An Effective Route to β^2 -Amino Acid Derivatives via Pd-Catalyzed Regioselective Hydrocarboxylation of 1,2-Disubstituted Enimides

Jie Dai,^a Wenlong Ren,^a Wenju Chang,^a Ping Zhang,^a and Yian Shi^{*,a,b}

^aState Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Center for Multimolecular Organic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; ^bDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.

Supporting Information

Table of Contents

Experimental procedures and characterization data	S-2
X-ray structure of 2n	S-9
NMR spectra	S-20

General Methods. All commercially available reagents were used without further purification. All solvents used for the reaction were purified with solvent purification system. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. (*E*)-1,2-Disubstituted enimides were synthesized from *N*-vinylphthalimide and the corresponding aryl iodides via Heck reaction according to the reported procedure.¹ (*Z*)-1,2-Disubstituted enimides were synthesized via Ru-catalyzed addition of *o*-phthalimide to the corresponding alkynes based on the reported method.²

- 1) Nanteuil, de F.; Waser, J. Angew. Chem. Int. Ed. 2013, 52, 9009
- Goossen, L. J.; Blanchot, M.; Brinkmann, C.; Goossen, K.; Karch, R.; Rivas-Nass, A. J. Org. Chem. 2006, 71, 9506

Representative procedure for hydrocarboxylation (Table 2, 2a). To a mixture of $(\eta^3-C_3H_5)_2Pd_2Cl_2$ (0.00457 g, 0.0125 mmol), PPh₃ (0.02623 g, 0.10 mmol), and toluene (0.250 mL) in a vial (1.5 mL) were added enimide **1a** (0.1246 g, 0.50 mmol), HCOOPh (0.0733 g, 0.60 mmol), and HCOOH (0.046 g, 1.00 mmol) successively via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. The reaction mixture was stirred at 80 °C for 48 h, cooled to rt, and purified by flash chromatography (silica gel, eluent: DCM/MeOH = 80/1) to give compound **2a** as a light yellow solid (0.1462 g, 99% yield).

Table 2, 2a

Yellow solid; mp. 167-168 °C; IR (film) 1777, 1707, 720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.74 (m, 2H), 7.71-7.64 (m, 2H), 7.36-7.24 (m, 5H), 4.35 (dd, J = 8.8, 7.1 Hz, 1H), 4.24 (dd, J = 13.8, 7.1 Hz, 1H), 4.24 (dd, J = 13.8, 8.9 Hz, 1H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.7, 167.4, 136.3, 134.5, 131.2, 128.5, 128.1,
127.6, 123.1, 48.7, 40.0; HRMS (ESI) Calcd for C₁₇H₁₄NO₄ (M+H): 296.0917;
Found: 296.0917.

Calmès, M.; Escale, F. Tetrahedron: Asymmetry 1998, 9, 2845

Table 2, 2b

Yellow solid; mp. 201-203 °C; IR (film) 1771, 1707, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.74 (m, 2H), 7.71-7.64 (m, 2H), 7.28-7.23 (m, 2H), 6.84-6.78 (m, 2H), 4.31 (dd, *J* = 9.0, 7.2 Hz, 1H), 4.23-4.12 (m, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.0, 167.5, 158.6, 134.5, 131.2, 129.2, 128.1, 123.1, 113.9, 55.0, 47.9, 40.1; HRMS (ESI) Calcd for C₁₈H₁₆NO₅ (M+H): 326.1023; Found: 326.1021.

Calmès, M.; Escale, F.; Glot, C.; Rolland, M.; Martinez, J. Eur. J. Org. Chem. 2000, 2459

Table 2, 2c

Yellow solid; mp. 181-182 °C; IR (film) 1771, 1707, 711 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.74 (m, 2H), 7.71-7.64 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 4.31 (dd, *J* = 8.7, 7.2 Hz, 1H), 4.22 (dd, *J* = 13.8, 7.1 Hz, 1H), 4.16 (dd, *J* = 13.8, 9.0 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.3, 167.9, 137.2, 135.0, 133.7, 131.7, 129.6, 128.4, 123.5, 48.8, 40.5, 21.1; HRMS (ESI) Calcd for C₁₈H₁₆NO₄ (M+H): 310.1074; Found: 310.1066.

