84 m	50.1	Ala2-1; Ala2-3	Ala2-3
Ala2-3	1.20 d (6.84)	19.6	Ala2-1: Ala2-2	Ala2-2
Ala2-NH	7.63 bs			
Dha3-1		163.5		
Dha3-2		133.0		
Dha3-3	H ₂ 5.86 s	104.1	Dha3-1: Dha3-2	Dha3-3- H _b
	H _b 5.39 s	2	Dha3-1; Dha3-2	Dha3-3- H _b
Dha3-NH	0~		,	
Ala4-1		174.2		
Ala4-2	4.76 g (6.42)	52.5	Ala4-1; Ala4-3;	
	1 ()	-	Dha3-1	
Ala4-3	1.45 d (6.56)	19.5	Ala4-1; Ala4-2	
Ala4-NH	× /			
Pip5-1	5.35 m	65.1	Pip5-2; Pip5-5;	
L			Thz13-1; Thz13-2;	
			Thz14-4	
Pip5-2		162.8		
Pip5-3	H _a 2.95 m	25.4		Pip5-4-H _a ; Pip5-4-H _b
1	H _b 3.48 m			Pip5-4-Ha
Pip5-4	H_{a}^{2} .32 m	29.7	Pip5-1; Pip5-3; Ala4-1	Pip5-3-H _a ; Pip5-3-H _b ;
•	H _b 4.10 m		Pip5-1; Pip5-2; Pip5-3;	Pip5-4-H _b
	5		Pip5-5; Thz6-4	Pip5-3-H _a ; Pip5-4-H _a
Pip5-5		58.5	• ·	. . .
Pip5-NH				
Thz6-1		162.6		
Thz6-2		147.1		
Thz6-3	8.20 s	125.8	Thz6-2; Thz6-4	
Thz6-4		170.7		
Thr7-1		166.4		
Thr7-2	4.44 m	56.7	Thr7-1; Thr7-3	Thr7-3; Thr7-NH
Thr7-3	1.61 m	67.3		Thr7-2; Thr7-4
Thr7-4	0.85 d (6.25)	19.7	Thr7-2; Thr7-3	Thr7-3
Thr7-NH	7.13 d (7.84)		·	Thr7-2
Dhb8-1	× /	129.2		
Dhb8-2	6.26 q (6.88)	133.8	Dhb8-1; Dhb8-3;	Dhb8-3
	• ` '		Tzn9-4	
Dhb8-3	1.64 d (7.04)	16.1	Dhb8-1; Dhb8-2;	Dhb8-2
	× /		Tzn9-4	
Dhb8-NH	8.69 s			
$T_{7n}Q_{-1}$		172.8		

Table S3. ¹H and ¹³C NMR assignments of TSR-IIe1Met (δ in ppm, J in Hz)

Assigment	δ_{H}	δ_{C}	HMBC	COSY
Tzn9-2	5.01 dd (9.08.12.69)	79.8	Tzn9-1; Tzn9-3; Tzn9-4	Tzn9-3-H _a ; Tzn9-3-H _b
Tzn9-3	$H_a 3.20 \text{ m}$ $H_b 3.67 \text{ m}$	35.6	Tzn9-1; Tzn9-4 Tzn9-2: Tzn9-4	Tzn9-2; Tzn9-3-H _b Tzn9-2: Tzn9-3-H _a
Tzn9-4		171.0		12, 12, 0 11 _a
Ile10-1	5.78 s	53.8	Tzn9-1; Thz11-4	Ile10-NH
Ile10-2		78.1		
Ile10-3	3.84 m	68.6	Ile10-1; Ile10-2; Ile10-4; Ile10-5	
Ile10-4	1.33 d (6.25)	17.0	Ile10-2; Ile10-3	
Ile10-5	1.19 s	19.4	Ile10-1; Ile10-2; Ile10-3	
Ile10-NH	7.61 m			Ile10-1
Thz11-1		163.0		
Thz11-2	0.21	150.8	TTI 11 1 TTI 11 0	
Thz11-3	8.31 s	126.5	Thz11-1; Thz11-2; Thz11-4	
Thz11-4	5.90	167.3	TTI 11 1 TTI 10 1	TI 10 NU
1 nr12-1	5.80 m	36.3	Thz11-1; Thz13-1; Thz13-3	Inr12-NH
Thr12-2	6.36 m	72.8	Thr12-3; Q-1	
Thr12-3	1./4 d (6.58)	19.5	Thr12-1; Thr12-2; Thr13-3	
Thr12-NH	8 84 d (8 86)		111213-3	Thr12-1
Thz13-1	0.01 4 (0.00)	158.1		
Thz13-2	7.60 s	119.2	Thz13-1; Thz13-3; Pip5-1	
Thz13-3		170.9	1.100.1	
Thz14-1		160.6		
Thz14-2		150.7		
Thz14-3	8.32 s	128.6	Thz14-2; Thz14-4	
Thz14-4		169.0		
Dha15-1		163.0		
Dha13-2		155.0		
Dha15-3	H _a 6.71 bs H _b 5.64 bs	104.1	Dha15-1; Dha15-2 Dha15-1	Dha15-3- H _b Dha15-3- H _a
Dha15-N	10.02 s			
H Dha16-1		167.0		
Dha16-2		133.9		
Dha16-3	$H_a 6.53 d$	106.4	Dha16-1; Dha16-2	Dha16-3- H _b
	(1.74) H _b 5.72 d		Dha16-1	Dha16-3- H _a
Dh-1C M	(1.72)			
Dna16-N H				
Q-1		161.6		
Q-2		144.3		
Q-3	7.34 s	123.3	Q-1; Q-10; Q-11	
Q-4		158.1		
Q-5	6.91 d (10.08)	124.0	Q-7; Q-9; Q-10	Q-6

