Supplementary Information

3,3-Dibromo-2-trifluoromethyl-acrylic acid ethyl ester: A Versatile Platform for the Stereoselective Preparation of Functionalized- α -Trifluoromethyl α , β -Unsaturated Lactones and Trifluoromethyl Pyrazolinones

Satoshi Mizuta,¹* Hiroki Otaki,¹ Kanami Kitamura,¹ Kodai Nishi,² Ken Watanabe,¹ Juliann Nzembi Makau,¹ Ryo Hashimoto,³ Toshiya Usui,³ and Kenya Chiba³

¹Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
²Department of Radioisotope Medicine, Atomic Bomb Disease institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
³Nishiisahaya Hospital, 3015 Kaizu-machi, Isahaya, Nagasaki 854-0063, Japan

Table of contents

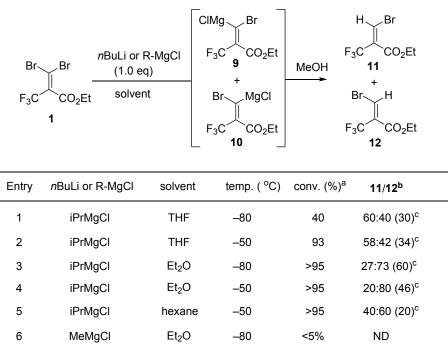
1. General information	1-2
2. Experiments for mono-metalation of 1 and 13	2-5
3. Computational methods	5-6
4. Experimental Procedures and Characterization Data	
4-1.General procedure for reaction of 1 with ketones	6-12
4-2. General procedure for reaction of 1 with hydrazine derivatives	12-14
4-3. General procedure for Pd-catalyzed cross-coupling reactions	14-21
4-4.Crystal data for 30c	21-24
5. References	24
6. NMR spectra	24-73

1. General Information

All NMR spectra were recorded on Varian 500PS spectrometers. ¹H ¹³C and ¹⁹F NMR spectra are reported as chemical shifts (δ) in parts per million (ppm) relative to the solvent peak using tetramethylsilane, and trichlorofluoromethane (¹⁹F) as an internal standard. Chemical shifts (δ) are quoted in parts per million (ppm) and coupling constants (*J*) are measured in hertz (Hz). The following abbreviations are used to describe multiplicities s=singlet, d=doublet, t=triplet, q=quartet, quint.=quintet, sext.=sextet, sept.=septet br=broad, m=multiplet. NMR spectra were processed in ACD/SpecManager. High resolution mass spectra (HRMS, *m/z*) were obtained on JEOL JMS-

700N for FAB using m-nitrobenzylalcohol as a matrix or on JEOL JMS-T100TD for electrospray ionization (ESI+). All reactions were performed in apparatuses with magnetic stirring under an inert atmosphere. Flash column chromatography was performed over Fuji Silysia Chemical Ltd. silica gel C60 (50-200 μ m) using an eluent system as described for each experiment. Thin-layer chromatography was performed using TLC Silica gel 60 F₂₅₄ aluminum sheets (Merck) and silica gel F₂₅₄ glass plates (Merck).

Materials.


Ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) was prepared according to a literature procedure.^[1] *i*-PrMgCl (2.0 M, in Et₂O) were purchased from Sigma-Aldrich. Unless noted otherwise, all starting materials and reagents were obtained from commercial suppliers and were used without further purification. All chemicals were purchased from Sigma-Aldrich, Nacalai tesque, Tokyo Chemical Industry and Wako Pure Chemical Industries and used as received. All solvents were purchased from Wako Pure Chemical Industries.

2. Experiments for mono-metalation of 1 and 13

Table 1	Duandina			manation of 1
Table L.	Bromine-	magnesium	exchange	reaction of 1

7

*n*BuLi

^a The conversion was determined by ¹⁹F NMR analysis. ^b The ratio was based on the relative integration ratio in ¹⁹F NMR spectrum. ^c Numbers in parenthese represent the yield base on internal standard of benzotrifluoride

-80

<5%

ND

Et₂O

General procedure for monometalation of 1

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (98 mg, 0.3 mmol) in Et₂O (2.0 mL) was added *i*-PrMgCl (150 µL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min, methanol (500 µL) was added at same temperature and the mixture was allowed to warm to room temperature. The mixture was extracted with Et₂O, washed with H₂O and brine. The organic layers were dried over MgSO₄ and concentrated carefully under vacuum. The ratio of isomers was carefully determined by ¹H and ¹⁹F NMR of the crude mixtures because it was difficult to isolate products due to their volatility. A mixture of **11** and **12** was obtained in a ratio of 27:73 (Entry 3, Table 1). The stereochemistry for **11** is determined to (*E*)-configuration by analogy based on the H-F coupling constant. ^{[2],[3]} According to the data in the reference,^[2] the H-F coupling constant values *J*-*H-F* of (*E*)-1-bromo-3,3,3-trifluoro-2-{[(methoxymethoxy]methyl}prop-1-ene is 1.7 Hz (quartet). It is also notable that the chemical shift of C3 proton of the *Z* isomer appeared at a higher field ($\Delta\delta$ 0.4 Hz) than the corresponding (*E*) isomer. These tendencies are supportive to the assignment of *E*/*Z* stereochemistry for **3**-bromoacrylate **11** and **12**. Moreover, the crude mixture were detectable by Mass spectrometry ([M+1]⁺ = 248).

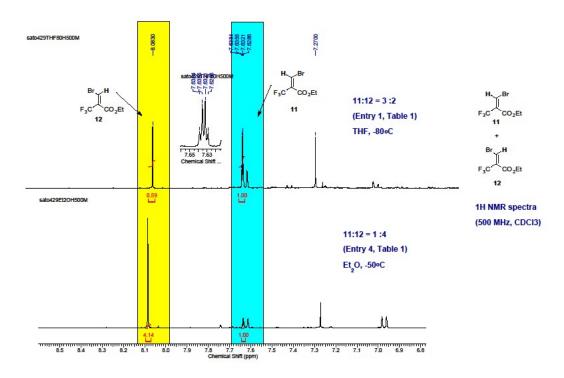
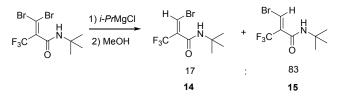


Fig. 1

(Top): ¹H NMR spectrum of crude mixture of reaction for while stirring 15 min at -80 °C in THF before quenching methanol (Entry 1, Tabel 1), (bottom) ¹H NMR spectrum of crude mixture of reaction for while stirring for 15 min at -50 °C in Et₂O before quenching methanol (Entry 4, Table 1).

Synthetic procedure for 3,3-dibromo-N-(tert-butyl)-2-(trifluoromethyl)acrylamide 13


$$F_{3}C \xrightarrow{O} CF_{3} \xrightarrow{CN} F_{3}C \xrightarrow{O} CF_{3} \xrightarrow{CN} F_{3}C \xrightarrow{O} F_{3}C \xrightarrow{O} CH_{2}Cl_{2}} F_{3}C \xrightarrow{O} \xrightarrow{O} CH_{2}Cl_{2} \xrightarrow{CH_{2}Cl_{2}} rt, 24 h} \xrightarrow{Br} F_{3}C \xrightarrow{O} \xrightarrow{Br} H$$

N-(tert-butyl)-3,3,3-trifluoro-pyruvylamide acetal: To a solution of tert-butyl isocyanide (830 mg, 10 mmol) in CH₂Cl₂ (20 mL) was added trifluoroacetic anhydride (1.69 mmol, 12 mnol) at -50 °C under argon. After stirring for 10 hrs at same temperature, distilled water (10 mL) was added, the mixture was allowed to wart to room temperature. The organic layer was separated, the aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washeed with brine , dried over MaSO₄, and concentrated in *vacuo*. The residue was purified by column chromatography on SiO₂ gel (Elute: hexane-AcOEt = 8:1 to 4:1) to afford the product (715 mg, 33%) as a white solid. ¹H NMR (500 MHz, acetone-d6) δ 1.34 (s, 9H), 6.60 (br. s, 2OH), 6.95 (br. s, NH); ¹³C NMR (125 MHz, acetone-d6) δ 28.5, 52.5, 91.7 (q, *J* = 32.2 Hz), 123.6 (q, *J* = 286.1 Hz), 166.6; ¹⁹F NMR (470 MHz, acetone-d6) δ -84.0 (s, 3F); HRMS (FAB) *m/z* Calcd for C₇H₁₃F₃NO₃ [M+H]⁺ 216.0848, found 216.0848. M.p. = 113 °C.

3,3-dibromo-*N*-(*tert*-butyl)-2-(trifluoromethyl)acrylamide (13): To a solution of PPh₃ (843 mg, 3.2 mmol) in CH₂Cl₂ (5.0 mL) was added CBr₄ (637 mg, 2.0 mmol) at 0 °C. After stirring for 10 min at same temperature, *N*-(tert-butyl)-3,3,3-trifluoro-pyruvylamide acetal (350 mg, 1.6 mmol) was added to the mixture, then it was stirred for 12 hrs at room temperature. The precipitate was filtered off through a pad of Celite, washed with CH₂Cl₂. The filtrate was concentrated in *vacuo*. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 8:1) to afford the product (44 mg, 8%) as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 1.41 (s, 9H), 5.59 (br. s, N*H*); ¹³**C** NMR (125 MHz, CDCl₃) δ 28.3, 52.9, 102.3 (q, *J* = 4.7 Hz), 120.6 (q, *J* = 274.7), 135.7 (q, *J* = 34.1 Hz), 159.8; ¹⁹**F** NMR (470 MHz, CDCl₃) δ –59.8 (s, 3F); **HRMS** (FAB) *m*/*z* Calcd for C₈H₁₁Br₂F₃NO [M+H]⁺ 351.9159, found 351.9160. M.p. = 140 °C.

General procedure for monometalation of 13

To a solution of 3,3-dibromo-*N*-(*tert*-butyl)-2-(trifluoromethyl)acrylamide (**13**) (35 mg, 0.1 mmol) in Et₂O (2.0 mL) was added *i*-PrMgCl (50 μ L, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min, methanol (200 μ L) was added at same temperature and the mixture was allowed

to warm to room temperature. The mixture was extracted with Et_2O , washed with H_2O and brine. The organic layers were dried over MgSO₄ and concentrated carefully under vacuum. The ratio of isomers was carefully determined by ¹H and ¹⁹F NMR of the crude mixtures.

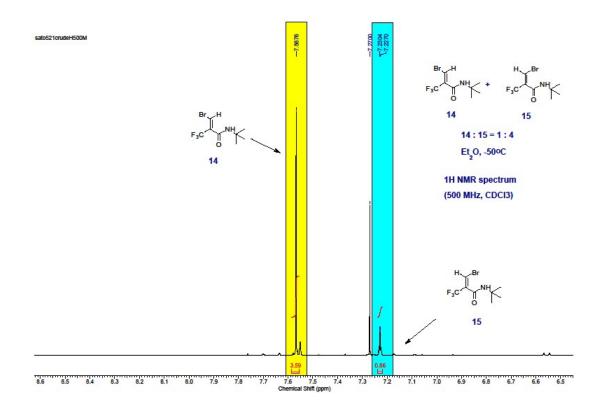
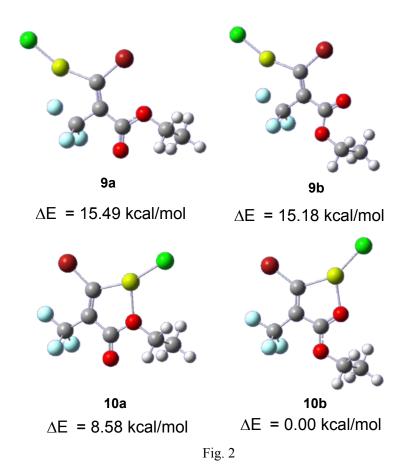



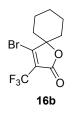
Fig. 2

¹H NMR spectrum of crude mixture of reaction for while stirring for 15 min at -50 °C in Et₂O before quenching methanol.

3. Computational methods

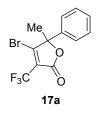
All DFT calculations were performed by using Gaussian 09, Revision D.01. Initial four structures were generated and optimized with UFF force field by using *Avogadro*.^[4] The geometries were further optimized at B3LYP/cc-pVDZ level of theory, and it found that the geometry of the 5-membered metallacycle **10b** is most stable than alternative geometries **9a**, **9b** and **10a** (Fig. 2).

4. Experimental Procedures and Characterization Data


4-1. General procedure for reaction of 1 with ketones

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (652 mg, 2.0 mmol) in Et₂O (8.0 mL) was added *i*-PrMgCl (1.0 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, cyclopentanone (212 µL, 2.4 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-acetone, 10:1) to afford the product (251 mg, 44%) as a white solid.

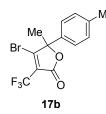
4-Bromo-3-(trifluoromethyl)-1-oxaspiro[4.4]non-3-en-2-one (16a) ¹**H NMR** (500 MHz, CDCl₃) δ 1.92–2.05 (m, 6H), 2.20–2.24 (m, 2H); ¹³**C NMR** (125 MHz, CDCl₃)


δ 25.3, 37.4, 97.5, 119.4 (q, *J* = 270.0 Hz), 122.0 (q, *J* = 36.0 Hz), 156.7 (q, *J* = 2.8 Hz), 163.6 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ –62.7 (s, 3F); HRMS (FAB) *m/z* Calcd for C₉H₉BrF₃O₂ [M+H]⁺ 284.9738, found 284.9738. M.p. = 73 °C.

4-Bromo-3-(trifluoromethyl)-1-oxaspiro[4.5]dec-3-en-2-one (16b)

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (652 mg, 2.0 mmol) in Et₂O (8.0 mL) was added *i*-PrMgCl (1.0 mL, 2.0 M, in Et₂O) dropwise at -80 °C under argon. After stirring for 15 min at same temperature, cyclohexanone (248 µL, 2.4 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 10:1) to afford the product (228 mg, 38%) as a white solid.

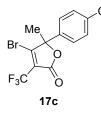
¹**H** NMR (500 MHz, CDCl₃) δ 1.23–1.33 (m, 1H), 1.59–1.62 (m, 2H), 1.70–1.83 (m, 5H), 1.95 (dt, *J* = 4.4 Hz, 13.5 Hz, 2H); ¹³**C** NMR (125 MHz, CDCl₃) δ 21.3, 24.0, 33.3, 89.5, 119.5 (q, *J* = 270.0 Hz), 121.4 (q, *J* = 36.0 Hz), 158.9 (t, *J* = 2.8 Hz), 163.6 (d, *J* = 1.9 Hz); ¹⁹**F** NMR (470 MHz, CDCl₃) δ –62.7 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₁₀H₁₁BrF₃O₂ [M+H]⁺ 298.9895, found 298.9889. M.p. = 123 °C.



4-Bromo-5-methyl-5-phenyl-3-(trifluoromethyl)furan-2-one (17a)

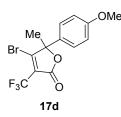
To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (652 mg, 2.0 mmol) in Et₂O (8.0 mL) was added *i*-PrMgCl (1.0 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, acetophenone (240 µL, 2.0 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-acetone, 10:1) to afford the product (265 mg, 41%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 2.03 (s, 3H), 7.39–7.45 (m, 5H); ¹³**C NMR** (125 MHz, CDCl₃) δ 23.4, 89.6, 119.4 (q, *J* = 270.0 Hz), 121.2 (q, *J* = 36.0 Hz), 125.6, 129.0, 129.7, 134.9, 158.9 (t, *J* = 2.8


Hz), 164.0 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ –62.7 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₂H₉BrF₃O₂ [M+H]⁺ 320.9738, found 320.9740. M.p.= 65 °C.

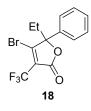
4-Bromo-5-methyl-5-(p-tolyl)-3-(trifluoromethyl)furan-2-one (17b)

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, 4'-methylacetophenone (161 µL, 1.2 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-acetone, 95:5) to afford the product (124 mg, 37%) as a white solid.


¹**H** NMR (500 MHz, CDCl₃) δ 2.00 (s, 3H), 2.37 (s, 3H), 7.23–7.26 (m, 5H); ¹³**C** NMR (125 MHz, CDCl₃) δ 21.0, 23.3, 89.6, 119.5 (q, *J* = 270.0 Hz), 121.0 (q, *J* = 36.0 Hz), 125.5, 129.7, 131.9, 139.9, 159.1 (t, *J* = 2.8 Hz), 164.1 (d, *J* = 1.9 Hz); ¹⁹**F** NMR (470 MHz, CDCl₃) δ –62.7 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₃H₁₁BrF₃O₂ [M+H]⁺ 334.9895, found 334.9895. M.p.= 43 °C.