Table 2, 2d

Yellow solid; mp. 220-222 °C; IR (film) 1774, 1718, 720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.75 (m, 2H), 7.71-7.64 (m, 2H), 7.33-7.25 (m, 4H), 4.37-4.22 (m, 2H), 4.11 (dd, J = 13.4, 7.6 Hz, 1H), 1.26 (s, 9H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.8, 167.5, 149.9, 134.5, 133.2, 131.3, 127.7, 125.3, 123.1, 48.3, 40.0, 34.2, 31.0; HRMS (ESI) Calcd for C₂₁H₂₂NO₄ (M+H): 352.1543; Found: 352.1544.

Table 2, 2e

Yellow solid; mp. 182-183 °C; IR (film) 1774, 1704, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.74 (m, 2H), 7.72-7.65 (m, 2H), 7.34-7.28 (m, 2H), 7.01-6.94 (m, 2H), 4.33 (t, *J* = 8.4 Hz, 1H), 4.19 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.6, 167.4, 161.5 (d, *J* = 242.1 Hz), 134.6, 132.5 (d, *J* = 3.0 Hz), 131.2, 130.2 (d, *J* = 8.1 Hz), 123.1, 115.3 (d, *J* = 21.2 Hz), 48.0, 40.0; HRMS (ESI) Calcd for C₁₇H₁₃FNO₄ (M+H): 314.0823; Found: 314.0826. Calmès, M.; Escale, F.; Glot, C.; Rolland, M.; Martinez, J. *Eur. J. Org. Chem.* **2000**, 2459

Table 2, 2f

Yellow solid; mp. 205-207 °C; IR (film) 1771, 1709, 1681, 717 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 12.94 (br s, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.84-7.78 (m, 4H),

7.42 (d, J = 8.2 Hz, 2H), 4.21 (dd, J = 9.2, 6.5 Hz, 1H), 4.13 (dd, J = 13.8, 6.5 Hz, 1H), 4.05 (dd, J = 13.8, 9.4 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 197.6, 172.2, 167.5, 141.7, 136.1, 134.6, 131.2, 128.6, 128.5, 123.2, 48.9, 39.8, 26.7; HRMS (ESI) Calcd for C₁₉H₁₆NO₅ (M+H): 338.1023; Found: 338.1020.

Table 2, 2g

Yellow solid; mp. 146-148 °C; IR (film) 1774, 1707, 1693, 717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.75 (m, 2H), 7.71-7.65 (m, 2H), 7.21-7.11 (m, 3H), 7.09-7.05 (m, 1H), 4.36-4.20 (m, 2H), 4.13 (dd, *J* = 13.6, 8.2 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.7, 167.5, 137.7, 136.2, 134.5, 131.2, 128.6, 128.4, 128.2, 125.1, 123.1, 48.6, 40.0, 20.9; HRMS (ESI) Calcd for C₁₈H₁₆NO₄ (M+H): 310.1074; Found: 310.1072.

Table 2, 2h

Yellow solid; mp. 129-130 °C; IR (film) 1776, 1704, 708 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 7.84-7.77 (m, 4H), 7.64-7.56 (m, 3H), 7.55-7.47 (m, 1H), 4.23 (dd, J = 9.3, 6.4 Hz, 1H), 4.14 (dd, J = 13.8, 6.4 Hz, 1H), 4.05 (dd, J = 13.8, 9.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.2, 167.4, 137.8, 134.6, 132.6, 131.2, 129.6, 129.1 (q, J = 31.4 Hz), 124.9 (q, J = 3.7 Hz), 124.4 (q, J = 3.6 Hz), 124.0 (q, J = 270.8 Hz), 123.1, 48.6, 39.8; HRMS (ESI) Calcd for C₁₈H₁₃F₃NO₄ (M+H): 364.0791; Found: 364.0787.