Assigment	$\delta_{\rm H}$	$\boldsymbol{\delta}_C$	HMBC	COSY
Q-6	6.41 m	131.1	Q-7; Q-10	Q-5; Q-7
Q-7	3.77 dd (1.92,5.68)	59.2	Met1-2; Q-5; Q-6; Q-8; Q-9	Q-6; Q-8
Q-8	4.44 m	68.5	Q-6; Q-7; Q-9; Q-10	Q-7
Q-9		155.5		
Q-10		128.6		
Q-11	5.35 m	65.0	Q-12	Q-12
Q-12	1.40 d (6.60)	23.5	Q-4; Q-11	Q-11

Fig. S7. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Phe

(A) Chromatogram extracted for m/z 850.1, the calculated $[M+2H]^{2+}$ ion of TSR-Ile1Phe.

(B) Ultraviolet absorption pattern of TSR-Ile1Phe

(C) structure of TSR-Ile1Phe

Fig. S8. 1D and 2D NMR spectra of TSR-Ile1Phe

(A)¹H spectrum of TSR-Ile1Phe

Assigment	$\delta_{\rm H}$	$\delta_{\rm C}$	HMBC	COSY
Phe1-1		174.6		
Phe1-2	3.26 m	63.1		Phe1-3-H _a ; Phe1-3-H _b
Phe1-3	H _o 2.52 m	40.2	Phe1-2: Phe1-(5 5')	Phe1-2: Phe1-3-H _b
1	$H_{\rm h}$ 3 34 m		Phe1-2	Phe1-2: Phe1-3-H
Phe ₁₋₄	10 0.0 1 11	1373	1 1101 2	
$Phe1_{55}$	7 27 m	120.3	Phe1-3. Phe1-1.	$Phe1_{(6,6')}$
)	7.27 111	127.5	The1-5, The1-4,	1 1101-(0,0)
) Phe1-(6,6'	7.37 m	129.5	Phe1-7;	Phe1-(5,5'); Phe1-7
, Phe1-7	7.31 m	127.9		Phe1-(6 6')
Ala2-1		169.6		
Ala2-2	3 83 m	50.0	Ala2-1: Ala2-3:	A1a2-3
$A \ln 2 = 2$ A $\ln 2 = 3$	1.20 d (6.65)	10.8	A_{19}^{-1} : A_{19}^{-2} :	$A l_{2} 2_{2}$
$Dh_{2} $	1.20 u (0.03)	163.6	Ala2-1, Ala2-2,	Ala2-2
Dha3-1		122.8		
Dha2 2	U 594 a	104.2	Dha2 1: $Dha2$ 2	Dha2 2 U .
Dilas-s	$\Pi_a 3.64 \text{ s},$	104.2	Dha22	Dha $3-3-\Pi_b$,
	$H_b 3.40 \text{ s}$		Dha5-2;	Dha5-5-H _a
Dhas-NH		1741		
Ala4-1		1/4.1		
Ala4-2	4.75 q	52.6	Dha3-1; Ala4-1;	Ala4-3
Ala4-3	1.46 d (6.40)	19.7	Ala4-1; Ala4-2	Ala4-2
Ala4-NH				
Pip5-1	5.31 s	64.9	Pip5-2; Pip5-5;	
			Thz13-1; Thz14-4	
Pip5-2		162.5		
Pip5-3	H _a 2.95 m;	25.5		Pip5-3-H _b ; Pip5-4-H _a ;
	H _b 3.47 m			Pip5-4-H _b
				Pip5-3-H _a ; Pip5-4-H _a ;
Pip5-4	H _a 2.32 m;	29.8		Pip5-3-H _a ; Pip5-3-H _b ;
-	H _b 4.10 m		Pip5-2; Pip5-5; Thz6-4	Pip5-4-H _b
	-			Pip5-3-H _a ; Pip5-4-H _a
Pip5-5		58.2		1 1 1 1
Pip5-NH				
Thz6-1		162.7		
Thz6-2		147.3		
Thz6-3	8 16 s	1257	Thz6-2. Thz6-4	
Thz6 A	0.10 5	120.7	11120-2, 11120-4	
Thz 0^{-4}		166.2		
1 III / -1 Thr7 2	4.41 m	100.2 56 4	The 7.2	The7 NIL
1 III / -2	4.41 111	50.4	11117-3	
1 nr/-3	1.45 m	0/.2		1 nr /-4
1 nr/-4	0.87 d (5.88)	19.8	Inr/-2; Inr/-3	1 nr 7-3
Thr/-NH	/.04 d (/.44)	100.0	1hz6-1; 1hr/-1	1 hr /-2
Dhb8-1		129.3		
Dhb8-2	6.24 q	133.4	Dhb8-1; Tzn9-4	Dhb8-3
Dhb8-3	1.63 d (6.96)	16.1	Dhb8-1; Dhb8-2; Tzn9-4	Dhb8-2
Dhb8-NH	8.62 s			
Tzn9-1		172.8		
Tzn9-2	4.98 dd	79.6	Tzn9-1; Tzn9-3;	Tzn9-3- H _a ; Tzn9-3- H _b
	(9.20,12.55)		Tzn9-4	
Tzn9-3	H _a 3.17 m,	35.6	Tzn9-1	Tzn9-2; Tzn9-3- H _b
	H _b 3.66 t (9.92)		Tzn9-4	Tzn9-2; Tzn9-3- H _a