4-Bromo-5-(4-chlorophenyl)-5-methyl-3-(trifluoromethyl)furan-2-one (17c)

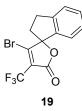
To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, 4'-chloroacetophenone (156 µL, 1.2 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-acetone, 95:5) to afford the product (110 mg, 31%) as a white solid.


¹**H NMR** (500 MHz, CDCl₃) δ 2.00 (s, 3H), 7.32 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 23.6, 89.0, 119.3 (q, J = 270.0 Hz), 121.4 (q, J = 36.0 Hz), 127.1, 129.3, 133.6, 136.0, 158.4 (q, J = 2.8 Hz), 163.7 (d, J = 1.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.7 (s, 3F); **HRMS** (FAB) m/z Calcd for C₁₂H₈BrClF₃O₂ [M+H]⁺ 354.9348, found 354.9244. M.p. = 105

4-Bromo-5-(4-methoxyphenyl)-5-methyl-3-(trifluoromethyl)furan-2-one (17d)

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, 4'-methoxyacetophenone (180 mg, 1.2 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 8:1) to afford the product (111 mg, 32%) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 2.00 (s, 3H), 3.83 (s, 3H), 6.93 (d, J = 9.1 Hz, 2H), 7.28 (d, J = 9.1 Hz, 2H); ¹³**C** NMR (125 MHz, CDCl₃) δ 23.4, 55.4, 114.4, 119.5 (q, J = 270.0 Hz), 121.2 (q, J = 37.0 Hz), 126.6, 127.1, 159.1 (t, J = 2.8 Hz), 160.6, 164.1 (d, J = 1.9 Hz); ¹⁹**F** NMR (470 MHz, CDCl₃) δ -62.7 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₃H₁₁BrF₃O₃ [M+H]⁺ 350.9844, found 350.9849. M.p. = 77 °C.



4-Bromo-5-ethyl-5-phenyl-3-(trifluoromethyl)furan-2-one (18)

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, propiophenone (159 µL, 1.2 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (Elute: hexane-acetone = 98:2 to 95:5) to afford the product (100 mg, 30%) as a white solid.

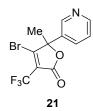
¹**H** NMR (500 MHz, CDCl₃) δ 0.96 (t, J = 7.4 Hz, 3H), 2.34 (dq, J = 7.1, 14.4 Hz, 1H), 2.48 (dq, J = 7.4, 14.4 Hz, 1H), 7.42–7.44 (m, 5H); ¹³**C** NMR (125 MHz, CDCl₃) δ 6.94, 29.1, 92.0, 119.4 (q, J = 270.0 Hz), 122.0 (q, J = 36.0 Hz), 125.7, 129.0, 129.5, 134.6, 157.9 (q, J = 2.8 Hz), 164.3 (d, J = 1.9 Hz); ¹⁹**F** NMR (470 MHz, CDCl₃) δ –62.5 (s, 3F); **HRMS** (FAB) *m*/*z* Calcd for C₁₃H₁₁BrF₃O₂

[M+H]⁺ 334.9895, found 334.9894. M.p. = 63 °C.

3-Bromo-4-(trifluoromethyl)-2',3'-dihydro-5H-spiro[furan-2,1'-inden]-5-one (19)

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, 1-indanone (120 µL, 1.0 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 10:1) to afford the product (105 mg, 32%) as a white solid.

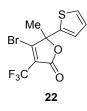
¹**H NMR** (500 MHz, CDCl₃) δ 2.57 (ddd, J = 4.4, 8.6, 14.4 Hz, 1H), 2.77 (ddd, J = 6.4, 8.8, 14.4 Hz, 1H), 3.18 (ddd, J = 4.4, 8.6, 16.2 Hz, 1H), 3.33 (m, 1H), 7.06 (dd, J = 0.5, 7.9 Hz, 1H), 7.32 (tq, J = 1.3, 7.6 Hz, 1H), 7.38 (d,quint., J = 1.0, 7.6 Hz, 1H), 7.44 (dt, J = 1.0, 7.4 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 30.4, 35.7, 98.2, 121.6 (q, J = 270.0 Hz), 122.4 (q, J = 36.0 Hz), 123.2, 125.5, 127.8, 131.0, 136.3, 145.3, 155.5 (t, J = 2.8 Hz), 163.5 (t, J = 1.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.5 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₁₃H₉BrF₃O₂ [M+H]⁺ 332.9738, found 332.9739. M.p.= 142 °C.



4-Bromo-5,5-diethyl-3-(trifluoromethyl)furan-2(5H)-one (20)

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, 3-pentanone (122 µL, 1.2 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 10:1) to afford the product (112 mg, 39%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 0.83 (t, *J* = 7.4 Hz, 6H), 1.89 (dq, *J* = 7.6, 14.7 Hz, 2H), 2.02 (dq, *J* = 7.4, 14.7 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 6.53, 29.3, 92.9, 119.4 (q, *J* = 270 Hz), 233.7 (t, *J*


= 36.0 Hz), 156.1 (t, J = 2.9 Hz), 164.2 (d, J = 1.9 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –62.6 (s, 3F); HRMS (FAB) *m/z* Calcd for C₉H₁₁BrF₃O₂ [M+H]⁺ 286.9895, found 286.9894. M.p.= 71 °C.

4-Bromo-5-(pyridin-3-yl)-5-methyl-3-(trifluoromethyl)furan-2-one (21)

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, 3-acetylpyridine (132µL, 1.2 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 8:1) to afford the product (106 mg, 33%) as an orange oil.

¹**H NMR** (500 MHz, CDCl₃) δ 2.05 (s, 3H), 7.39 (dd, J = 4.9, 8.1 Hz, 1H), 7.70–7.72 (m, 1H), 8.67 (d, J = 4.7 Hz, 1H), 8.71 (s, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 23.6, 88.1, 119.2 (q, J = 270.0 Hz), 121.7 (q, J = 36.0 Hz), 123.8, 131.4, 133.5, 146.8, 150.6, 157.8 (q, J = 2.8 Hz), 163.3 (t, J = 1.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ –62.8 (s, 3F); **HRMS** (FAB) *m*/*z* Calcd for C₁₁H₉BrF₃NO₂ [M+H]⁺ 321.9691, found 321.9691.

4-Bromo-5-(thiophen-2-yl)-5-methyl-3-(trifluoromethyl)furan-2-one (22)


To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in Et₂O (4.0 mL) was added *i*-PrMgCl (0.5 mL, 2.0 M, in Et₂O) dropwise at -50 °C under argon. After stirring for 15 min at same temperature, 2-acetylthiophen (131µL, 1.2 mmol) was added and the mixture was allowed to warm to room temperature. The mixture was stirred for 20 h, quenched with sat. NH₄Cl solution and extracted with AcOEt. The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 8:1) to afford the product (115 mg, 35%) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 2.06 (s, 3H), 7.05 (dd, J = 3.7, 5.1 Hz, 1H), 7.14 (dd, J = 1.2, 3.7 Hz, 1H), 7.41 (dd, J = 1.2, 5.2 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 24.9, 87.7, 119.3 (q,J = 270.0

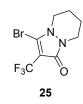
Hz), 121.4 (q, J = 37.0 Hz), 127.0, 127.5, 127.6, 138.4, 157.5 (t, J = 2.8 Hz), 163.1; ¹⁹F NMR (470 MHz, CDCl₃) δ –62.8 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₀H₇BrF₃O₂S [M+H]⁺ 326.9302, found 326.9305. M.p.= 70 °C.

4-2. General procedure for reaction of 1 with hydrazine derivatives

To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in 1,4-dioxane (7.5 mL) was added *N*-benzylhydradine dihydrobromide (341 mg, 1.2 mmol) and *i*-Pr₂NEt (708 μ L, 4.0 mmol) under argon. The mixture was stirred for 10 h at 80 °C. After the reaction was completed the mixture was cooled to room temperature, evaporated to remove the solvent. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 4:1) to afford the product (218 mg, 68%) as a white solid.

1-Benzyl-5-bromo-4-(trifluoromethyl)-1,2-dihydro-pyrazol-3-one (23)

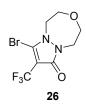
¹**H** NMR (500 MHz, acetone-d6) δ 5.27 (s, 2H), 7.25–7.27 (m, 2H), 7.30–7.32 (m, 1H), 7.34–7.37 (m, 2H); ¹³**C** NMR (125 MHz, acetone-d6) δ 54.3, 98.1 (q, *J* = 37.9), 114.2 (q, *J* = 2.9 Hz), 123.2 (q, *J* = 264.2 Hz), 128.4, 128.9, 129.2, 136.9, 159.4 (q, *J* = 1.9 Hz); ¹⁹**F** NMR (470 MHz, acetone-d6) δ –57.1 (s, 3F); **HRMS** (FAB) *m*/*z* Calcd for C₁₁H₉BrF₃N₂O [M+H]⁺ 320.9850, found 320.9851. M.p.= 159 °C.



5-Bromo-1,2-dimethyl-4-(trifluoromethyl)-1,2-dihydro-pyrazol-3-one (24)

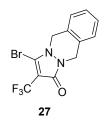
To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (111 mg, 0.34 mmol) in 1,4-dioxane (5.0 mL) was added *N*,*N'*-dimethylhydradine dihydrobromide (130 mg, 0.41 mmol) and *i*-Pr₂NEt (210 μ L, 3.5 mmol) under argon. The mixture was stirred for 10 h at 80 °C. After the reaction was completed the mixture was cooled to room temperature, evaporated to remove the solvent. The residue was purified by column chromatography on SiO₂ gel (Elute: hexane-AcOEt = 1:1 to AcOEt) to afford the product (56 mg, 63%) as a yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 3.42 (s, 3H), 3.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 29.4, 34.5, 100.3 (q, J = 36.0 Hz), 121.7 (q, J = 265.2 Hz), 126.3 (q, J = 2.8 Hz), 159.5 (q, J = 1.9Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -58.5 (s, 3F); HRMS (FAB) m/z Calcd for C₆H₇BrF₃N₂O [M+H]⁺


258.9694, found 258.9693. M.p.= 127 °C.

5-Bromo-4-(trifluoromethyl)-1,2-tetramethylene-1,2-dihydro-pyrazol-3-one (25)

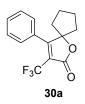
To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (630 mg, 1.9 mmol) in 1,4-dioxane (15.0 mL) was added hexahydropyridazine dihydrobromide (528 mg, 2.1 mmol) and *i*-Pr₂NEt (1.2 mL, 6.7 mmol) under argon. The mixture was stirred for 10 h at 100 °C. After the reaction was completed the mixture was cooled to room temperature, evaporated to remove the solvent. The residue was purified by column chromatography on SiO₂ gel (Elute: hexane-AcOEt = 1:1 to AcOEt) to afford the product (393 mg, 71%) as a brown solid.


¹**H** NMR (500 MHz, CDCl₃) δ 1.89–1.95 (m, 2H), 2.00–2.04 (m, 2H), 3.73–3.79 (m, 4H); ¹³**C** NMR (125 MHz, CDCl₃) δ 21.6, 22.5, 41.9, 47.9, 121.7 (q, *J* = 266.2 Hz), 128.2 (q, *J* = 2.9 Hz), 160.1 (q, *J* = 1.9 Hz); ¹⁹**F** NMR (470 MHz, CDCl₃) δ –58.6 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₈H₉BrF₃N₂O [M+H]⁺ 284.9850, found 284.9854. M.p.= 105 °C.

5-Bromo-4-(trifluoromethyl)- 1,2-oxydiethylene-1,2-dihydro-pyrazol-3-one (26)

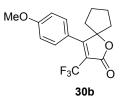
To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in 1,4-dioxane (10 mL) was added [1,3,5]oxadiazepane dihydrobromide (314 mg, 1.2 mmol) and *i*-Pr₂NEt (708 μ L, 4.0 mmol) under argon. The mixture was stirred for 12 h at 100 °C. After the reaction was completed the mixture was cooled to room temperature, evaporated to remove the solvent. The residue was purified by column chromatography on SiO₂ gel (AcOEt) to afford the product (250 mg, 83%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 3.87–3.88 (m, 1H), 3.90–3.92 (m, 1H), 4.25–4.27 (m, 1H), 4.33 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 45.7, 51.6, 69.3, 70.3, 99.3 (t, *J* = 37.0 Hz), 121.7 (q, *J* = 265.2 Hz), 122.8 (q, *J* = 2.8 Hz), 157.7 (q, *J* = 1.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ –58.4 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₈H₉BrF₃N₂O₂ [M+H]⁺ 300.9799, found 300.9799. M.p.= 226 °C.


3-Bromo-2-(trifluoromethyl)-5,10-dihydro-pyrazolo[1,2-b]phthalazin-1-one (27)

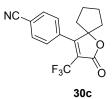
To a solution of ethyl 3,3-dibromo-2-trifluoromethylacrylate (1) (326 mg, 1.0 mmol) in 1,4-dioxane (10 mL) was added 1,2,3,4-tetrahydrophthalazine (155 mg, 1.2 mmol) and *i*-Pr₂NEt (349 μ L, 2.0 mmol) under argon. The mixture was stirred for 12 h at 100 °C. After the reaction was completed the mixture was cooled to room temperature, evaporated to remove the solvent. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt, 2:1) to afford the product (193 mg, 58%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 4.99 (s, 2H), 4.99 (s, 2H), 7.28–7.41 (m, 4H); ¹³**C NMR** (125 MHz, CDCl₃) δ 44.4, 49.0, 101.7 (q, *J* = 36.0 Hz), 120.6 (q, *J* = 266.2 Hz), 126.2 (q, *J* = 2.9 Hz), 126.3, 126.7, 127.0 128.1, 128.1, 128.6, 159.6 (q, *J* = 1.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ –58.5 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₁₂H₉BrF₃N₂O [M+H]⁺ 332.9850, found 332.9849. M.p.= 201 °C.


4-3. General procedure for Pd-catalyzed cross-coupling reactions

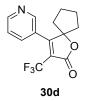
A 10 mL test tube equipped with a magnetic stirring bar and a screw cap was charged with 4-bromo-3-(trifluoromethyl)-1-oxaspiro[4.4]non-3-en-2-one (**16a**) (114mg, 0.4 mmol), PhB(OH)₂ (92 mg, 0.6 mmol), Pd(PPh₃)₄ (23 mg, 0.02 mmol), Na₂CO₃ (85 mg, 0.8 mmol), toluene (1.6 mL) and H₂O (0.4 mL). The mixture was stirred for 10 h at 90 °C. The mixture was diluted with H₂O (10 mL), extracted with AcOEt (20 mL). The organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on SiO₂ gel (hexane-AcOEt , 8:1) to afford the product (104 mg, 92%) as a white solid.

4-Phenyl-3-(trifluoromethyl)-1-oxaspiro[4.4]non-3-en-2-one (30a)


¹**H** NMR (500 MHz, CDCl₃) δ 1.71–1.74 (m, 2H), 1.95–2.07 (m, 4H), 7.20–7.22 (m, 2H), 7.48–7.50 (m, 3H); ¹³**C** NMR (125 MHz, CDCl₃) δ 24.4, 35.8, 97.1, 120.0 (q, *J* = 269.0 Hz), 126.8, 128.7, 129.4, 129.9, 165.7 (m); ¹⁹**F** NMR (470 MHz, CDCl₃) δ –60.8 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₁₅H₁₄F₃O₂ [M+H]⁺ 283.0946, found 283.0944. M.p.= 78 °C.

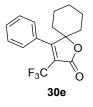
4-(4-Methoxyphenyl)-3-(trifluoromethyl)-1-oxaspiro[4.4]non-3-en-2-one (30b)

Synthesized following general procedure. A mixture of 4-bromo-3-(trifluoromethyl)-1oxaspiro[4.4]non-3-en-2-one (**16a**) (114 mg, 0.4 mmol), 4-methoxyphenyl boronic acid (92 mg, 0.6 mmol), Pd(PPh₃)₄ (23 mg, 0.02 mmol), Na₂CO₃ (85 mg, 0.8 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt , 10:1) to give the product (103 mg, 83%) as a white solid.


¹**H** NMR (500 MHz, CDCl₃) δ 1.70–1.74 (m, 2H), 1.92–2.07 (m, 6H), 3.84 (s, 3H), 6.99 (d, J = 9.1 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 24.6, 36.1, 55.4, 97.1, 114.2, 118.0 (q, J = 270,0 Hz), 118.9 (q, J = 34.1 Hz), 121.3, 128.6, 161.0, 165.9 (q, J = 1.9 Hz), 173.9 (q, J = 2.8 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –60.6 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₆H₁₆F₃O₃ [M+H]⁺ 313.1052, found 313.1054. M.p.= 55 °C.