Table 2, 2i

Yellow solid; mp. 202-204 °C; IR (film) 2225, 1777, 1707, 708 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 13.04 (br s, 1H), 7.86-7.76 (m, 5H), 7.72 (d, J = 7.7 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 4.21-4.11 (m, 2H), 4.04 (dd, J = 15.2, 11.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.1, 167.4, 138.1, 134.6, 133.5, 132.2, 131.4, 131.2, 129.7, 123.2, 118.6, 111.4, 48.6, 39.8; HRMS (ESI) Calcd for C₁₈H₁₃N₂O₄ (M+H): 321.0870; Found: 321.0877.

Table 2, 2j

COOH NPhth 2j ОМе

Yellow solid; mp. 179-181 °C; IR (film) 1770, 1709, 716 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 12.57 (br s, 1H), 7.79 (br s, 4H), 7.17 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 6.90-6.76 (m, 2H), 4.30 (t, J = 8.0 Hz, 1H), 4.03 (d, J = 7.8 Hz, 2H), 3.55 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.9, 167.3, 157.0, 134.4, 131.3, 129.1, 128.8, 125.0, 122.9, 120.4, 111.0, 55.3, 42.9, 38.9; HRMS (ESI) Calcd for C₁₈H₁₆NO₅ (M+H): 326.1023; Found: 326.1022.

Table 2, 2k

Yellow solid; mp. 173-175 °C; IR (film) 1773, 1706, 716 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.70 (br s, 1H), 7.85-7.78 (m, 4H), 7.27 (d, *J* = 7.0 Hz, 1H), 7.19-7.08 (m, 3H), 4.42 (t, *J* = 8.0 Hz, 1H), 4.13 (dd, *J* = 13.8, 7.6 Hz, 1H), 3.96 (dd, *J* = 13.8, 8.2 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.0, 167.6, 136.3, 134.8, 134.6, 131.2, 130.4, 127.4, 127.1, 126.2, 123.1, 44.5, 39.4, 19.0;

HRMS (ESI) Calcd for C₁₈H₁₆NO₄ (M+H): 310.1074; Found: 310.1076.

Table 2, 2m

Yellow solid; mp. 175-177 °C; IR (film) 1767, 1744, 1718, 722 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 12.84 (br s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.82-7.74 (m, 4H), 7.59-7.44 (m, 4H), 4.95 (t, J = 7.6 Hz, 1H), 4.35 (dd, J = 13.8, 7.9 Hz, 1H), 4.06 (dd, J = 13.8, 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 173.1, 167.6, 134.5, 133.5, 132.8, 131.3, 131.2, 128.9, 128.1, 126.6, 125.8, 125.5, 125.4, 123.0, 122.8, 44.5, 40.0; HRMS (ESI) Calcd for C₂₁H₁₆NO₄ (M+H): 346.1074; Found: 346.1073. Calmès, M.; Escale, F.; Glot, C.; Rolland, M.; Martinez J. *Eur. J. Org. Chem.* **2000**,

Table 2, 2n

2459

Yellow solid; mp. 187-189 °C; IR (film) 1774, 1719, 716 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.76 (m, 2H), 7.71-7.65 (m, 2H), 6.95 (s, 2H), 6.89 (s, 1H), 4.31-4.21 (m, 2H), 4.12-4.01 (m, 1H), 2.25 (s, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.7, 167.5, 137.5, 136.1, 134.5, 131.2, 129.0, 125.7, 123.1, 48.5, 40.0, 20.8; HRMS (ESI) Calcd for C₁₉H₁₈NO₄ (M+H): 324.1230; Found: 324.1234.

Table 2, 20

Me NPhth Me 20

Yellow solid; mp. 181-183 °C; IR (film) 1768, 1718, 716 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.75 (m, 2H), 7.71-7.65 (m, 2H), 7.12-7.02 (m, 3H), 4.32-4.19 (m, 2H), 4.11 (dd, *J* = 13.3, 8.0 Hz, 1H), 2.19 (s, 3H), 2.189 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.9, 167.5, 136.3, 135.5, 134.5, 133.6, 131.2, 129.6, 129.1, 125.3, 123.1, 48.3, 40.0, 19.3, 19.0; HRMS (ESI) Calcd for C₁₉H₁₈NO₄ (M+H): 324.1230; Found: 324.1236.