Table S4. ¹H and ¹³C NMR assignments of TSR-Ile1Phe (δ in ppm, J in Hz)

Assigment	$\delta_{\rm H}$	δ_{C}	HMBC	COSY
Tzn9-4		171.0		
Ile10-1	5.78 s	53.8	Ile10-2: Thz11-4	Ile10-NH
Ile10-2	0.105	78.0		
	3 81 m	68.3	Ile10_2· Ile	0_{-4} . Ile 10_{-4}
ne10-5	5.01 III	00.5	Ile10-2, Ile.	10-4, 110-4
11-10 4	1.21.4(6.21)	16.0		0.2. 11-10.2
ne10-4	1.51 0 (0.51)	10.8	lie10-1; lie.	10-2; IIe10-3
H 10 5	1.00	10.0	lle10-3	
lle10-5	1.20 s	18.8	lle10-2; lle10-3	
lle10-NH	7.60 s			lle10-1
Thz11-1		162.8		
Thz11-2		150.7		
Thz11-3	8.31 s	126.3	Thz11-2; Thz11-4	
Thz11-4		167.1		
Thr12-1	5.80 s	56.7	Thz11-1; Thz13-3	Thr12-NH
Thr12-2	6.38 m	72.9	0-1	Thr12-3
Thr12-3	1 74 d (6 45)	19.6	Thr12-1. Thr12-2	Thr12-2
Thr12-NH	8 79 d (8 61)	17.0	11112 1, 11112 2	Thr12-1
Th ₇ 13 1	$0.77 \mathrm{u}(0.01)$	158.0		111112-1
Thz 13^{-1}	757	110.0	Tha12 1. Tha12 2	
Thz $13-2$	1.578	170.8	111213-1, 111213-3	
$T_{1}Z_{1}Z_{2}Z_{3}$		1/0.8		
Thz14-1		160.4		
Inz14-2	0.00	150.8	T I 14 0 T I 14 4	
Thz14-3	8.32 s	128.4	Inz14-2; Inz14-4	
Thz14-4		169.0		
Dha15-1		162.8		
Dha15-2		134.9		
Dha15-3	H _a 6.72 bs;	104.2	Dha15-1; Dha15-2	Dha15-3- H _b
	H _b 5.64 bs		Dha15-1	Dha15-3- H _a
Dha15-N	10.01 s			
Н				
Dha16-1		167.1		
Dha16-2		133.8		
Dha16-3	H _a 6.54 bs:	105.3	Dha16-1: Dha16-2	Dha16-3- H _b
	$H_{\rm b}$ 5.71 bs		Dha16-1	Dha16-3- H
0-1	0	161.5		
0-2		144 3		
0-3	7 31 s	123.1	$0 - 1 \cdot 0 - 10 \cdot 0 - 11$	
Q-4	1.51 5	154.2	χ ¹ , χ ¹⁰ , χ ⁻¹¹	
- Ω-5	6.82 d (0.03)	172.0	$\bigcirc 7 \\ \bigcirc 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0-6
Q-5 0.6	6.02 u (9.93)	120.7	Q^{-7}, Q^{-7}, Q^{-10}	∇^{-0}
Q-0 07	0.00 III	130./ 50.0	Q^{-1}, Q^{-10}	Q^{-J}, Q^{-I}
Q-1	5.11 û (4.91)	39.0	Q-9	Q-0; Q-0; Q-8
Q-8	4.43 m	68.0	Q-6; Q-7; Q-9; Q-2	10 Q-7
Q-9		155.0		
Q-10		127.9		
Q-11	5.30 m	65.1	Q-12	Q-12
ñ 10	1.27 + (6.40)	225	$\hat{0}_{4}$ 0 11	0 11

Fig. S9. HPLC-MS analysis, Ultraviolet absorption patterns and structures of SIO-Dha2Ser and SIO

(A) Chromatogram extracted for m/z 833.7 and 825.0, the calculated $[M+2H]^{2+}$ ion of SIO-Dha2Ser and SIO.

(B) Ultraviolet absorption patterns of SIO-Dha2Ser and SIO

(C) structures of SIO-Dha2Ser and SIO

1.40 0.00 SINE Ηz

Acquisition Para 201507 a Parameters oh-sio 2 1 n QNP 1H/13 cosygpmfqf 1024 CDC13