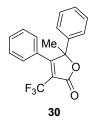
4-(2-Oxo-3-(trifluoromethyl)-1-oxaspiro[4.4]non-3-en-4-yl)benzonitrile (30c)

Synthesized following general procedure. A mixture of 4-bromo-3-(trifluoromethyl)-1oxaspiro[4.4]non-3-en-2-one (**16a**) (114 mg, 0.4 mmol), 4-cyanophenyl boronic acid (88 mg, 0.6 mmol), Pd(PPh₃)₄ (23 mg, 0.02 mmol), Na₂CO₃ (85 mg, 0.8 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (Elute: hexane-AcOEt = 8:1 to 4:1) to give the product (103mg, 76%) as a white solid. Single crystals suitable for X-ray crystallography were grown from a mixture solution of hexane/AcOEt.


¹**H NMR** (500 MHz, CDCl₃) δ 1.69–1.79 (m, 2H), 1.92–2.08 (m, 6H), 7.35 (d, J = 8.6 Hz, 2H), 7.79–7.82 (m, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 24.2, 35.8, 96.7, 114.1, 117.6, 119.6 (q, J = 270.0 Hz), 120.7 (m), 127.8, 132.4, 133.9, 164.7, 170.3 (m); ¹⁹**F NMR** (470 MHz, CDCl₃) δ –60.8 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₁₆H₁₃F₃NO₂ [M+H]⁺ 308.0898, found 308.0884. M.p.= 138 °C.

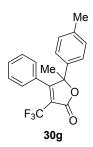
4-(Pyridin-3-yl)-3-(trifluoromethyl)-1-oxaspiro[4.4]non-3-en-2-one (30d)

Synthesized following general procedure. A mixture of 4-bromo-3-(trifluoromethyl)-1oxaspiro[4.4]non-3-en-2-one (**16a**) (89 mg, 0.3 mmol), 3-pyridineboronic acid (55 mg, 0.45 mmol), Pd(PPh₃)₄ (17 mg, 0.015 mmol), Na₂CO₃ (64 mg, 0.6 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 12 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 2:1) to give the product (12 mg, 14%) as a white solid.


¹H NMR (500 MHz, CDCl₃) δ 1.89–1.92 (m, 2H), 2.04–2.11 (m, 4H), 2.23–2.30 (m, 2H), 7.38–7.41 (dd, J = 4.7, 8.6 Hz, 1H), 7.43–7.46 (m, 1H), 8.50 (d, J = 2.4 Hz, 1H), 8.57 (d, J = 4.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 25.8, 36.7, 91.9, 119.3 (q, J = 268 Hz), 124.4, 125.3, 140.4, 147.6, 152.3, 164.8 (q, J = 1.9 Hz), 178.1 (q, J = 1.9 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –58.3 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₄H₁₃F₃NO₂ [M+H]⁺ 284.0898, found 284.0889. M.p.= 111 °C.

4-Phenyl-3-(trifluoromethyl)-1-oxaspiro[4.5]dec-3-en-2-one (30e)

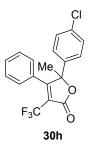
Synthesized following general procedure. A mixture of 4-bromo-3-(trifluoromethyl)-1oxaspiro[4.5]dec-3-en-2-one (**16b**) (120 mg, 0.4 mmol), PhB(OH)₂ (92 mg, 0.6 mmol), Pd(PPh₃)₄ (23 mg, 0.02 mmol), Na₂CO₃ (85 mg, 0.8 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 10:1) to give the product (103 mg, 87%) as a white solid.


¹**H** NMR (500 MHz, CDCl₃) δ 1.07–1.13 (m, 1H), 1.64–1.82 (m, 9H), 7.14–7.18 (m, 2H), 7.45–7.51 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 21.6, 24.1, 32.7, 88.8, 119.0 (q, J = 35.0 Hz), 120.1 (q, J = 270.0 Hz), 126.4, 128.6, 129.6, 129.8, 165.8 (q, J = 1.9 Hz), 175.6 (q, J = 2.9 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –60.8 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₁₆H₁₆F₃O₂ [M+H]⁺ 297.1102, found 297.1103. M.p.= 117 °C.

5-Methyl-4,5-diphenyl-3-(trifluoromethyl)furan-2-one (30f)

Synthesized following general procedure. A mixture of 4-bromo-5-methyl-5-phenyl-3-(trifluoromethyl)furan-2-one (17a) (127 mg, 0.4 mmol), PhB(OH)₂ (92 mg, 0.6 mmol), Pd(PPh₃)₄ (23 mg, 0.02 mmol), Na₂CO₃ (85 mg, 0.8 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 95:5) to give the product (111 mg, 87%) as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 1.90 (s, 3H), 6.74–6.75 (m, 2H), 7.20–7.22 (m, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.38–7.44 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 22.8, 88.8, 117.7 (J = 35.0 Hz), 120.2 (q, J = 270.0 Hz), 125.9, 127.0, 128.2, 128.7, 128.8, 129.3, 130.3, 135.0, 166.2 (q, J = 1.9Hz), 174.8 (q, J = 2.8 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –60.6 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₈H₁₄F₃O₂ [M+H]⁺ 319.0946, found 319.0947. M.p.= 65 °C.



5-Methyl-4-phenyl-5-(*p*-tolyl)-3-(trifluoromethyl)furan-2-one (30g)

Synthesized following general procedure. A mixture of 4-bromo-5-methyl-5-(p-tolyl)-3-(trifluorome-

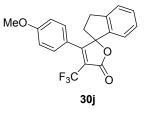
thyl)furan-2-one (**17b**) (100 mg, 0.3 mmol), PhB(OH)₂ (55 mg, 0.45 mmol), Pd(PPh₃)₄ (17 mg, 0.015 mmol), Na₂CO₃ (64 mg, 0.6 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 10:1) to give the product (77 mg, 77%) as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 1.87 (s, 3H), 2.39 (s, 3H), 6.76 (dd, J = 1.5, 8.1 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.42 (tt, J = 1.2, 7.6 Hz, 1H); ¹³**C** NMR (125 MHz, CDCl₃) δ 21.1, 22.8, 88.9, 117.7 (q, J = 35.0 Hz), 120.2 (q, J = 270.0 Hz), 125.9, 127.2, 128.3, 128.9, 129.6, 130.3, 132.0, 139.5, 166.4 (q, J = 1.9Hz), 174.9 (q, J = 2.8 Hz); ¹⁹**F** NMR (470 MHz, CDCl₃) δ -60.6 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₁₉H₁₆F₃O₂ [M+H]⁺ 333.1102, found 333.1103. M.p.= 89 °C.

5-(4-Chlorophenyl)-5-methyl-4-phenyl-3-(trifluoromethyl)furan-2-one (30h)

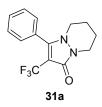
Synthesized following general procedure. A mixture of 4-bromo-5-(4-chlorophenyl)-5-methyl-3-

(trifluoromethyl)furan-2-one (**17c**) (87 mg, 0.24 mmol), PhB(OH)₂ (44 mg, 0.36 mmol), Pd(PPh₃)₄ (13 mg, 0.012 mmol), Na₂CO₃ (51 mg, 0.48 mmol), toluene (1.5 mL) and H₂O (370 μ L) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 10:1) to give the product (64 mg, 75%) as a white solid.


¹**H NMR** (500 MHz, CDCl₃) δ 1.89 (s, 3H), 6.77 (d, J = 8.6 Hz, 2H), 7.13 (d J = 8.8 Hz, 2H), 7.33– 7.37 (m, 4H), 7.45 (tt, J = 1.2, 7.6 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 23.1, 88.3, 118.1 (q, J = 35.0 Hz), 120.0 (q, J = 270.0 Hz), 127.0, 127.3, 128.4, 128.6, 129.1, 130.4, 133.9, 135.5, 165.9 (q, J = 1.9 Hz), 174.3 (q, J = 2.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ –60.7 (s, 3F); **HRMS** (FAB) m/z Calcd for C₁₈H₁₃ClF₃O₂ [M+H]⁺ 353.0561, found 353.0556. M.p.= 77 °C.

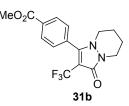
(E)-5-Ethyl-5-phenyl-4-styryl-3-(trifluoromethyl)furan-2-one (30i)

Synthesized following general procedure. A mixture of 4-bromo-5-ethyl-5-phenyl-3-(trifluoromethyl)furan-2-one (**18**) (90 mg, 0.27 mmol), (*E*)- strylboronic acid (60 mg, 0.41 mmol), Pd(PPh₃)₄ (15 mg, 0.013 mmol), Na₂CO₃ (58 mg, 0.48 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 10:1) to give the product (59 mg, 60%) as a glassy oil.


¹**H NMR** (500 MHz, CDCl₃) δ 0.95 (t, J = 7.1 Hz, 3H), 2.45 (dq, J = 7.1, 14.4 Hz, 1H), 2.77 (dq, J = 7.1, 14.4 Hz, 1H), 6.84 (d, J = 16.7 Hz, 1H), 7.20 (dd, J = 0.8, 16.6 Hz, 1H), 7.36–7.47 (m, 5H); ¹³**C NMR** (125 MHz, CDCl₃) δ 7.17, 29.0, 89.5, 115.1 (q, J = 1.9 Hz), 116.7 (q, J = 34.1 Hz), 123.3 (q, J = 270.0 Hz), 126.1, 128.0, 129.1, 129.2, 129.5, 131.0, 134.5, 137.4, 144.4, 166.2 (q, J = 1.9 Hz), 166.5 (q, J = 2.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ -59.3 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₂₁H₁₈F₃O₂ [M+H]⁺ 359.1259, found 359.1255.

3-(4-Methoxyphenyl)-4-(trifluoromethyl)-2',3'-dihydro-spiro[furan-2,1'-inden]-5-one (30j) Synthesized following general procedure. A mixture of 3-bromo-4-(trifluoromethyl)-2',3'-dihydro-5H-spiro[furan-2,1'-inden]-5-one (**19**) (100 mg, 0.3 mmol), 4-methoxyphenyl boronic acid (55 mg, 0.36 mmol) , Pd(PPh₃)₄ (17 mg, 0.015 mmol), Na₂CO₃ (64 mg, 0.6 mmol), toluene (1.6 mL) and

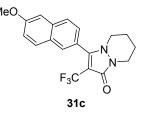
 H_2O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 10:1) to give the product (60 mg, 55%) as a yellow solid.


¹**H NMR** (500 MHz, CDCl₃) δ 2.40 (ddd, J = 5.4, 8.8, 13.9 Hz, 1H), 2.55 (ddd, J = 5.4, 8.6, 13.9 Hz, 1H), 2.60–2.66 (m, 1H), 3.10–3.16 (m, 1H), 3.79 (s, 3H), 6.79 (d, J = 9.3 Hz, 2H), 6.84 (d, J = 9.0 Hz, 2H), 7.28 (d, J = 6.6 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 7.37 (dt, J = 1.0, 7.6 Hz, 1H), 7.44 (dt, J = 1.3, 7.6 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 30.2, 35.4, 55.3, 97.0, 114.0, 116.5 (q, J = 35.0 Hz), 120.0 (q, J = 270 Hz), 120.9, 123.6, 125.5, 127.8, 129.6 (t, J = 1.9 Hz), 130.6, 137.2, 145.1, 161.5, 166.2 (q, J = 1.9 Hz), 171.1 (q, J = 2.9 Hz); ¹⁹**F NMR** (470 MHz, CDCl₃) δ -60.0 (s, 3F); **HRMS** (FAB) m/z Calcd for C₂₀H₁₆F₃O₃ [M+H]⁺ 361.1052, found 361.1050. M.p.= 87 °C.

5-Phenyl-4-(trifluoromethyl)-1,2-tetramethylene-1,2-dihydro-pyrazol-3-one (31a)

Synthesized following general procedure. A mixture of 5-bromo-4-(trifluoromethyl)-1,2tetramethylene-1,2-dihydro-pyrazol-3-one (**25**) (143 mg, 0.5 mmol), PhB(OH)₂ (92 mg, 0.75 mmol), Pd(PPh₃)₄ (29 mg, 0.025 mmol), Na₂CO₃ (106 mg, 1.0 mmol), toluene (2.0 mL) and H₂O (0.5 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (AcOEt only) to give the product (104 mg, 73%) as a white solid.

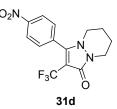
¹**H** NMR (500 MHz, CDCl₃) δ 1.91–1.93 (m, 4H), 3.32–3.34 (m, 2H), 3.85–3.88 (m, 2H), 7.38 (d, *J* = 6.6 Hz, 2H), 7.48–7.55 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 22.0, 22.8, 41.3, 47.7, 122.5 (q, *J* = 266.2 Hz), 126.6, 128.7, 129.0, 130.7, 153.5 (m), 160.9 (q, *J* = 1.9 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –56.5 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₁₄H₁₄F₃N₂O [M+H]⁺ 283.1058, found 283.1053. M.p.=125 °C.



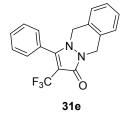
5-(4-methoxycarbonylphenyl)-4-(trifluoromethyl)-1,2-tetramethylene-1,2-dihydro-pyrazol-3one (31b)

Synthesized following general procedure. A mixture of 5-bromo-4-(trifluoromethyl)-1,2-tetramethylene-1,2-dihydro-pyrazol-3-one (25) (143 mg, 0.5 mmol), 4- (methoxycarbonyl)phenylboronic acid (135 mg, 0.75 mmol) , Pd(PPh₃)₄ (29 mg, 0.025 mmol), Na₂CO₃ (106 mg, 1.0 mmol), toluene (2.0 mL) and H₂O (0.5 mL) was stirred for 10 h at 90 °C.

Purified by SiO_2 gel column chromatography (AcOEt only) to give the product (105 mg, 62%) as a white solid.


¹**H NMR** (500 MHz, CDCl₃) δ 1.92–1.93 (m, 4H), 3.31–3.30 (m, 2H), 3.85–3.87 (m, 2H), 3.96 (s, 3H), 7.46 (d, J = 8.3 Hz, 2H), 8.16 (d, J = 8.1 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 21.9, 22.8, 41.4, 47.8, 52.5, 122.3 (q, J = 266.2 Hz), 129.3, 129.9, 130.9, 132.3, 152.2 (q, J = 2.8 Hz), 160.0 (q, J = 1.9 Hz), 165.9; ¹⁹**F NMR** (470 MHz, CDCl₃) δ –56.5 (s, 3F); **HRMS** (FAB) *m/z* Calcd for C₁₆H₁₆F₃N₂O₃ [M+H]⁺ 341.1113, found 341.1114. M.p.=196 °C.

5-(6-Methoxynaphthalen-2-yl)-4-(trifluoromethyl)-1,2-tetramethylene-1,2-dihydro-pyrazol-3-one (31c)


Synthesized following general procedure. A mixture of 5-bromo-4-(trifluoromethyl)-1,2tetramethylene-1,2-dihydro-pyrazol-3-one (**25**) (143 mg, 0.5 mmol), 6-methoxy-2naphthalenebonoronic acid (152 mg, 0.75 mmol), $Pd(PPh_3)_4$ (29 mg, 0.025 mmol), Na_2CO_3 (106 mg, 1.0 mmol), toluene (2.0 mL) and H_2O (0.5 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (AcOEt only) to give the product (140 mg, 77%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 1.90–1.97 (m, 4H), 3.33–3.39 (m, 2H), 3.86–3.92 (m, 2H), 3.96 (s, 3H), 7.19 (br.s, 1H), 7.25 (dd, J = 2.2, 8.8 Hz, 1H), 7.38 (d, J = 8.6 Hz, 1H), 7.80–7.85 (m, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 22.1, 22.9, 41.3, 48.0, 55.4, 100.1 (q, J = 35.0 Hz), 105.7, 120.1, 121.4, 122.6 (q, J = 266.2 Hz), 126.1, 127.4, 128.0, 129.1, 129.9, 135.4, 153.9 (q, J = 2.8 Hz), 159.1, 161.0 (m); ¹⁹**F NMR** (470 MHz, CDCl₃) δ –56.4 (s, 3F); **HRMS** (FAB) *m*/*z* Calcd for C₁₉H₁₈F₃N₂O₂ [M+H]⁺ 363.1320, found 363.1318. M.p.=194 °C.

5-(4-nitrophenyl)-4-(trifluoromethyl)-1,2-tetramethylene-1,2-dihydro-pyrazol-3-one (31d)

Synthesized following general procedure. A mixture of 5-bromo-4-(trifluoromethyl)-1,2tetramethylene-1,2-dihydro-pyrazol-3-one (**25**) (143 mg, 0.5 mmol), 4-nitrophenylbonoronic acid (125 mg, 0.75 mmol), Pd(PPh₃)₄ (29 mg, 0.025 mmol), Na₂CO₃ (106 mg, 1.0 mmol), toluene (2.0 mL) and H₂O (0.5 mL) was stirred for 22 h at 90 °C. Purified by SiO₂ gel column chromatography (AcOEt only) to give the product (100 mg, 61%) as a yellow solid. ¹**H** NMR (500 MHz, CDCl₃) δ 1.92–1.99 (m, 4H), 3.32–3.34 (m, 2H), 3.89–3.91 (m, 2H), 7.61 (d, *J* = 8.8 Hz, 2H), 8.37 (d, *J* = 8.8 Hz, 2H); ¹³**C** NMR (125 MHz, CDCl₃) δ 21.8, 22.7, 41.4, 47.9, 101.4 (q, *J* = 36.0 Hz), 122.1 (q, *J* = 266.2 Hz), 124.0, 130.5, 132.9, 149.2, 150.7 (q, *J* = 2.8 Hz), 160.2 (m); ¹⁹**F** NMR (470 MHz, CDCl₃) δ –56.6 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₁₄H₁₃F₃N₃O₃ [M+H]⁺ 328.0909, found 328.0912. . . M.p.=233 °C.