Procedure for the hydrolysis in Scheme 5

To a solution of compound **2a** (0.1476 g, 0.50 mmol) in EtOH (14 mL) was added hydrazine hydrate (0.41 g, 8.3 mmol) dropwise. The reaction mixture was stirred at reflux for 10 h, cooled to rt, filtered, and washed with ether (3x). The filter cake was dissolved in water (15 mL) and was washed with AcOEt. The aqueous layer was lyophilized to give amino acid **3a** as a white solid (0.0811 g, 98%); mp. 212-213 °C; IR (film) 3449, 1649, 1621, 1564, 693 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 7.48-7.30 (m, 5H), 3.79 (t, *J* = 7.5 Hz, 1H), 3.47 (dd, *J* = 12.8, 7.8 Hz, 1H), 3.28 (dd, *J* = 12.8, 7.2 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 178.3, 137.2, 129.2, 128.1, 127.9, 51.4, 42.3; HRMS (ESI) Calcd for C₉H₁₂NO₂ (M+H): 166.0863; Found: 166.0860.

- 1) Calmès, M.; Escale, F.; Glot, C.; Rolland, M.; Martinez, J. Eur. J. Org. Chem. 2000, 2459
- 2) Weiner, B.; Baeza, A.; Jerphagnon, T. B.; Feringa, L. J. Am. Chem. Soc. 2009, 131, 9473
- Stefani, H. A.; Amaral, M. F. Z. J.; Reyes-Rangel, G.; Vargas-Caporali, J.; Juaristi, E. Eur. J. Org. Chem. 2010, 6393

The X-ray structure of compound **2n**

Table 1. Crystal data and structure refinement for **2n**.

Identification code	2n	
Empirical formula	$C_{19}H_{17}NO_4$	
Formula weight	323.34	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.1250(16) Å	$alpha = 90.91(3)^{\circ}$.
	b = 9.3280(19) Å	beta = $96.19(3)^{\circ}$.
	c = 11.408(2) Å	$gamma = 107.69(3)^{\circ}$.
Volume	817.8(3) Å ³	
Ζ	2	
Calculated density	1.313 Mg/m ³	
Absorption coefficient	0.093 mm ⁻¹	
F(000)	340	
Crystal size	$0.20 \ge 0.20 \ge 0.10 \text{ mm}^3$	
Theta range for data collection	1.80 to 25.37°	
Limiting indices	0<=h<=9, -11<=k<=10, -2	13<=1<=13
Reflections collected / unique	3234 / 3007 [R(int) = 0.03	378]
Completeness to theta = 25.37°	99.9 %	
Absorption correction	Psi-scan	
Max. and min. transmission	0.9908 and 0.9817	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	3007 / 0 / 217	
Goodness-of-fit on F ²	1.001	
Final R indices [I>2sigma(I)]	R1 = 0.0691, wR2 = 0.123	38
R indices (all data)	R1 = 0.1599, wR2 = 0.148	81
Largest diff. peak and hole	0.174 and -0.164 e. Å ⁻³	