ers

COSY

Assigment	$\delta_{\rm H}$	δ_{C}	HMBC	COSY
Val1-1		174.9		
Val 1-2	2.91 d (5.00)	67.4	Val1-1; Val1-3; Val1-4; Val 1-5; Q-7	Val 1-3
Val 1-3	2.08 m	31.3	Val 1-2; Val 1-4; Val 1-5	Val 1-2; Val 1-4; Val 1-5
Val 1-4	0.88 d (6.85)	17.2	Val 1-2; Val 1-3; Val 1-5	Val 1-3
Val 1-5	1.03 d (6.80)	18.6	Val 1-2; Val 1-3; Val 1-4	Val 1-3
Ser2-1		166.5		
Ser2-2	3.80 m	55.4	Ser2-1: Ser2-3	
Ser2-3	H ₂ 3.77 m	61.3	Ser2-1: Ser2-2	Ser2-2-H _b
	$H_{\rm h}$ 3.25 m		Ser2-1: Ser2-2	$Ser 2-2-H_b$
Dha3-1		162.9	2012 1, 2012 2	
Dha3-2		132.1		
Dha3-3	H _a 5.86 s	102.7	Dha3-1: Dha3-2	Dha3-3-H _b
	$H_{\rm h}$ 5.34 s		Dha3-1: Dha3-2	Dha3-3-Ha
Dha3-NH	8.37 bs		Ser2-1; Dha3-1; Dha3-3	
Ala4-1		173.1		
Ala4-2	4.76 m	51.8	Dha3-1: Ala4-1: Ala4-3	Ala4-3
Ala4-3	1.44 d	18.5	Ala4-1: Ala4-2	Ala4-2
Ala4-NH	7.12 d		Dha3-1: Ala4-1	
Pip5-1	5.35 s	64.2	Pip5-2: Pip5-4: Pip5-5:	
r -			Ala4-1; Thz6-4; Thz13-1: Thz13-2	
Pip5-2		161.8	- , -	
Pip5-3	H _a 2.97 m	24.1		$Pip5-3-H_{h}$; $Pip5-4-H_{a}$;
1	H _b ^a 3.50 m			$Pip5-4-H_b$ $Pip5-3-H_c: Pip5-4-H_c$
Pip5-4	H _a 2.32 m	29.2	Pip5-1: Pip5-3: Pip5-5	$Pip5-3-H_{a}$: $Pip5-3-H_{b}$:
	$H_{\rm h}$ 4.11 m	_,	Pip5-1: Pip5-2: Pip5-3:	$Pip5-4-H_{b}$
	110		Pip5-5: Thz6-4:	Pin5-3-H _a : Pin5-4- H _a
			Thz13-1	$\mathbf{r} = -a, \mathbf{r} = -a$
Pip5-5		57.6		
Pin5-NH	9.84 bs	27.0	Ala4-1	
Thz6-1		161.6		
Thz6-2		146.1		
Thz6-3	8 20 s	125.1	Thz6-1. Thz6-2.	
11120-3	0.20 8	123.1	Thz6-4	
Thz6-4		160 8	1 IIZU-4	
Thr7 $_1$		165.3		
$T_{\rm hr}^{-1}$	1 11 m	55.8	$Thr7_1 \cdot Thr7_2 \cdot$	Thr7-3. Thr7-NH
1111/-2	4.44 111	55.0	Thr7-4; Thz6-1	тш /-3, тш /-т п
Thr7-3	1.60 m	66.2		Thr7-2; Thr7-4
Thr7-4	0.86 d (6.05)	18.8	Thr7-2; Thr7-3	Thr7-3
Thr7-NH	7.16 d (7.65)		Thz6-1; Thr7-1	Thr7-2
Dhb8-1		128.2		
Dhb8-2	6.25 q (6.85)	132.9	Dhb8-1; Dhb8-3; Tzn9-4	Dhb8-3
Dhb8-3	1.64 d (7.05)	15.2	Dhb8-1; Dhb8-2; Tzn9-4	Dhb8-2

Table S5. ¹H and ¹³C NMR assignments of SIO-Dha2Ser (δ in ppm, J in Hz)