3-Phenyl -2-(trifluoromethyl)-5,10-dihydro-pyrazolo[1,2-b]phthalazin-1-one (31e)

Synthesized following general procedure. A mixture of -bromo-2-(trifluoromethyl)-5,10-dihydropyrazolo[1,2-b]phthalazin-1-one (**27**) (60 mg, 0.2 mmol), phenylbonoronic acid (33 mg, 0.3 mmol), Pd(PPh₃)₄ (10 mg, 0.01 mmol), Na₂CO₃ (38 mg, 0.4 mmol), toluene (1.6 mL) and H₂O (0.4 mL) was stirred for 10 h at 90 °C. Purified by SiO₂ gel column chromatography (hexane-AcOEt, 1:1) to give the product (33 mg, 56%) as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 4.58 (s, 2H), 5.09 (s, 2H), 7.10 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.36–7.41 (m, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.54–7.61 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 44.0, 48.8, 100.1 (q, J = 35.1 Hz), 122.5 (d, J = 266.2 Hz),126.2, 126.6, 126.9, 127.8, 128.1, 128.4, 128.5, 128.8, 129.0, 129.3, 131.0, 132.1, 152.0 (q, J = 2.9 Hz), 160.6 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ –56.3 (s, 3F); **HRMS** (FAB) *m*/*z* Calcd for C₁₈H₁₄F₃N₂O₃ [M+H]⁺ 331.1058, found 331.1061. M.p.=184 °C.

4-4. Crystal data for 30c

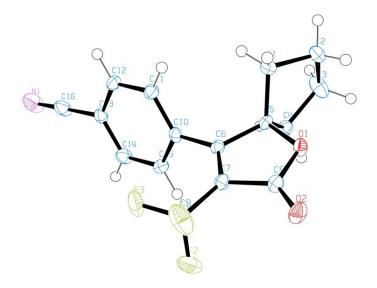


Fig. 2 ORTEP drawing of the X-ray structure of **22c**. Hydrogen atoms are omitted for clarity and ellipsoids displayed at 50% probability.

The crystallographic data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* www.ccdc.cam.ac.jk/data_request/cif (CCDC 1491776)

A. Crystal Data

Empirical Formula	$\mathrm{C}_{16}\mathrm{H}_{12}\mathrm{F}_{3}\mathrm{NO}_{2}$
Formula Weight	307.27
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.220 X 0.070 X 0.040 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 12.057(4) Å
	b = 8.771(2) Å
	c = 14.736(5) Å
	$\beta = 113.287(5)^{0}$
	$V = 1431.4(8) \text{ Å}^3$
Space Group	$P2_{1}/c$ (#14)
Z value	4
D _{calc}	1.426 g/cm ³
F000	632.00
μ(ΜοΚα)	1.202 cm ⁻¹

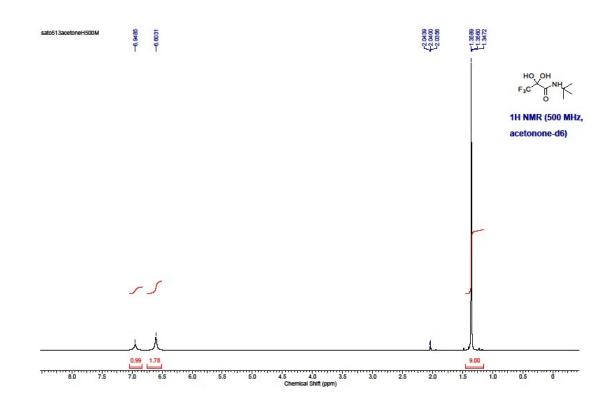
B. Intensity Measurements

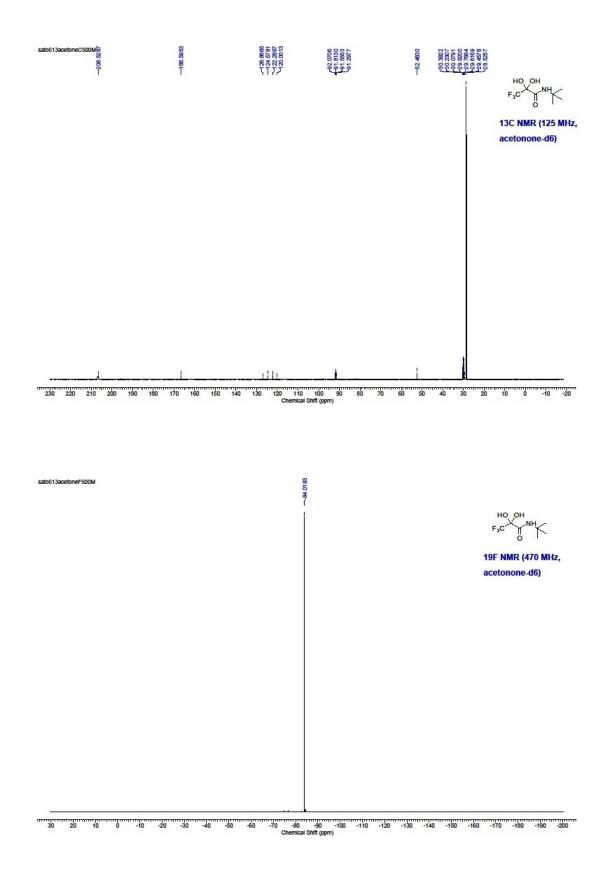
Diffractometer	Saturn724	
Radiation	MoKα (λ = 0.71075 Å)	
	multi-layer mirror monochromated	
Voltage, Current	50kV, 24mA	
Temperature	-180.0°C	
Detector Aperture	72.8 x 72.8 mm	
Data Images	720 exposures	
$ω$ oscillation Range (χ =45.0, ϕ =0.0)	-110.0 - 70.0 ⁰	
Exposure Rate	16.0 sec./ ⁰	
Detector Swing Angle	-20.10 ⁰	
$ω$ oscillation Range (χ =45.0, ϕ =90.0)	-110.0 - 70.00	
Exposure Rate	16.0 sec./ ⁰	
Detector Swing Angle	-20.10 ⁰	
Detector Position	44.98 mm	
Pixel Size	0.141 mm	
20 _{max}	55.0 ⁰	
No. of Reflections Measured	Total: 11584	
	Unique: 3283 ($R_{int} = 0.0548$)	
Corrections	Lorentz-polarization	
	Absorption	

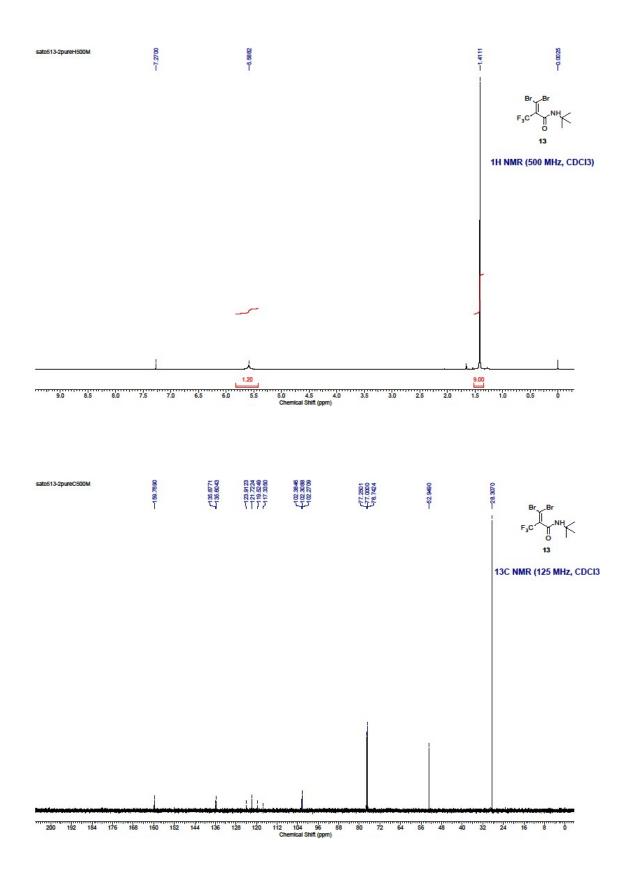
Absorption (trans. factors: 0.881 - 0.995)

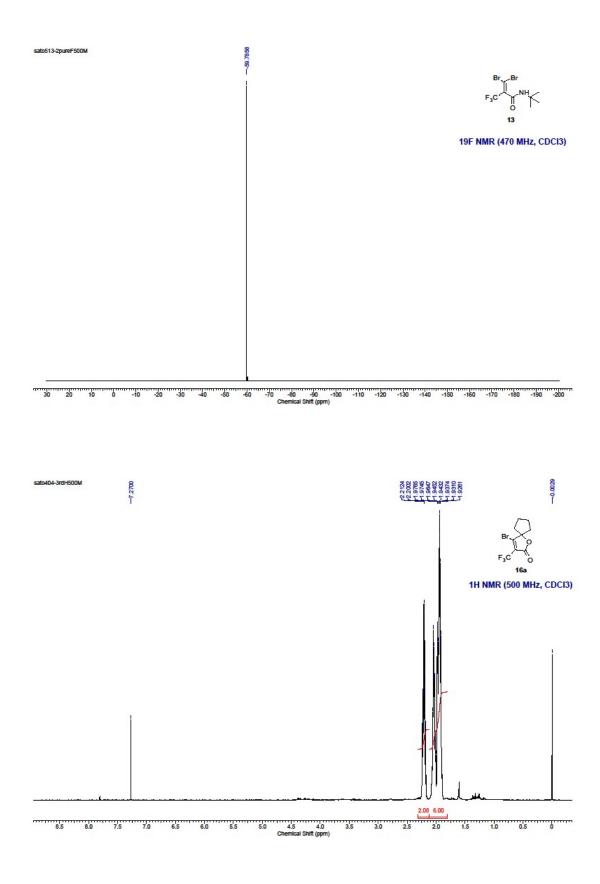
C. Structure Solution and Refinement

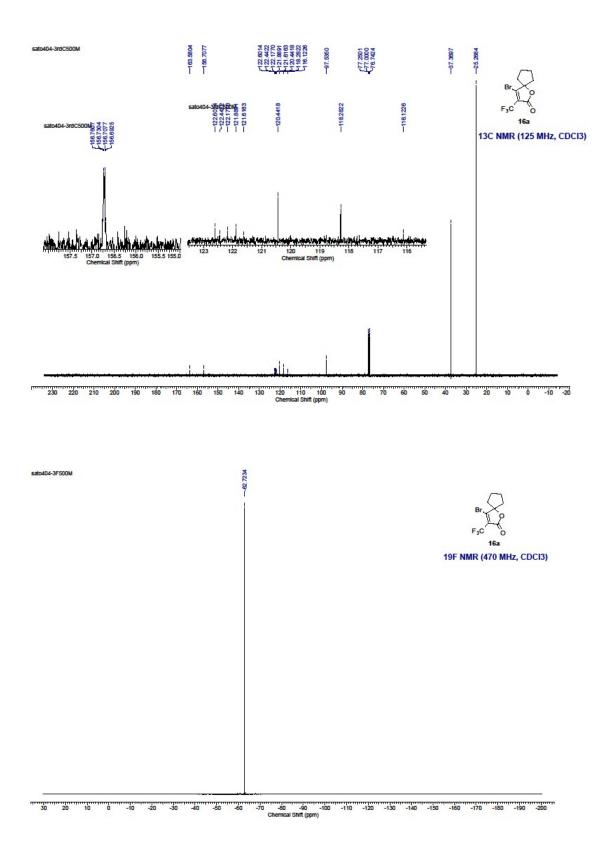
Structure Solution	Direct Methods (SIR2008)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \le (Fo^2 - Fc^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2) + (0.0389 \cdot P)^2$
	+ 0.5104 · P]
	where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
$2\theta_{max}$ cutoff	55.00
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3283
No. Variables	199
Reflection/Parameter Ratio	16.50
Residuals: R1 (I>2.00 σ (I))	0.0578

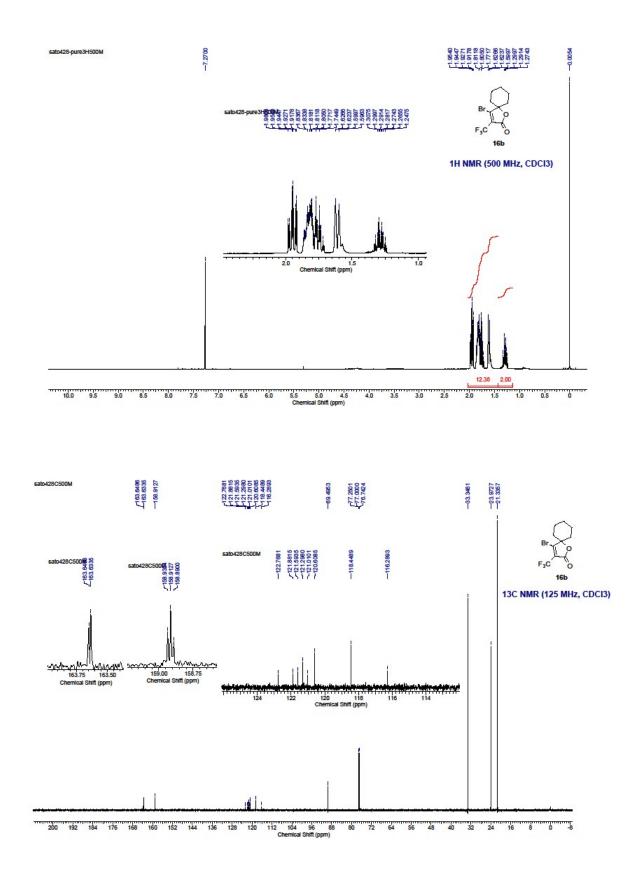

Residuals: R (All reflections)	0.0921
Residuals: wR2 (All reflections)	0.1121
Goodness of Fit Indicator	1.068
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.34 \text{ e}^{-}/\text{Å}^{3}$
Minimum peak in Final Diff. Map	-0.28 e ⁻ /Å ³

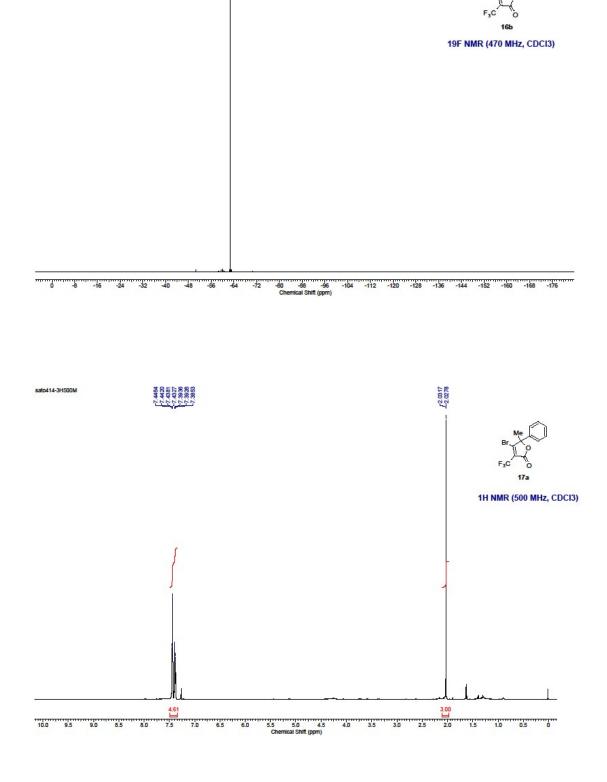

5. References


[1] Y.-H. Li, X.-M. Zhao, L. Lu, J. Fluorine Chem. 2004, 125, 1821–1824.