	Х	у	Z	U(eq)
N	7101(4)	5661(3)	6651(3)	51(1)
O(1)	10037(4)	6857(3)	7012(3)	90(1)
C(1)	8836(5)	5725(5)	6703(4)	59(1)
O(2)	4444(3)	3880(3)	6031(2)	70(1)
C(2)	8852(5)	4215(4)	6342(3)	54(1)
O(3)	4539(4)	5570(3)	8629(2)	73(1)
C(3)	10256(6)	3680(6)	6272(4)	76(1)
O(4)	6927(3)	6395(3)	9914(3)	73(1)
C(4)	9848(8)	2188(7)	5849(4)	92(2)
C(5)	8175(8)	1311(5)	5564(4)	93(2)
C(6)	6766(6)	1868(5)	5643(4)	76(1)
C(7)	7177(5)	3323(4)	6043(3)	54(1)
C(8)	6007(5)	4236(4)	6218(3)	52(1)
C(9)	6502(5)	6957(4)	6834(3)	62(1)
C(10)	6929(5)	7588(4)	8103(3)	53(1)
C(11)	6055(5)	6416(4)	8927(4)	52(1)
C(12)	6430(5)	9010(4)	8288(3)	50(1)
C(13)	4744(5)	9050(4)	7992(3)	54(1)
C(14)	4302(5)	10341(4)	8185(3)	52(1)
C(15)	5605(5)	11602(4)	8698(3)	55(1)
C(16)	7301(5)	11622(4)	8995(3)	56(1)
C(17)	7682(5)	10308(4)	8781(3)	56(1)
C(18)	2468(5)	10396(4)	7905(4)	81(1)
C(19)	8669(6)	13015(4)	9563(4)	90(2)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **2n**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N-C(1)	1.387(4)
N-C(8)	1.402(4)
N-C(9)	1.454(4)
O(1)-C(1)	1.216(4)
C(1)-C(2)	1.465(5)
O(2)-C(8)	1.205(4)
C(2)-C(7)	1.365(5)
C(2)-C(3)	1.386(5)
O(3)-C(11)	1.251(4)
C(3)-C(4)	1.394(6)
C(3)-H(3A)	0.9300
O(4)-C(11)	1.268(4)
O(4)-H(4B)	0.8200
C(4)-C(5)	1.358(6)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.404(6)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.354(5)
C(6)-H(6A)	0.9300
C(7)-C(8)	1.482(5)
C(9)-C(10)	1.517(5)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.513(5)
C(10)-C(12)	1.518(4)
C(10)-H(10A)	0.9800
C(12)-C(17)	1.387(5)
C(12)-C(13)	1.387(5)
C(13)-C(14)	1.378(4)
C(13)-H(13A)	0.9300
C(14)-C(15)	1.391(5)
C(14)-C(18)	1.506(5)
C(15)-C(16)	1.378(5)
C(15)-H(15A)	0.9300
C(16)-C(17)	1.376(5)
C(16)-C(19)	1.512(5)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **2n**.

C(17)-H(17A)	0.9300
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600
C(19)-H(19C)	0.9600
C(1)-N-C(8)	110.9(3)
C(1)-N-C(9)	124.4(3)
C(8)-N-C(9)	124.0(3)
O(1)-C(1)-N	123.4(4)
O(1)-C(1)-C(2)	130.2(4)
N-C(1)-C(2)	106.5(3)
C(7)-C(2)-C(3)	121.9(4)
C(7)-C(2)-C(1)	108.8(3)
C(3)-C(2)-C(1)	129.3(4)
C(2)-C(3)-C(4)	115.7(4)
C(2)-C(3)-H(3A)	122.1
C(4)-C(3)-H(3A)	122.1
C(11)-O(4)-H(4B)	109.5
C(5)-C(4)-C(3)	121.6(4)
C(5)-C(4)-H(4A)	119.2
C(3)-C(4)-H(4A)	119.2
C(4)-C(5)-C(6)	122.0(4)
C(4)-C(5)-H(5A)	119.0
C(6)-C(5)-H(5A)	119.0
C(7)-C(6)-C(5)	115.9(4)
C(7)-C(6)-H(6A)	122.0
C(5)-C(6)-H(6A)	122.0
C(6)-C(7)-C(2)	122.8(4)
C(6)-C(7)-C(8)	129.1(4)
C(2)-C(7)-C(8)	108.1(3)
O(2)-C(8)-N	125.4(3)
O(2)-C(8)-C(7)	129.0(4)
N-C(8)-C(7)	105.6(3)
N-C(9)-C(10)	112.5(3)
N-C(9)-H(9A)	109.1
C(10)-C(9)-H(9A)	109.1