Assigment	$\delta_{\rm H}$	$\delta_{\rm C}$	HMBC COSY	
Dhb8-NH	8.68 bs		Dhb8-2	
Tzn9-1		171.9		
Tzn9-2	5.01 dd (8.75, 13.25)	78.9	Tzn9-1; Tzn9-3; Tzn9-4	Tzn9-3-H _a ; Tzn9-3-H _b
Tzn9-3	$H_a 3.20 \text{ m}$ $H_b 3.68 \text{ m}$	35.0	Tzn9-1; Tzn9-2 Tzn9-1: Tzn9-4	Tzn9-2; Tzn9-3-H _b Tzn9-2: Tzn9-3-H ₂
Tzn9-4		170.2		
Ile10-1	5.78 s	52.8	Tzn9-1; Ile10-2; Thz11-4	Ile10-NH
Ile10-2		77.1		
Ile10-3	3.83 m	67.9	Ile10-1; Ile10-2; Ile10-4: Ile10-5	Ile10-4
Ile10-4	1.32 d (6.30)	15.8	Ile10-2: Ile10-3	Ile10-3
Ile10-5	1.19 s	18.2	Ile10-1; Ile10-2; Ile10-3; Ile10-4	
Ile10-NH	7.63 d (9.70)		Tzn9-1	Ile10-1
Thz11-1		162.0		
Thz11-7		149.9		
Thz11-2 Thz11-2	8 30 s	125 5	Thz11-1. Thz11-2.	
Thz11-3	0.00 8	166 /	· 11211 ⁻ 1, 111211 ⁻ 2,	
Thr12-1	5.79 m	55.5	Thz11-1; Thr12-2; Thr12-3: Thz13-3	Thr12-NH
Thr12-2	6 35 m	72.0	Thr12-3: Thr13-3: O-1	Thr12-3
Thr 12_2 Thr 12_3	1.76 d (6.50)	18.6	Thr 12_{-1} : Thr 12_{-2}	Thr 12.3
Thr $12-5$ Thr 12 NH	8 85 d (8 80)	10.0	111112-1, 111112-2	Thr 12^{-2}
$\frac{11112}{1111}$	8.85 u (8.80)	157.2		111112-1
$\frac{111213-1}{11212}$	7.60 -	137.2	$T_{h=12} 1 \cdot T_{h=12} 2 \cdot$	
Inz13-2	7.00 S	118.5	Pip5-1	
Thz13-3		170.2		
Thz14-1		159.6		
Thz14-2		150.1		
Thz14-3	8.31 s	127.8	Thz14-1; Thz14-2; Thz14-4	
Thz14-4		168.4		
Dha15-1		162.1		
Dha15-2		134.3		
Dha15-3	H _a 5.63 s H _b 6.72 s	103.3	Dha15-1; Dha15-2 Dha15-1: Dha15-2	Dha15-3- H _b Dha15-3- H _a
Dha15-N	10 01 bs		Thz14-1. Dha15-1.	=a
H Dha16-1	20:01 00	166 1	Dha15-3	
Dha162		122.0		
Dha10-2	H 651h	104.4	Dha16 1. Dha16 2	Dha16 2 U
Dhale N	$H_a 0.34 08$ $H_b 5.70 bs$	104.4	Dha16-1; Dha16-2 Dha15-1; Dha16-2	Dha16-3- H_a
Dnaio-N	9.15 DS		Dia15-1; Dha16-1;	
H			Dha16-3	
Q-1		160.7		
Q-2		143.6		
Q-3	7.32 s	122.3	Q-1; Q-10; Q-11	
Q-4		153.5		
Q-5	6.90 d (10.00)	123.2	Q-6; Q-7; Q-9; Q-10	Q-6
Q-6	6.40 dd (5.30, 9.65)	129.8	Q-6; Q-7; Q-8	Q-5; Q-7
Q-7	3.62 d (4.70)	59.3	Q-5; Q-6; Q-8; Q-9; Val 1-2	Q-6; Q-8

Assigment	$\delta_{\rm H}$	$\boldsymbol{\delta}_C$	HMBC	COSY
Q-9		154.4		
Q-10		127.1		
Q-11	5.33 m	64.5	Q-3; Q-10; Q-12	Q-12
Q-12	1.39 d (6.55)	22.7	Q-4; Q-11	Q-11

Fig. S11. 1D and 2D NMR spectra of SIO

(A) ¹H spectrum of SIO

MHz Ppm ters

Cers

Assigment	$\delta_{\rm H}$	$\delta_{\rm C}$	HMBC	COSY
Val1-1		173.8		
Val 1-2	2.98 d (5.00)	67.4	Val1-1; Val1-3; Val1-4; Val 1-5; Q-7	Val 1-3
Val 1-3	2.38 m	31.5	Val 1-2; Val 1-4; Val 1-5	Val 1-2; Val 1-4; Val 1-5
Val 1-4	0.76 d (6.85)	16.8	Val 1-2; Val 1-3; Val 1-5	Val 1-3
Val 1-5	1.08 d (6.80)	19.6	Val 1-2; Val 1-3; Val 1-4	Val 1-3
Dha2-1		161.3		
Dha 2-2		135.0		
Dha 2-3	H _a 6.40 m H _b 5.16 m	100.7	Dha2-1; Dha2-2 Dha2-1; Dha2-2	Dha2-3-H _b Dha2-3-H _a
Dha3-1	0	162.9		
Dha3-2		132.1		
Dha3-3	H _a 5.79 s H _b 5.40 s	102.7	Dha3-1; Dha3-2 Dha3-1; Dha3-2	Dha3-3-H _b Dha3-3-H _a
Dha3-NH	8.37 bs		Ser2-1; Dha3-1; Dha3-3	
Ala4-1		173.1		
Ala4-2	4.76 m	51.8	Dha3-1; Ala4-1; Ala4-3	Ala4-3
Ala4-3	1.44 d	18.5	Ala4-1; Ala4-2	Ala4-2
Ala4-NH	7.12 d		Dha3-1; Ala4-1	
Pip5-1	5.35 s	64.2	Pip5-2; Pip5-4; Pip5-5; Ala4-1; Thz6-4; Thz13-1: Thz13-2	
Pip5-2		161.8	111210 1, 111210 2	
Pip5-3	H _a 2.97 m	24.1		Pip5-3-H _b ; Pip5-4-H _a ;
	H _b 3.50 m			Pip5-4-H _b
				Pip5-3-H _a ; Pip5-4- H _a
Pip5-4	H _a 2.32 m	29.2	Pip5-1; Pip5-3; Pip5-5	Pip5-3-H _a ; Pip5-3-H _b ;
	H _b 4.11 m		Pip5-1; Pip5-2; Pip5-3; Pip5-5; Thz6-4; Thz13_1	Pip5-4-H _b Pip5-3-H _a ; Pip5-4- H _a
Pin5-5		57.6	111213-1	
Pin5-NH	9 84 hs	57.0	Ala4-1	
Thz6-1	2.07 03	161.6	1 MUT 1	
Thz6-2		146.1		
Thz6-3	8.20 s	125.1	Thz6-1; Thz6-2; Thz6-4	
Thz6-4		169.8		
Thr7-1		165.3		
Thr7-2	4.44 m	55.8	Thr7-1; Thr7-3; Thr7-4; Thz6-1	Thr7-3; Thr7-NH
Thr7-3	1.60 m	66.2	·	Thr7-2; Thr7-4
Thr7-4	0.86 d (6.05)	18.8	Thr7-2; Thr7-3	Thr7-3
Thr7-NH	7.16 d (7.65)		Thz6-1; Thr7-1	Thr7-2
Dhb8-1		128.2		
Dhb8-2	6.25 q (6.85)	132.9	Dhb8-1; Dhb8-3; Tzn9-4	Dhb8-3
Dhb8-3	1.64 d (7.05)	15.2	Dhb8-1; Dhb8-2;	Dhb8-2