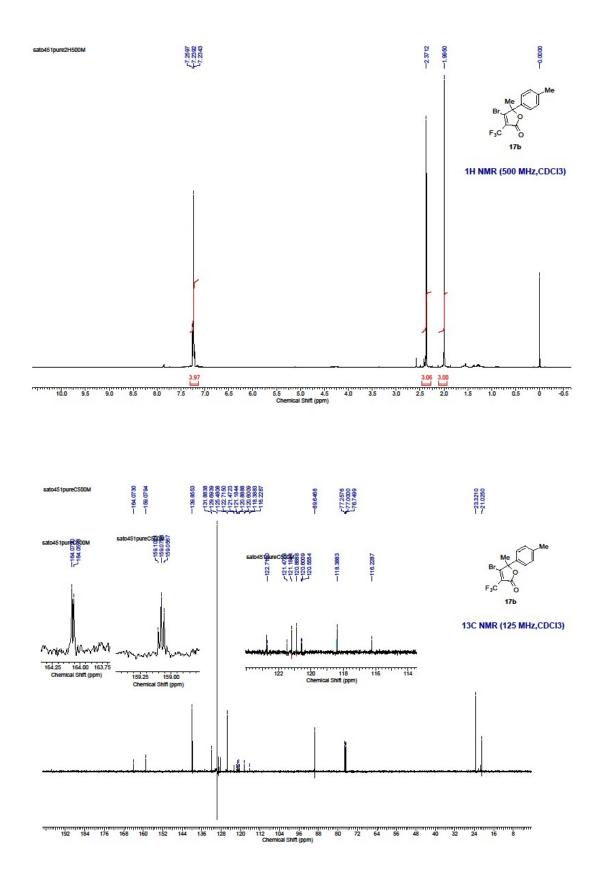

- [2] Y. Li, X. Zhao, Org. Lett. 2004, 6, 4467–4470.
- [3] U. Matteoli, C. Botteghi, F. Sbrogio, V. Beghetto, S. Paganelli, A. Scrivanti, *Journal of Molecular Catalysis A: Chemical* 1999, 143, 287–295.
- [4] M. D Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, *Journal of Cheminformatics* 2012, 4:17, 2–17.

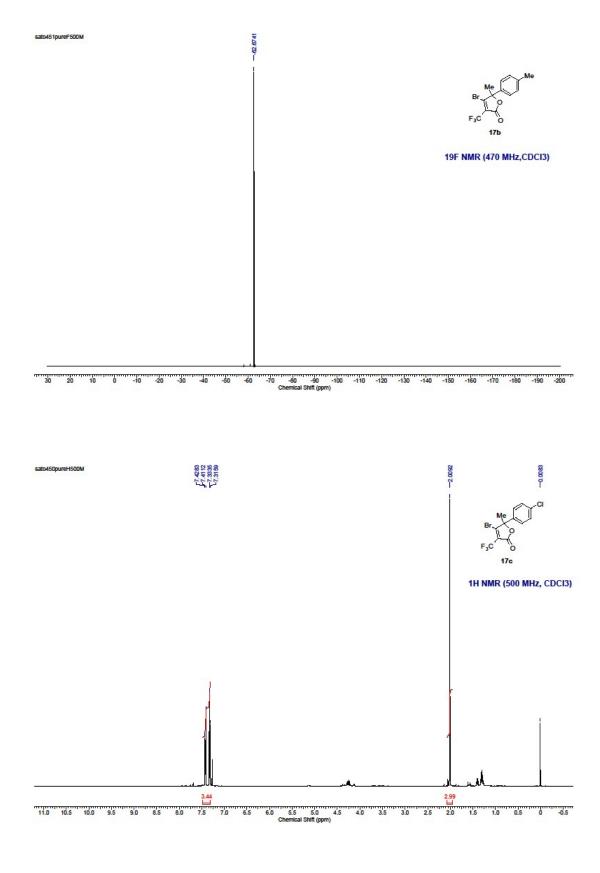

6. NMR spectra

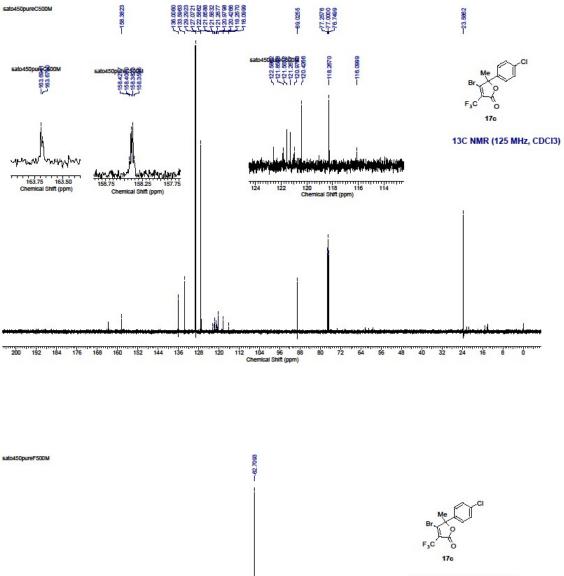




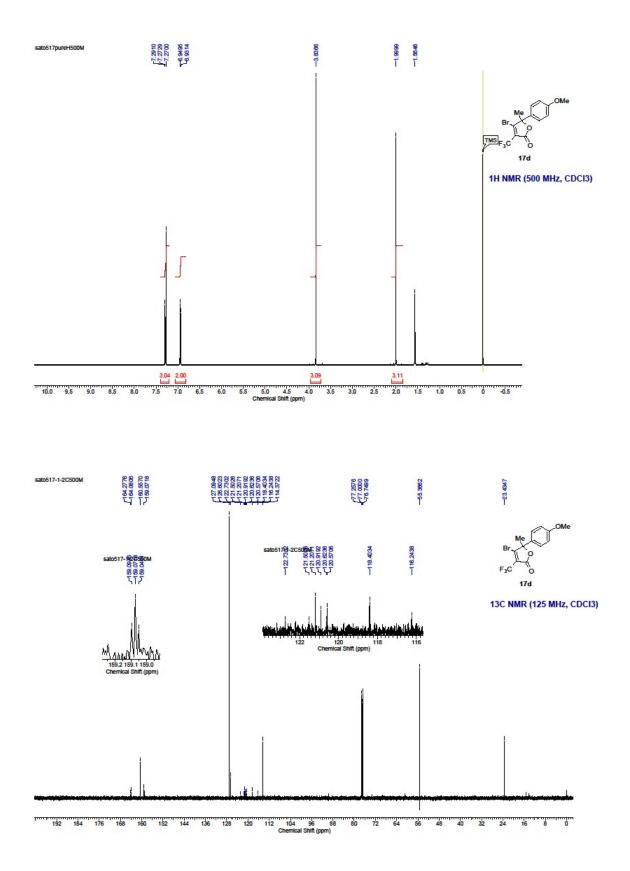


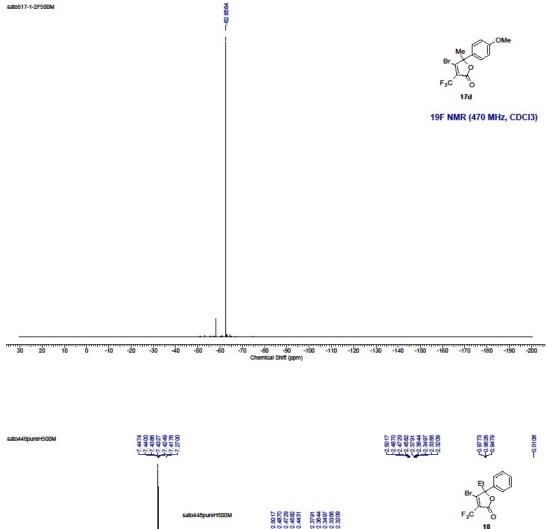


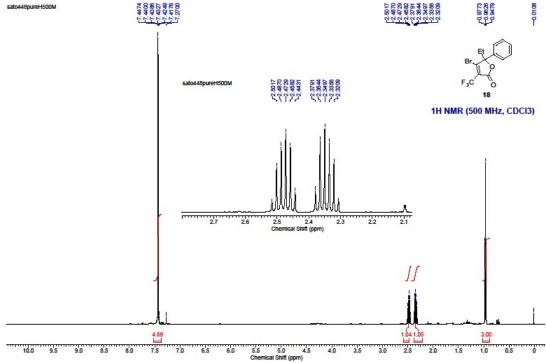


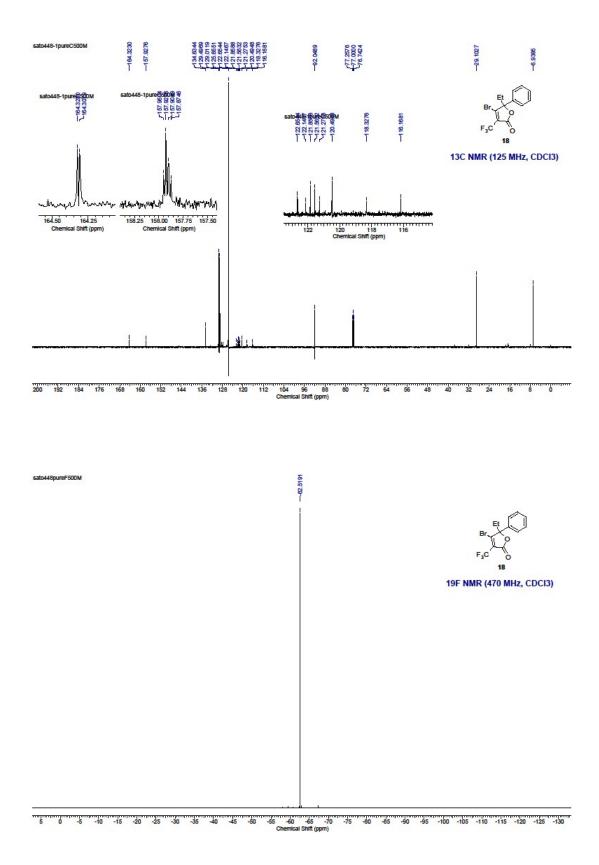

-62.6952

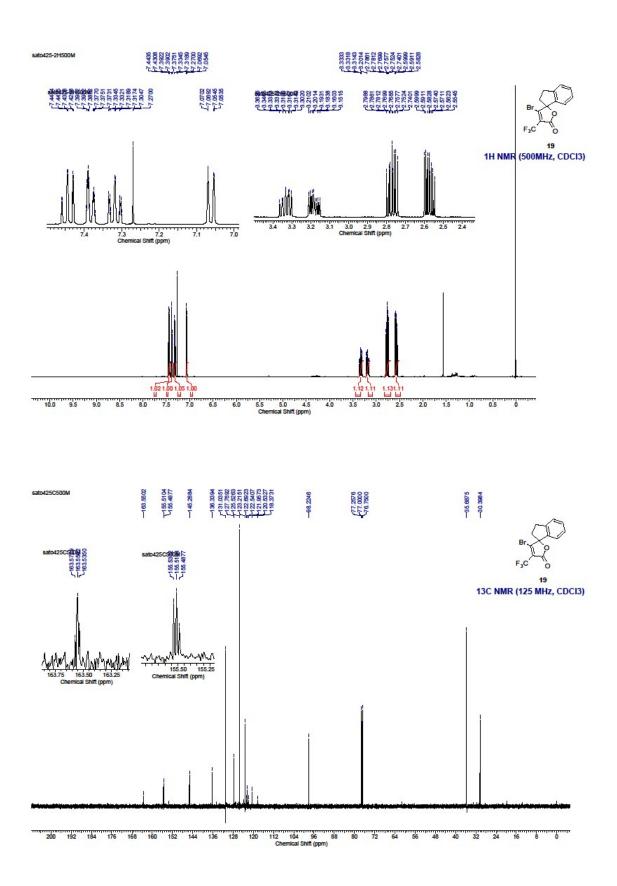
sato428F500M

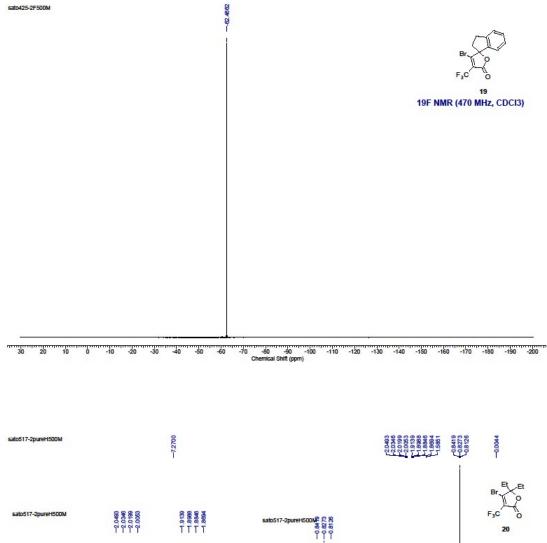


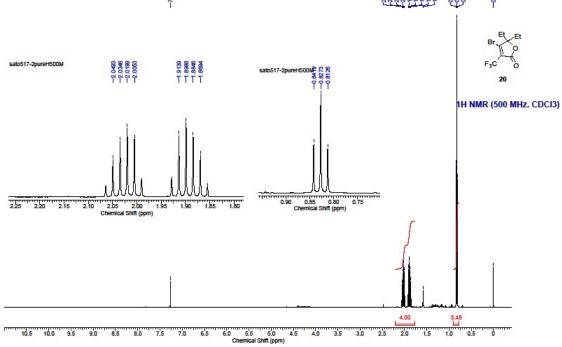


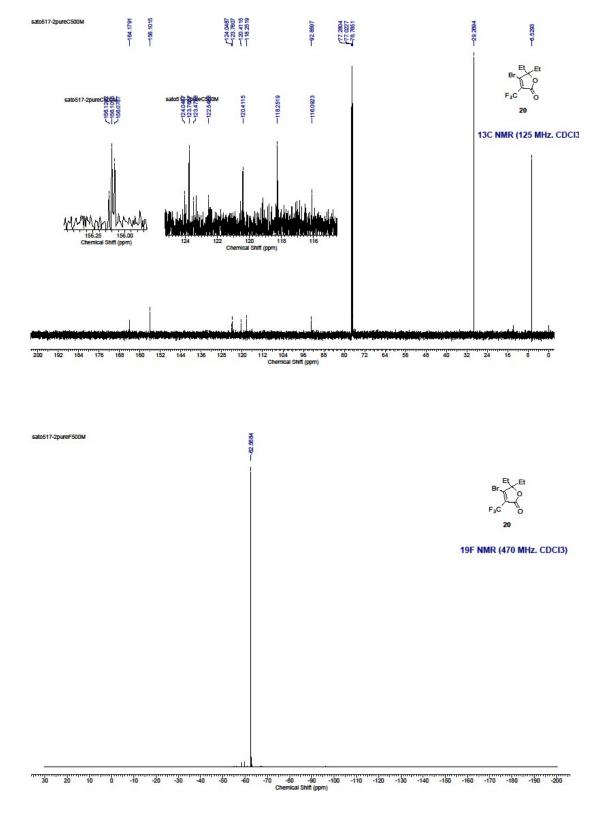


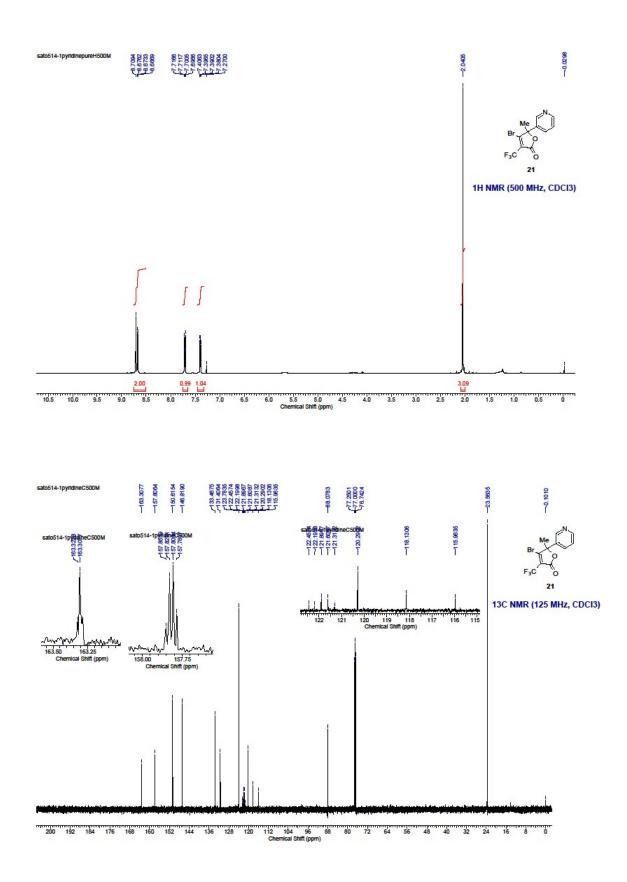

-10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -50 -70 -75 -80 -35 -30 -35 -100 -105 -110 -115 -120 -125 Chemical Shift (ppm)