N-C(9)-H(9B)	109.1
C(10)-C(9)-H(9B)	109.1
H(9A)-C(9)-H(9B)	107.8
C(11)-C(10)-C(9)	110.5(3)
C(11)-C(10)-C(12)	109.6(3)
C(9)-C(10)-C(12)	113.1(3)
С(11)-С(10)-Н(10А)	107.8
C(9)-C(10)-H(10A)	107.8
C(12)-C(10)-H(10A)	107.8
O(3)-C(11)-O(4)	124.1(4)
O(3)-C(11)-C(10)	119.8(4)
O(4)-C(11)-C(10)	116.1(4)
C(17)-C(12)-C(13)	118.5(3)
C(17)-C(12)-C(10)	119.5(3)
C(13)-C(12)-C(10)	121.9(3)
C(14)-C(13)-C(12)	121.3(3)
C(14)-C(13)-H(13A)	119.3
C(12)-C(13)-H(13A)	119.3
C(13)-C(14)-C(15)	117.6(3)
C(13)-C(14)-C(18)	122.2(4)
C(15)-C(14)-C(18)	120.1(3)
C(16)-C(15)-C(14)	123.2(3)
C(16)-C(15)-H(15A)	118.4
C(14)-C(15)-H(15A)	118.4
C(17)-C(16)-C(15)	117.1(4)
C(17)-C(16)-C(19)	121.6(4)
C(15)-C(16)-C(19)	121.3(3)
C(16)-C(17)-C(12)	122.2(4)
C(16)-C(17)-H(17A)	118.9
C(12)-C(17)-H(17A)	118.9
C(14)-C(18)-H(18A)	109.5
C(14)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(14)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(16)-C(19)-H(19A)	109.5
C(16)-C(19)-H(19B)	109.5

H(19A)-C(19)-H(19B)	109.5
C(16)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}	
N	49(2)	41(2)	66(2)	-6(2)	5(2)	20(2)	
O(1)	61(2)	82(2)	112(3)	-25(2)	22(2)	-4(2)	
C(1)	49(3)	62(3)	64(3)	-1(2)	14(2)	13(2)	
O(2)	49(2)	66(2)	91(2)	-10(2)	-3(2)	17(1)	
C(2)	53(3)	57(3)	58(3)	1(2)	9(2)	26(2)	
O(3)	72(2)	63(2)	72(2)	2(2)	-9(2)	8(2)	
C(3)	71(3)	103(4)	69(3)	3(3)	13(3)	48(3)	
O(4)	67(2)	80(2)	75(2)	22(2)	6(2)	25(2)	
C(4)	110(5)	112(5)	87(4)	15(3)	24(4)	80(4)	
C(5)	138(5)	58(3)	99(4)	3(3)	23(4)	53(3)	
C(6)	84(3)	51(3)	92(4)	-5(2)	14(3)	21(3)	
C(7)	50(2)	47(2)	68(3)	-2(2)	9(2)	18(2)	
C(8)	54(3)	51(2)	51(3)	0(2)	4(2)	17(2)	
C(9)	77(3)	50(2)	65(3)	4(2)	7(2)	29(2)	
C(10)	56(3)	49(2)	56(3)	1(2)	9(2)	20(2)	
C(11)	58(3)	46(2)	61(3)	8(2)	9(2)	29(2)	
C(12)	52(2)	47(2)	56(3)	4(2)	11(2)	24(2)	
C(13)	59(3)	39(2)	55(3)	-6(2)	-4(2)	7(2)	
C(14)	51(2)	45(2)	63(3)	-4(2)	1(2)	20(2)	
C(15)	57(3)	42(2)	68(3)	-8(2)	0(2)	24(2)	
C(16)	55(3)	47(2)	66(3)	-3(2)	2(2)	18(2)	
C(17)	47(2)	58(3)	64(3)	5(2)	6(2)	18(2)	
C(18)	65(3)	74(3)	107(4)	-9(3)	-14(3)	34(2)	
C(19)	73(3)	66(3)	118(4)	-31(3)	-13(3)	12(2)	

Table 4. Anisotropic displacement parameters (Å² x 10³) for **2n**. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h² a*² U¹¹ + ... + 2 h k a* b* U¹²]

	Х	У	Z	U(eq)
H(3A)	11397	4278	6493	91
H(4B)	6354	5736	10305	110
H(4A)	10745	1783	5760	110
H(5A)	7956	311	5309	111
H(6A)	5620	1274	5434	91
H(9A)	5253	6665	6619	75
H(9B)	7039	7737	6320	75
H(10A)	8189	7840	8312	63
H(13A)	3895	8188	7657	65
H(15A)	5317	12474	8847	65
H(17A)	8817	10290	8974	67
H(18A)	1737	9439	7558	121
H(18B)	2454	11167	7360	121
H(18C)	2044	10617	8618	121
H(19A)	8163	13814	9633	135
H(19B)	9605	13319	9083	135
H(19C)	9108	12798	10332	135

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$) for **2n**.