Table S6. ¹H and ¹³C NMR assignments of SIO (δ in ppm, J in Hz)

Assigment	$\delta_{\rm H}$	$\delta_{\rm C}$	HMBC	COSY
Dhb8-NH	8.68 bs		Dhb8-2	
Tzn9-1		171.9		
Tzn9-2	5.01 dd (8.75, 13.25)	78.9	Tzn9-1; Tzn9-3; Tzn9-4	Tzn9-3-H _a ; Tzn9-3-H _b
Tzn9-3	$H_a 3.20 \text{ m}$ $H_b 3.68 \text{ m}$	35.0	Tzn9-1; Tzn9-2 Tzn9-1: Tzn9-4	Tzn9-2; Tzn9-3-H _b Tzn9-2: Tzn9-3-H _a
Tzn9-4	100.000 m	170.2		
Ile10-1	5.78 s	52.8	Tzn9-1; Ile10-2; Thz11-4	Ile10-NH
Ile10-2		77.1		
Ile10-3	3.83 m	67.9	Ile10-1; Ile10-2; Ile10-4; Ile10-5	Ile10-4
Ile10-4	1.32 d (6.30)	15.8	Ile10-2: Ile10-3	Ile10-3
Ile10-5	1.19 s	18.2	Ile10-1; Ile10-2; Ile10-3; Ile10-4	
Ile10-NH	7 63 d (9 70)		Tzn9-1	Ile10-1
Thz11_1		162.0		
Thz $11-1$		1/0 0		
Thz11-2 Thz11-2	8 30 s	175.5	Thz11_1. Thz11 2.	
Thz11- J	0.00 8	166 /	111211-1, 111211-2,	
Thr12-1	5.79 m	55.5	Thz11-1; Thr12-2; Thr12-3: Thz13-3	Thr12-NH
Thr12-2	6 35 m	72.0	Thr12-3: Thr13-3: 0-1	Thr12-3
Thr12-2 Thr12-3	1 76 d (6 50)	18.6	Thr12-1: Thr12-2	Thr12-2
Thr12-NH	8 85 d (8 80)	10.0	11112 1, 11112 2	Thr12-1
Thr 12 Thr Thr Thr 13_{-1}	0.05 û (0.00)	157.2		11112 1
Thz13-1 Thz13-2	7.60 s	118.5	Thz13-1; Thz13-3; Pip5-1	
Thz13-3		170.2		
Thz14-1		159.6		
Thz14-2		150.1		
Thz14-3	8.31 s	127.7	Thz14-1; Thz14-2; Thz14-4	
Thz14-4		168.4		
Dha15-1		162.1		
Dha15-2		134.3		
Dha15-3	H _a 5.63 s H _b 6.72 s	103.3	Dha15-1; Dha15-2 Dha15-1; Dha15-2	Dha15-3- H _b Dha15-3- H _a
Dha15-N H				
Dha16-1		166.1		
Dha16-2		133.0		
Dha16-3	$H_{a} 6.54 bs H_{b} 5.70 bs$	104.4	Dha16-1; Dha16-2 Dha16-1; Dha16-2	Dha16-3- H _b Dha16-3- H _a
Dha16-N H				
Q-1		160.7		
Q-2		143.6		
Q-3	7.32 s	122.3	Q-1; Q-10; Q-11	
Q-4		153.5	-	
Q-5	6.90 d (10.00)	123.2	Q-6; Q-7; Q-9; Q-10	Q-6
Q-6	6.40 dd (5.30, 9.65)	130.3	Q-6; Q-7; Q-8	Q-5; Q-7
Q-7	3.62 d (4.70)	59.3	Q-5; Q-6; Q-8; Q-9; Val 1-2	Q-6; Q-8
A A	4 47 -	(7.4	0.6070000010	0.7

Assigment	$\delta_{\rm H}$	$\boldsymbol{\delta}_C$	HMBC	COSY
Q-9		154.4		
Q-10		127.1		
Q-11	5.33 m	64.5	Q-3; Q-10; Q-12	Q-12
Q-12	1.39 d (6.55)	22.8	Q-4; Q-11	Q-11

Fig. S12. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Pro

(A) Chromatogram extracted for m/z 824.7, the calculated $[M+2H]^{2+}$ ion of TSR-Ile1Pro.