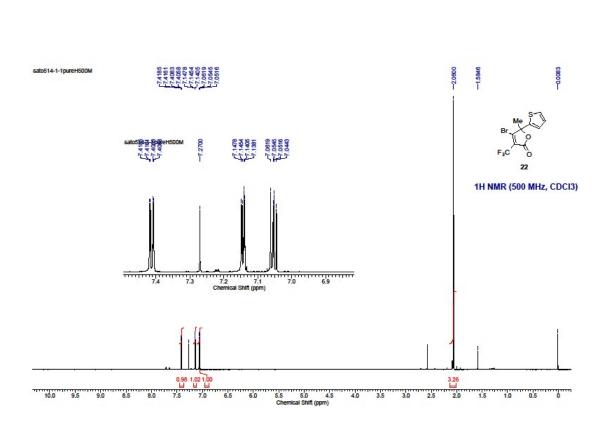

-5

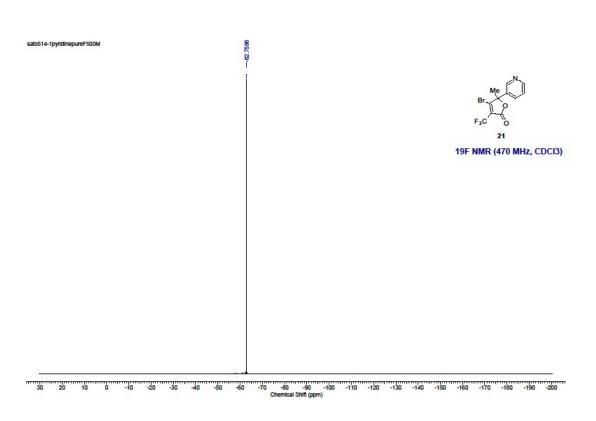


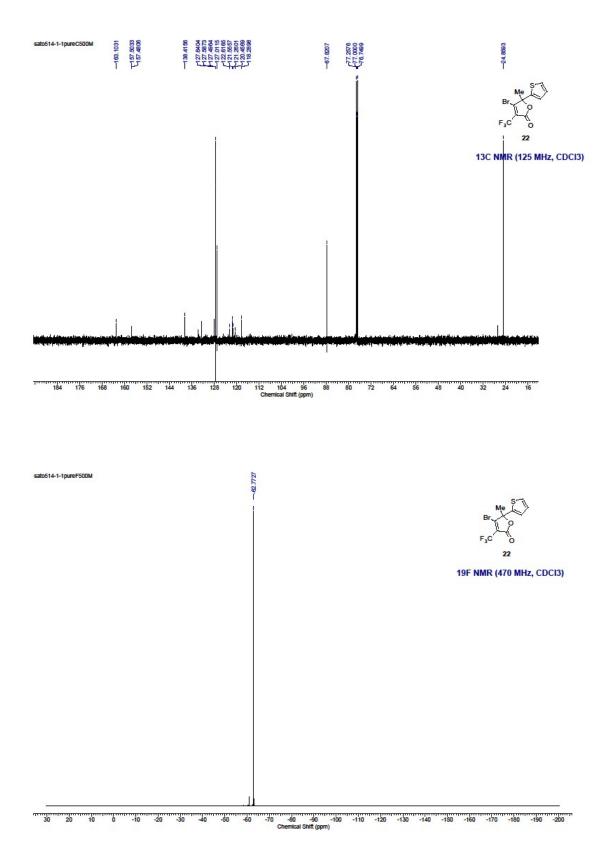


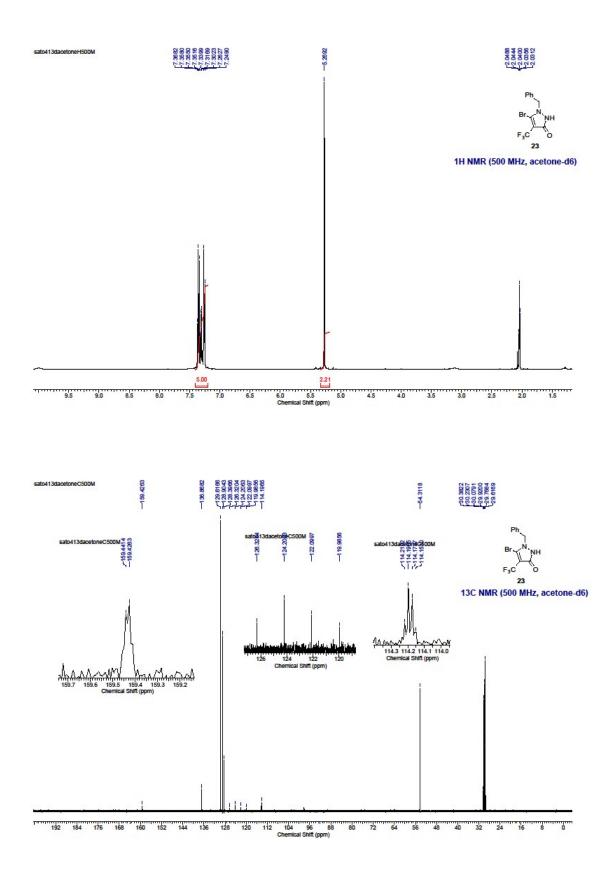


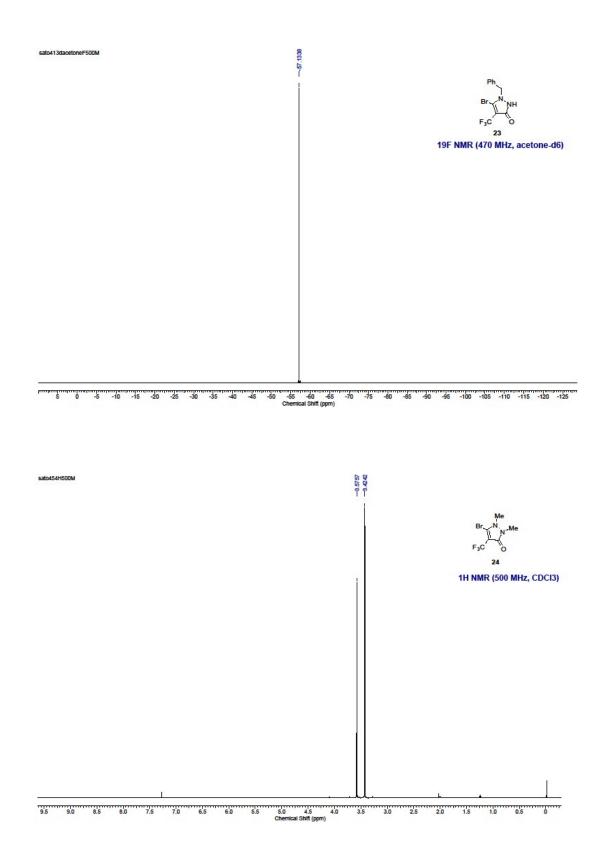


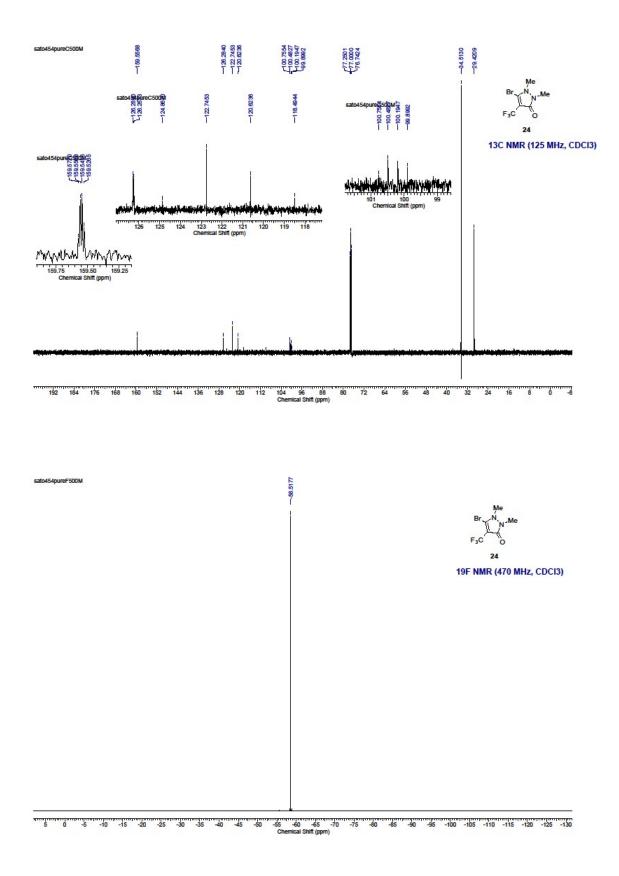


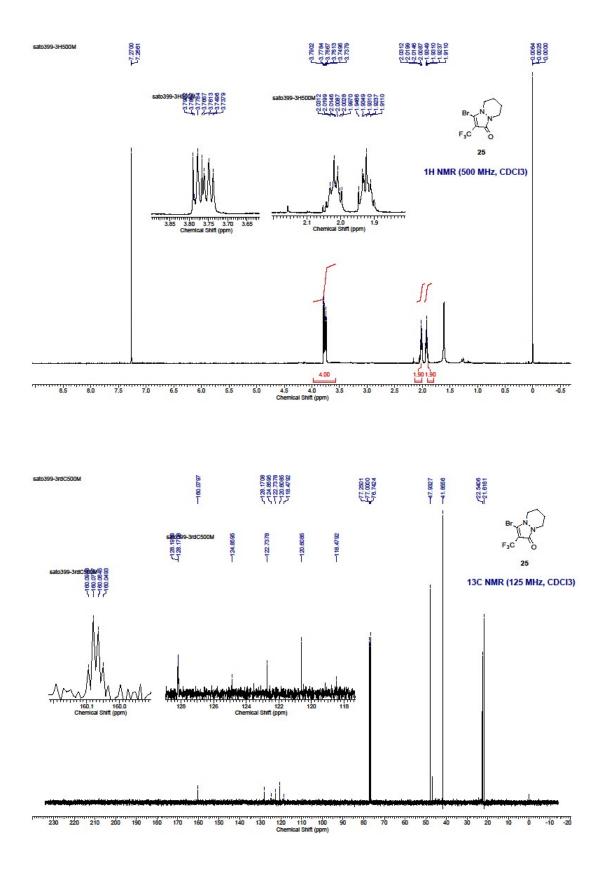


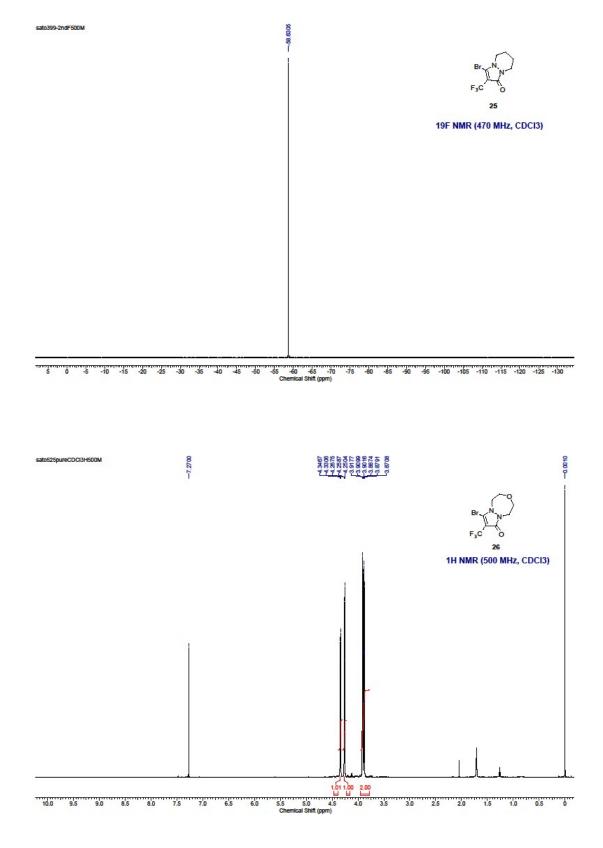


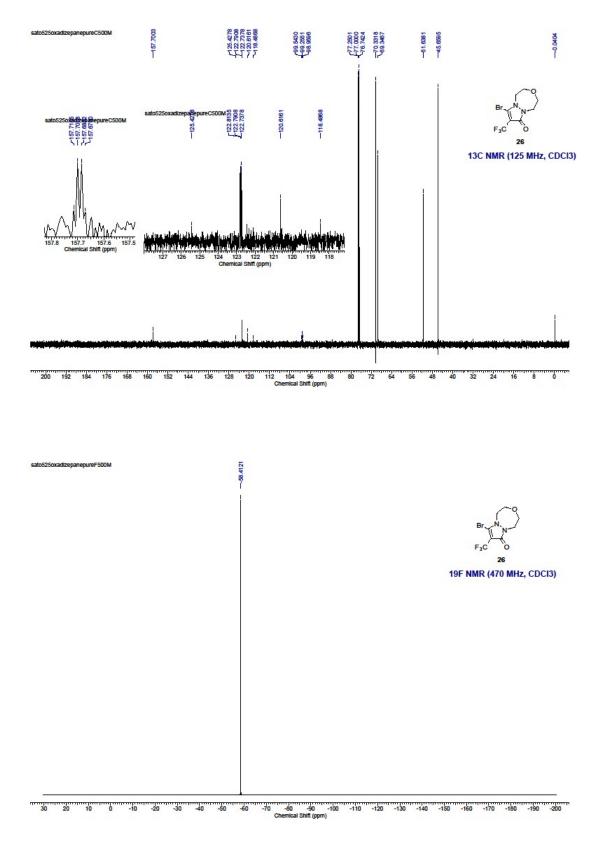


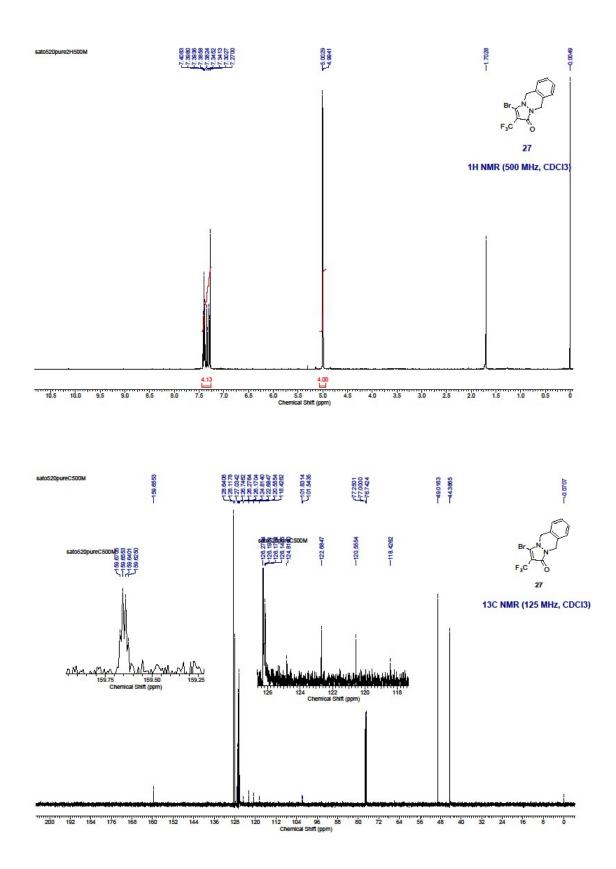


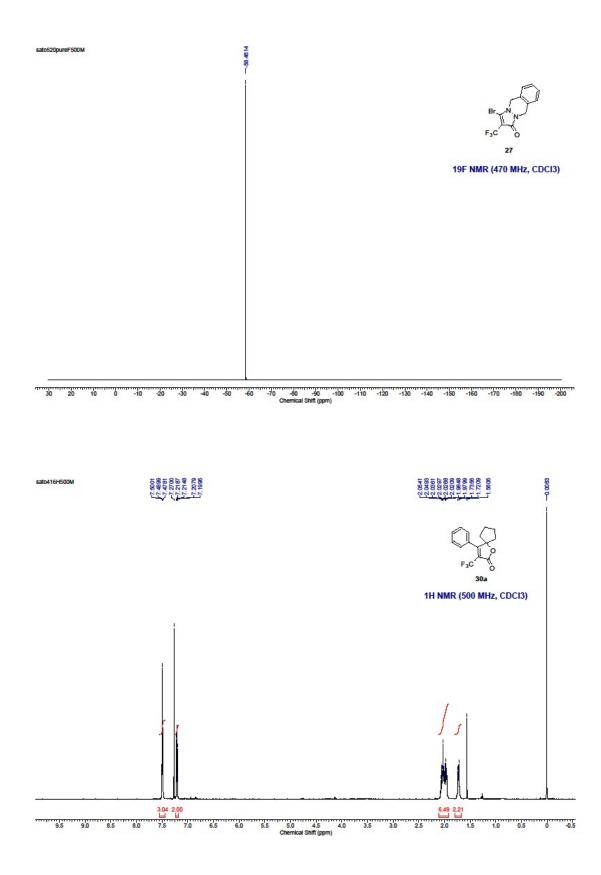


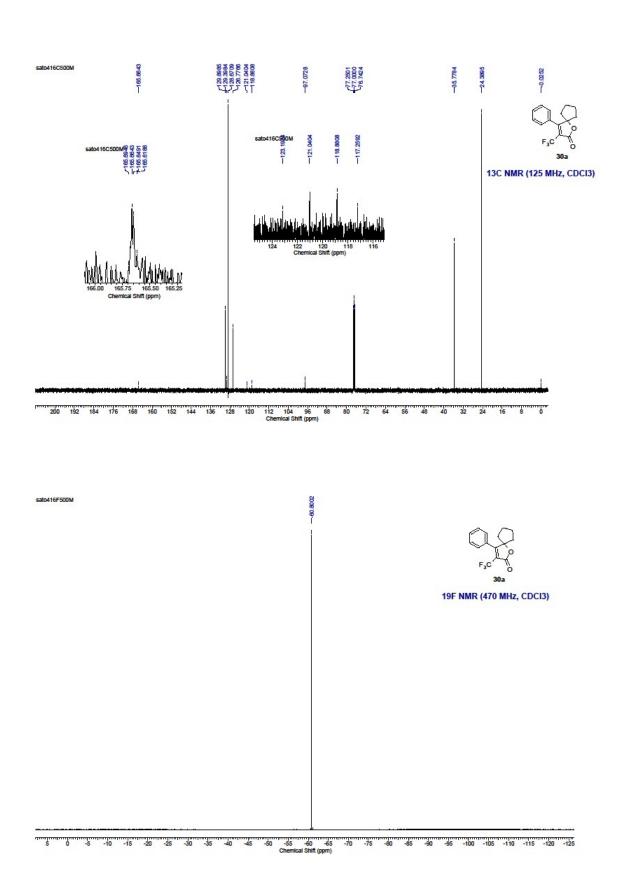