C(8)-N-C(1)-O(1)	177.5(4)
C(9)-N-C(1)-O(1)	6.8(6)
C(8)-N-C(1)-C(2)	-3.3(4)
C(9)-N-C(1)-C(2)	-174.0(3)
O(1)-C(1)-C(2)-C(7)	-178.4(5)
N-C(1)-C(2)-C(7)	2.4(4)
O(1)-C(1)-C(2)-C(3)	0.8(8)
N-C(1)-C(2)-C(3)	-178.3(4)
C(7)-C(2)-C(3)-C(4)	1.6(6)
C(1)-C(2)-C(3)-C(4)	-177.6(4)
C(2)-C(3)-C(4)-C(5)	-2.1(7)
C(3)-C(4)-C(5)-C(6)	2.0(8)
C(4)-C(5)-C(6)-C(7)	-1.3(7)
C(5)-C(6)-C(7)-C(2)	0.8(6)
C(5)-C(6)-C(7)-C(8)	179.5(4)
C(3)-C(2)-C(7)-C(6)	-1.0(7)
C(1)-C(2)-C(7)-C(6)	178.3(4)
C(3)-C(2)-C(7)-C(8)	180.0(4)
C(1)-C(2)-C(7)-C(8)	-0.7(4)
C(1)-N-C(8)-O(2)	-176.6(4)
C(9)-N-C(8)-O(2)	-5.9(6)
C(1)-N-C(8)-C(7)	2.9(4)
C(9)-N-C(8)-C(7)	173.6(3)
C(6)-C(7)-C(8)-O(2)	-0.8(7)
C(2)-C(7)-C(8)-O(2)	178.2(4)
C(6)-C(7)-C(8)-N	179.8(4)
C(2)-C(7)-C(8)-N	-1.3(4)
C(1)-N-C(9)-C(10)	-68.7(5)
C(8)-N-C(9)-C(10)	121.8(4)
N-C(9)-C(10)-C(11)	-60.9(4)
N-C(9)-C(10)-C(12)	175.8(3)
C(9)-C(10)-C(11)-O(3)	-39.7(5)
C(12)-C(10)-C(11)-O(3)	85.6(4)
C(9)-C(10)-C(11)-O(4)	142.2(3)
C(12)-C(10)-C(11)-O(4)	-92.5(4)
C(11)-C(10)-C(12)-C(17)	111.8(4)

Table 6.Torsion angles [°] for 2n.

C(9)-C(10)-C(12)-C(17)	-124.4(4)
C(11)-C(10)-C(12)-C(13)	-67.3(4)
C(9)-C(10)-C(12)-C(13)	56.5(5)
C(17)-C(12)-C(13)-C(14)	-0.3(6)
C(10)-C(12)-C(13)-C(14)	178.8(3)
C(12)-C(13)-C(14)-C(15)	-0.6(5)
C(12)-C(13)-C(14)-C(18)	-178.1(4)
C(13)-C(14)-C(15)-C(16)	1.3(6)
C(18)-C(14)-C(15)-C(16)	178.9(4)
C(14)-C(15)-C(16)-C(17)	-1.0(6)
C(14)-C(15)-C(16)-C(19)	-179.3(4)
C(15)-C(16)-C(17)-C(12)	0.0(6)
C(19)-C(16)-C(17)-C(12)	178.3(4)
C(13)-C(12)-C(17)-C(16)	0.6(6)
C(10)-C(12)-C(17)-C(16)	-178.6(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 2n [Å and °].

D-H...A

d(D-H) d(H...A) d(D...A) <(DHA)

S-27

S-35