(B) Ultraviolet absorption pattern of TSR-Ile1Pro

(C) Structure of TSR-Ile1Pro

Fig. S13. HPLC-MS analysis, Ultraviolet absorption pattern and structure of TSR-Ile1Trp

(B) Ultraviolet absorption pattern of TSR-Ile1Trp

(C)Structure of TSR-Ile1Trp

Table S7. MALDI High Resolution MS DATA of TSR analogs

Compound	TSR-	TSR-	TSR-	TSR-	TSR-	TSR-	SIO	SIO-
	Ile1Leu	Ile1Phe	Ile1Ala	Ile1Met	Ile1Pro	Ile1Trp		Dha2Ser
Found	1664.4983	1698.4841	1622.4550	1682.4600	1648.4624	1759.4681	1648.4626	1666.4771
Calculated	1664.4996	1698.4840	1622.4527	1682.4560	1648.4683	1759.4768	1648.4683	1666.4789
Formula	$C_{72}H_{86}O_{18}N_{19}S_5$	$C_{75}H_{84}O_{18}N_{19}S_5$	$C_{69}H_{80}O_{18}N_{19}S_5$	$C_{71}H_{84}O_{18}N_{19}S_6$	$C_{71}H_{82}O_{18}N_{19}S_5$	$C_{77}H_{84}N_{20}O_{18}NaS_5$	$C_{71}H_{82}O_{18}N_{19}S_5$	$C_{71}H_{84}O_{19}N_{19}S_5$

Table S8. Strains and plasmids used in this study

Strain/Cell line/Plasmid	Description	Source / Reference	
Strains			
Escherichia coli			
DH5a	Host for general cloning	Invitrogen	
ET12567 (pUZ8002)	Donor strain for conjugation between <i>E. coli</i> and <i>Streptomyces</i>	1	
Streptomyces			
laurentii	Thiostrepton-producing	ATCC	
SL2051	S. laurentii derivative, in which the codon GAG for Glu-7	3	

	of TsrH was mutated into the stop codon TAG	
SL-I1G	SL2051 derivative, containing pSL-I1G	This study
SL-I1A	SL2051 derivative, containing pSL-I1A	This study
SL-I1L	SL2051 derivative, containing pSL-I1L	This study
SL-I1F	SL2051 derivative, containing pSL-I1F	This study
SL-I1P	SL2051 derivative, containing pSL-I1P	This study
SL-I1S	SL2051 derivative, containing pSL-I1S	This study
SL-I1T	SL2051 derivative, containing pSL-I1T	This study
SL-I1W	SL2051 derivative, containing pSL-I1W	This study
SL-I1C	SL2051 derivative, containing pSL-I1C	This study
SL-I1D	SL2051 derivative, containing pSL-I1D	This study
SL-I1E	SL2051 derivative, containing pSL-I1E	This study
SL-I1K	SL2051 derivative, containing pSL-I1K	This study
SL-I1Y	SL2051 derivative, containing pSL-I1Y	This study
SL-I1M	SL2051 derivative, containing pSL-I1M	This study
SL-I1Q	SL2051 derivative, containing pSL-I1Q	This study
SL-I1R	SL2051 derivative, containing pSL-I1R	This study
SL-1N	SL2051 derivative, containing pSL-1N	This study
SL-1H	SL2051 derivative, containing pSL-1H	This study
SL-I1V-A2S	SL2051 derivative, containing pSL-I1V-A2S	This study
Strains used for antimicrobial assays		
Streptococcus pneumoniae PRSP1063	Penicillin-resistant	ATCC
Streptococcus pneumoniae PRSP2831	Penicillin-resistant	ATCC
Streptococcus pneumoniae PRSP224588	Penicillin-resistant	ATCC
Staphylococcus aureus MRSA-S1	Methicillin-resistant	ATCC
Staphylococcus aureus MRSA-SAU3	Methicillin-resistant	ATCC
Staphylococcus aureus MRSA-SAU5	Methicillin-resistant	ATCC
Enterococcus faecium VRE3	Vancomycin-resistant	ATCC
Enterococcus faecium VRE73	Vancomycin-resistant	ATCC
Enterococcus faecium VRE83	Vancomycin-resistant	ATCC
Mycobacterium. marinum	GFPmut3-expressing bacteria for MIC test and infection to cells	ATCC
Cell line		
RAW 264.7 ATCC TIB71	Macrophage cells for infection by <i>M. marinum</i>	ATCC
Plasmids		
pSET152	<i>E. coli-Streptomyces</i> shuttle vector containing the <i>aac(3)IV</i> gene and the C31 <i>attP</i> site and integrase gene	8
pSL2050	pSET152 derivative for <i>in trans</i> expressing <i>tsrH</i> with the 580 bp upstream sequence and 288 bp downstream region	3
pSL-IIG	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH-Ile1Gly	This study
pSL-I1L	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Leu	This study
pSL-I1F	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Phe	This study
pSL-I1P	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Pro	This study
pSL-I1S	pSL2050 derivative for in trans expressing the gene that	This study

	encodes TsrH- Ile1Ser	
pSL-I1T	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Thr	This study
pSL-I1W	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Trp	This study
pSL-I1C	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Cys	This study
pSL-I1D	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Asp	This study
pSL-I1E	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Glu	This study
pSL-I1K	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Lys	This study
pSL-I1Y	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Tyr	This study
pSL-I1M	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Met	This study
pSL-I1Q	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Gln	This study
pSL-I1R	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Arg	This study
pSL-1N	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Asn	This study
pSL-1H	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1His	This study
pSL-I1V-A2S	pSL2050 derivative for <i>in trans</i> expressing the gene that encodes TsrH- Ile1Val-Ala2Ser	This study