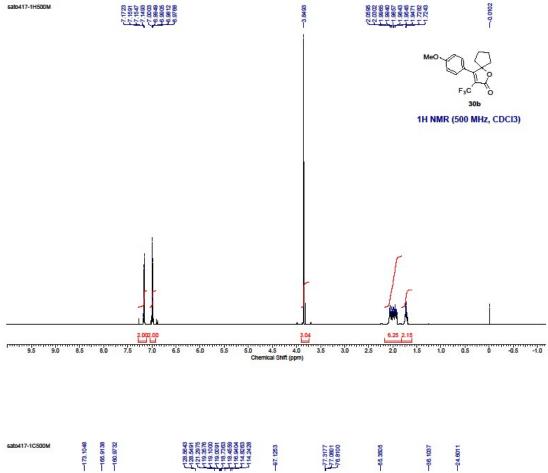


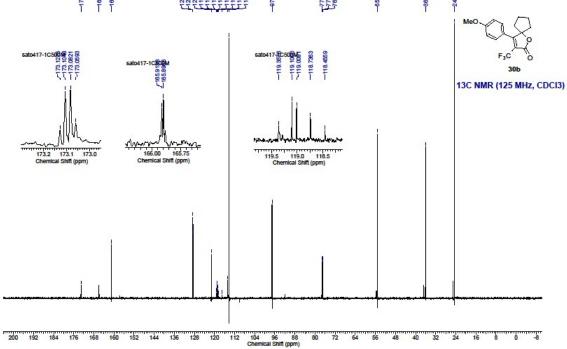


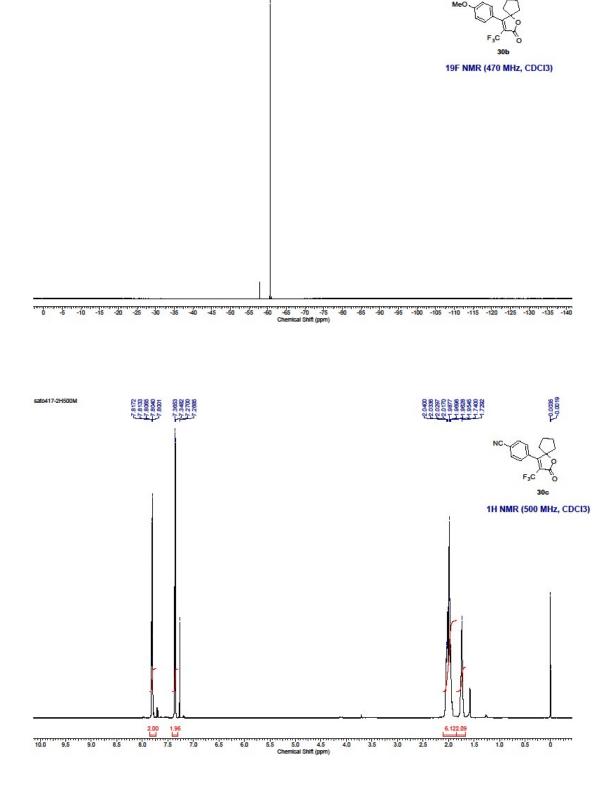


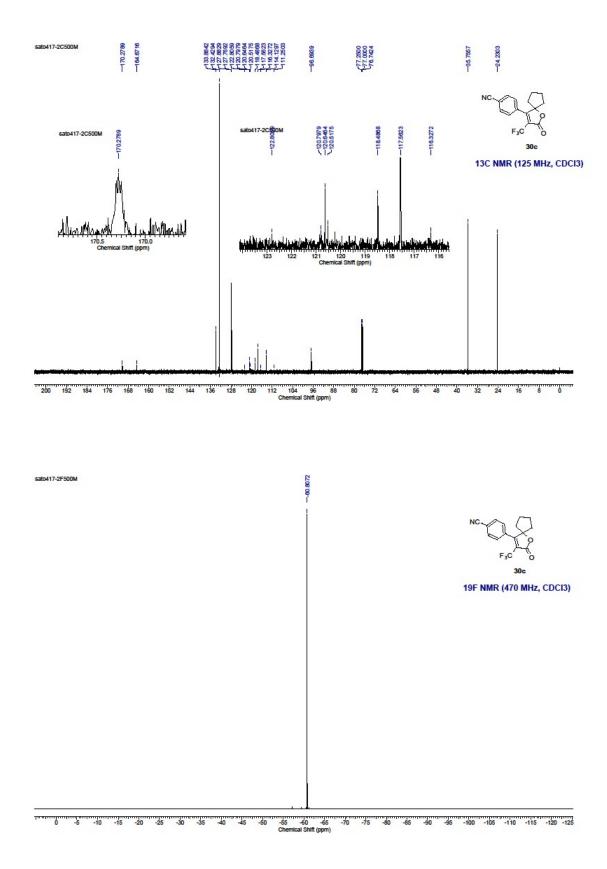


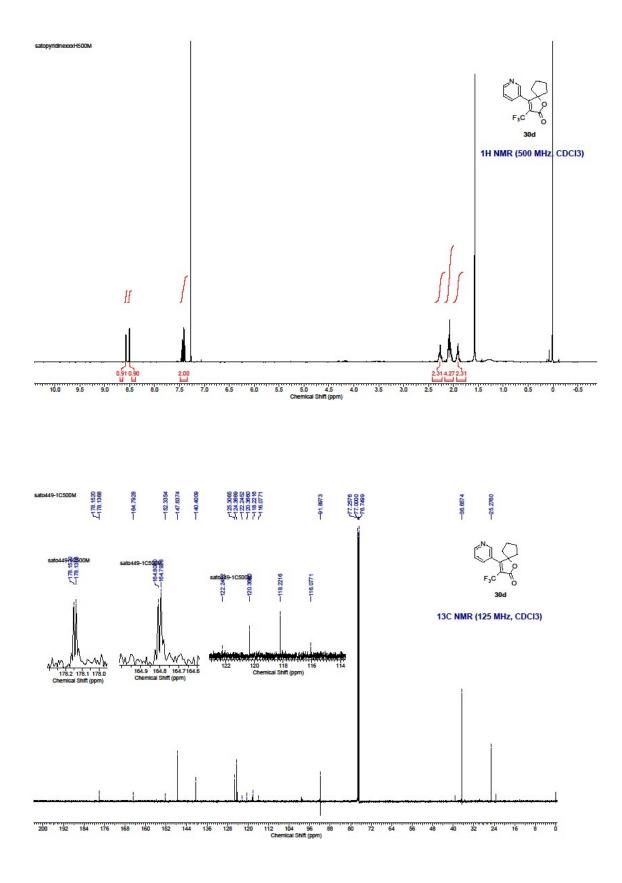


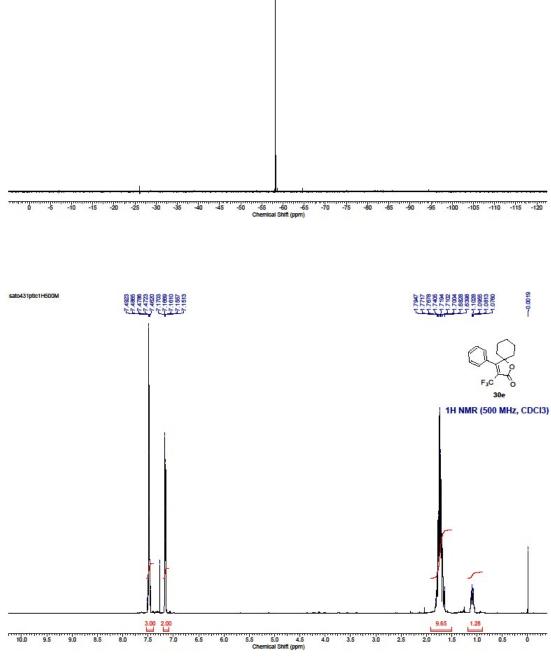


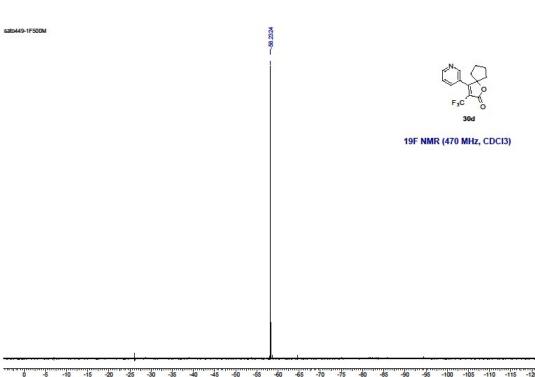


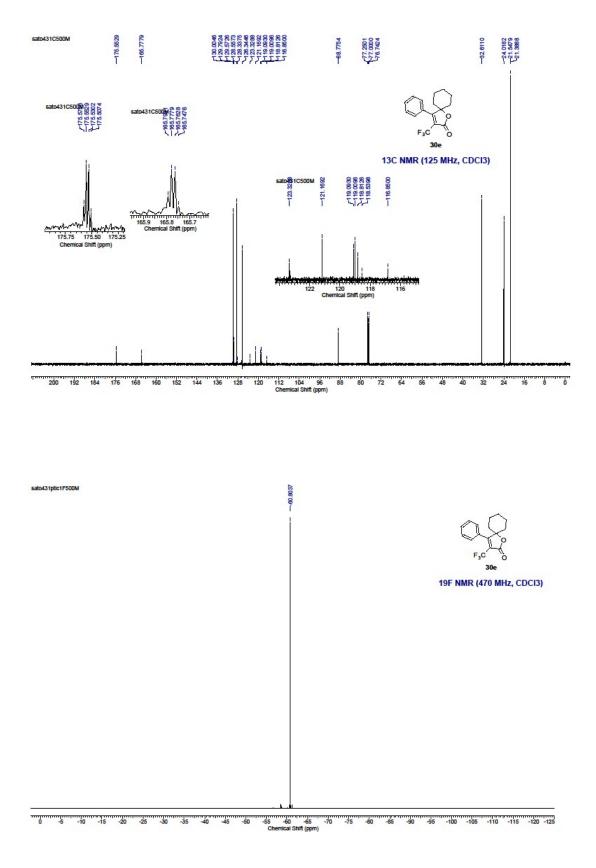


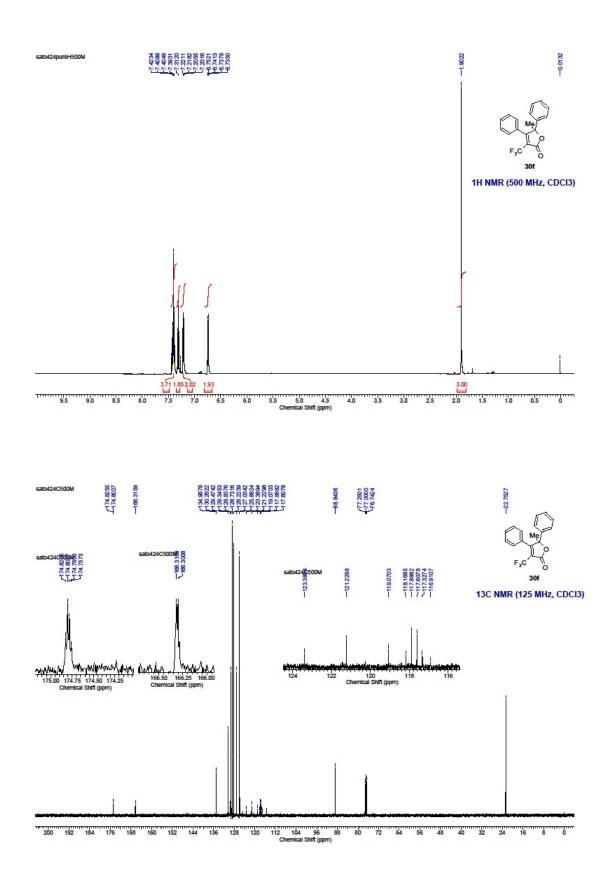


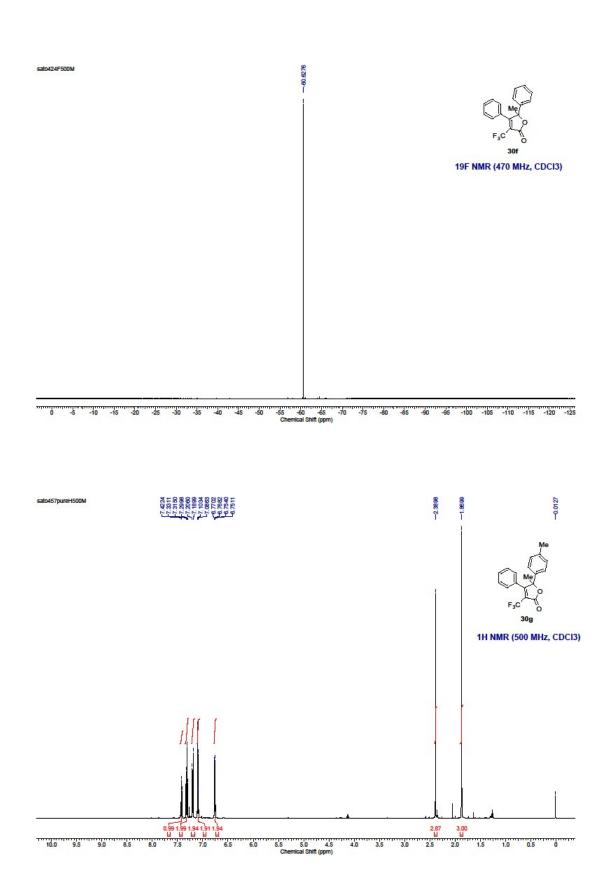


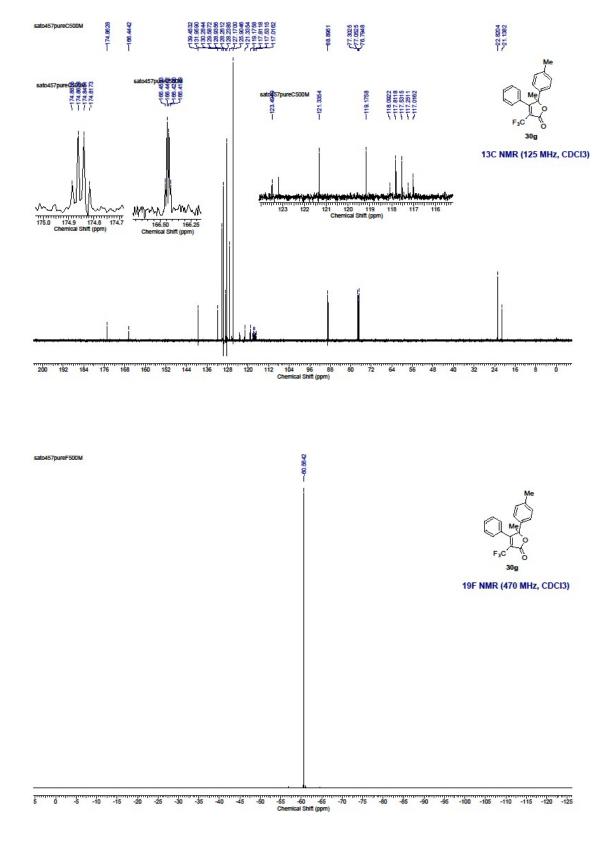


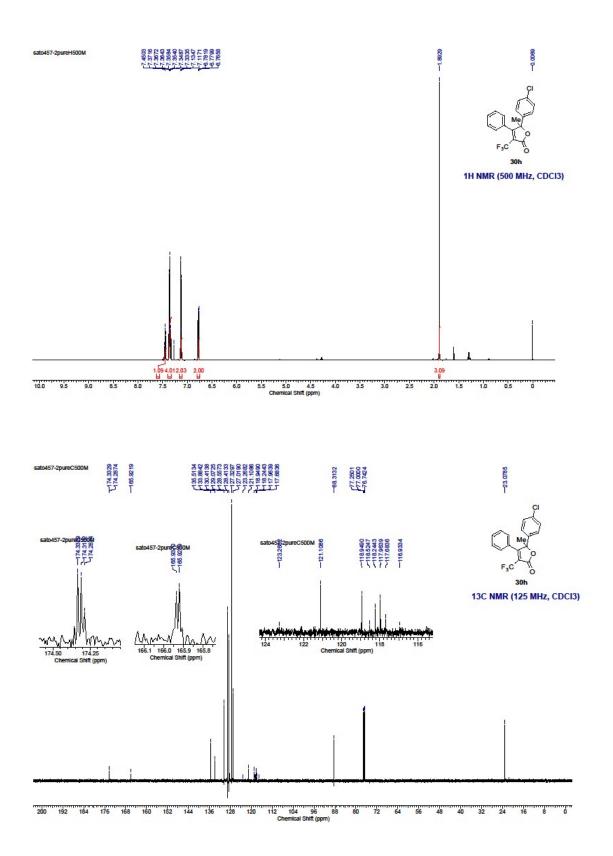

--00.6382