Table S9. Primers used in this study

Primer	Sequence	Description
I1G-F	GACCTGACCGTCACGATG <u>GGC</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Gly at the
I1G-R	GTGCAGGAGGCGGACGC <u>GCC</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1A-F	GACCTGACCGTCACGATG <u>GCC</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Ala at the
I1A-R	GTGCAGGAGGCGGACGC <u>GGC</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1L-F	GACCTGACCGTCACGATG <u>CTC</u> GCGTCCGCCTCCTGCACC	Underlined codon encodes Leu at the
I1L-R	GGTGCAGGAGGCGGACGC <u>GAG</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1F-F	ACCTGACCGTCACGATG <u>TTC</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Phe at the
I1F-R	GTGCAGGAGGCGGACGC <u>GAA</u> CATCGTGACGGTCAGGT	1 st position of the TsrH core peptide
I1P-F	ACCTGACCGTCACGATG <u>CCT</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Pro at the
I1P-R	GTGCAGGAGGCGGACGC <u>AGG</u> CATCGTGACGGTCAGGT	1 st position of the TsrH core peptide
I1S-F	GACCTGACCGTCACGATG <u>TCC</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Ser at the
I1S-R	GTGCAGGAGGCGGACGC <u>GGA</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1T-F	GACCTGACCGTCACGATG <u>ACT</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Thr at the
I1T-R	GTGCAGGAGGCGGACGC <u>AGT</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1W-F	GACCTGACCGTCACGATG <u>TGG</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Trp at the
I1W-R	GTGCAGGAGGCGGACGC <u>CCA</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1C-F	GACCTGACCGTCACGATG <u>TGC</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Cys at the
I1C-R	GTGCAGGAGGCGGACGC <u>GCA</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1D-F	GACCTGACCGTCACGATG <u>GAC</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Asp at the
I1D-R	GTGCAGGAGGCGGACGC <u>GTC</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide

I1E-F	GACCTGACCGTCACGATG <u>GAA</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Glu at the
I1E-R	GTGCAGGAGGCGGACGC <u>TTC</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1K-F	GACCTGACCGTCACGATG <u>AAG</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Lys at the
I1K-R	GTGCAGGAGGCGGACGC <u>CTT</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1Y-F	GACCTGACCGTCACGATG <u>TAC</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Tyr at the
I1Y-R	GTGCAGGAGGCGGACGC <u>GTA</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1M-F	GACCTGACCGTCACGATG <u>ATG</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Met at the
I1M-R	GTGCAGGAGGCGGACGC <u>CAT</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1Q-F	GACCTGACCGTCACGATG <u>CAA</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Gln at the
I1Q-R	GTGCAGGAGGCGGACGC <u>TTG</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1R-F	GACCTGACCGTCACGATG <u>CGA</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Arg at the
I1R-R	GTGCAGGAGGCGGACGC <u>TCG</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1N-F	GACCTGACCGTCACGATG <u>AAT</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes Asn at the
I1N-R	GTGCAGGAGGCGGACGC <u>ATT</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1H-F	GACCTGACCGTCACGATG <u>CAT</u> GCGTCCGCCTCCTGCAC	Underlined codon encodes His at the
I1H-R	GTGCAGGAGGCGGACGC <u>ATG</u> CATCGTGACGGTCAGGTC	1 st position of the TsrH core peptide
I1V-A2S-F	CTGACCGTCACGAT <u>GGTCTC</u> GTCCGCCTCCTGCACCAC	Underlined codon encodes Val at the
I1V-A2S-R	GTGGTGCAGGAGGCGGAC <u>GAGACC</u> ATCGTGACGGTCAG	1^{st} position and Ser at the 2^{nd} of the
		TsrH core peptide

Table S10. Aqueous solubilities of thiostrepton analogues

Compound	TSR	1F	1M	1A	1L	SIO	OH-SIO
Water	9.38±	$3.52\pm$	$11.17\pm$	$15.08\pm$	$5.47\pm$	$0.95\pm$	$17.09\pm$
solubility(µg/mL)	0.48	0.12	0.65	0.73	0.24	0.09	0.85

References

(1) T. Kieser, M. Bibb, M. Butter, K. F. Chater and D. A. Hopwood, *Practical Streptomyces Genetics*, The John Innes Foundation, Norwich, 2001.

(2) J. Sambrook and D. W. Russell, *Molecular Cloning: A Laboratory Manual, 3rd ed.*, Cold Spring Harbor Laboratory Press, New York, 2001.

(3) Guo, H.; Wang, J.; Li, Y.; Yu, Y.; Zheng, Q.; Wu, J.; Liu, W., *Chemical Science* **2014**, *5* (1), 240-246.

(4) R. Liao and W. Liu, J. Am. Chem. Soc, 2011, 133, 2852–2855.

(5) Y. Yu,; H. Guo,; Q. Zhang,; L. Duan,; Y. Ding,; R. Liao,; C. Lei,; B. Shen and W. Liu, J. Am.

Chem. Soc, 2010, 132, 16324.

(6) Pucci, M. J.; Bronson, J. J.; Barrett, J. F.; DenBleyker, K. L.; Discotto, L. F.; Fung-Tomc, J. C.; Ueda, Y. *Antimicrob. Agents. Chemother.* 2004, **48**, 3697-3701.

(7) McFarland, J. J. Am. Med. Assoc. 1907, 49, 1176-1178.

(8) M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner, *Gene*, 1992, **114**, 44-49.