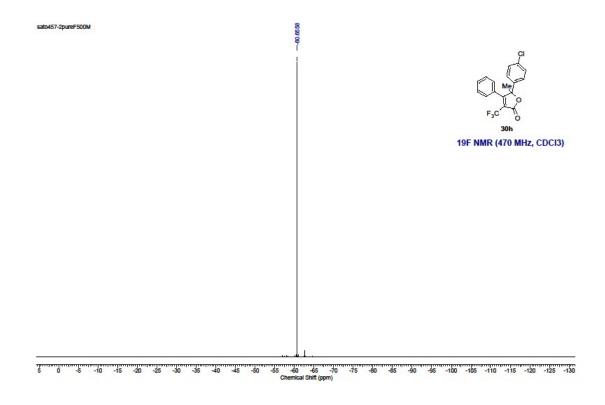

sato417-1F500M

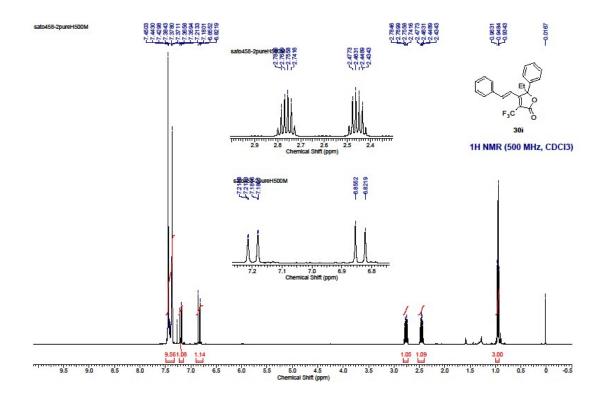


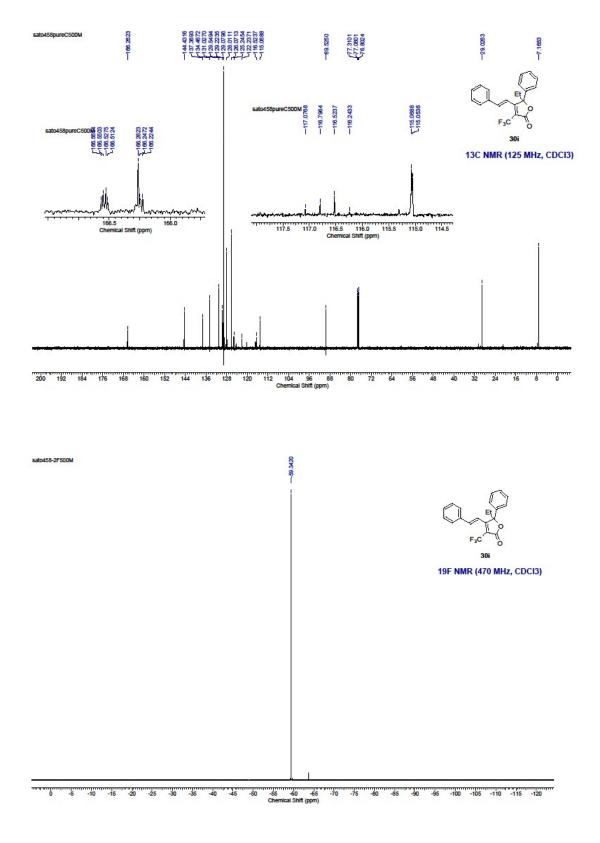


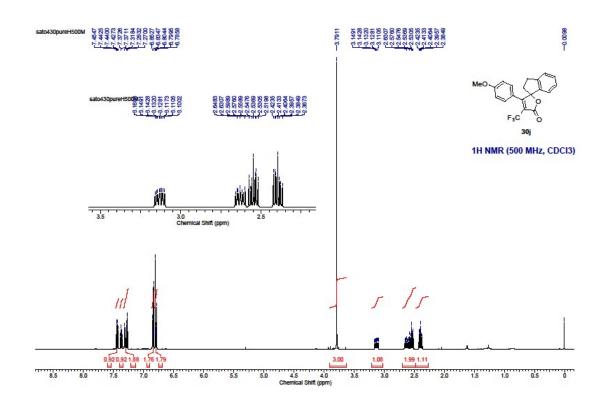


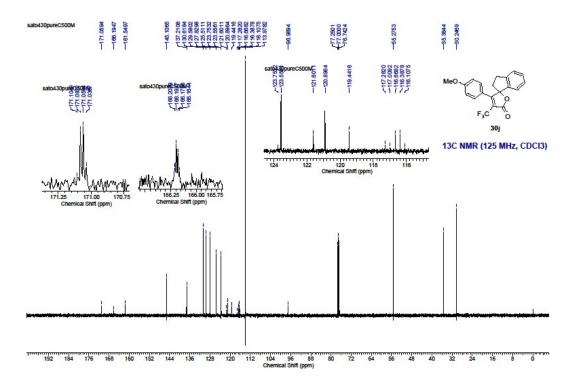


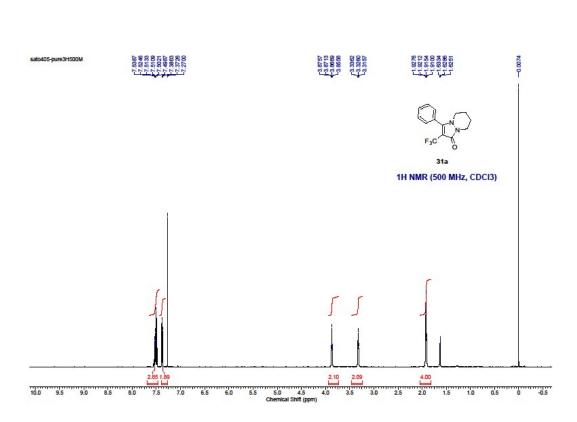


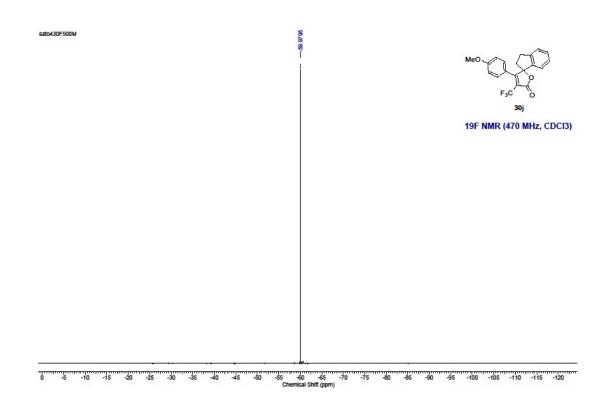


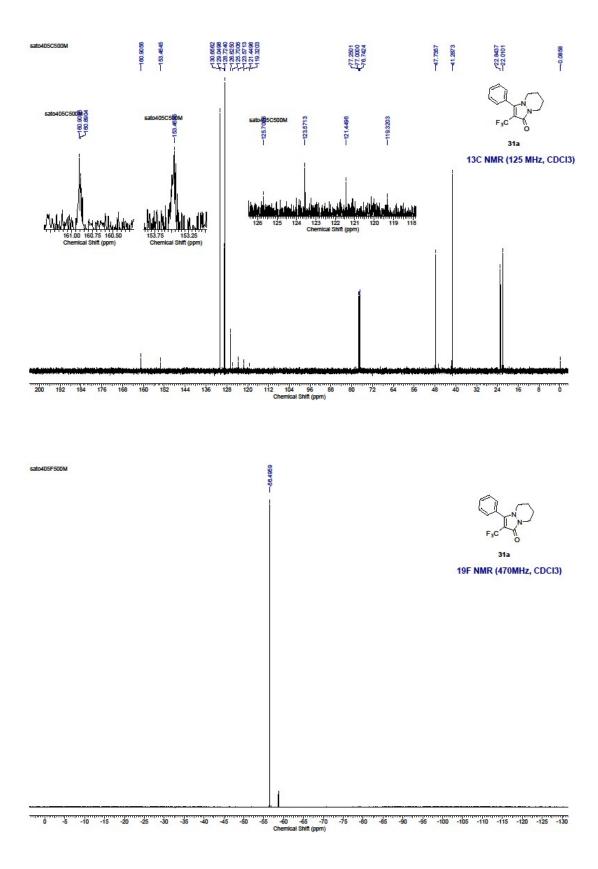


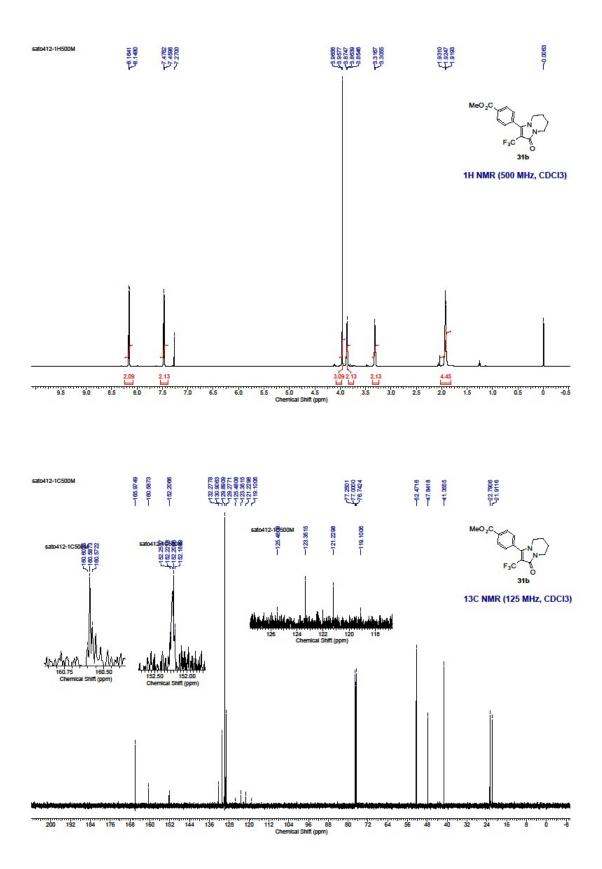


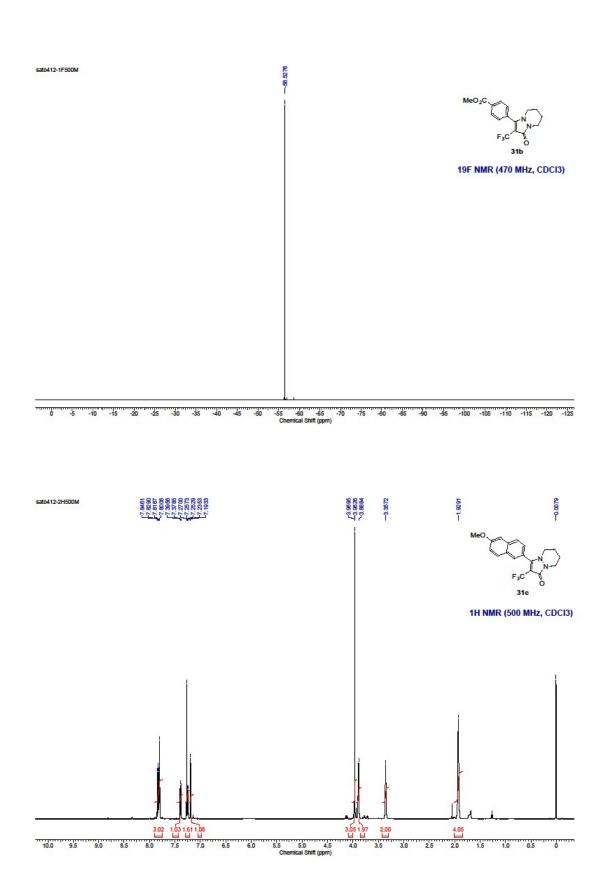


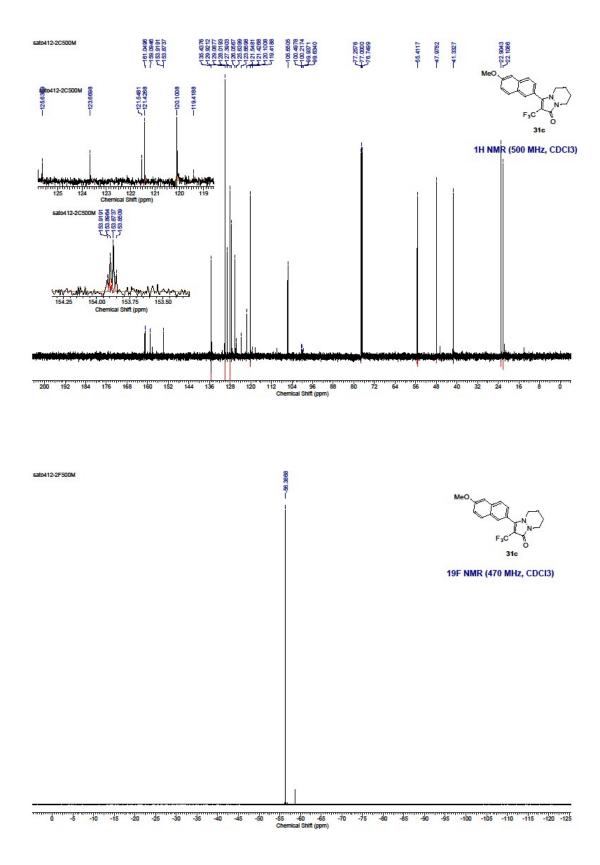


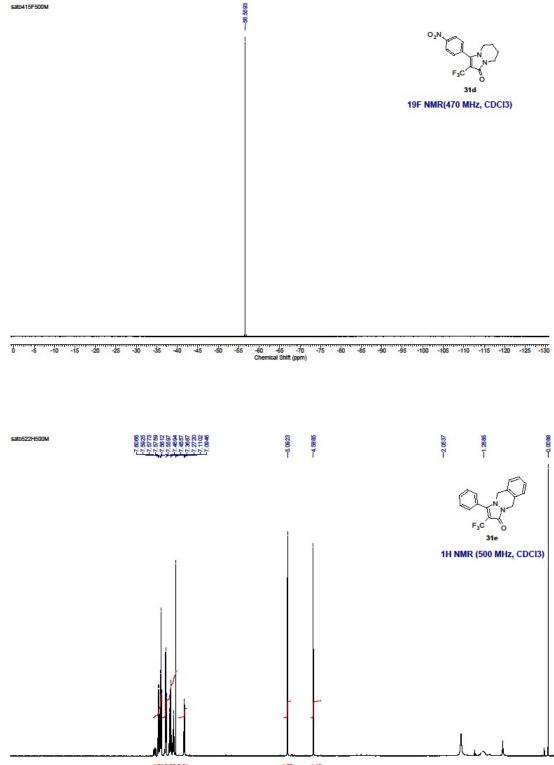


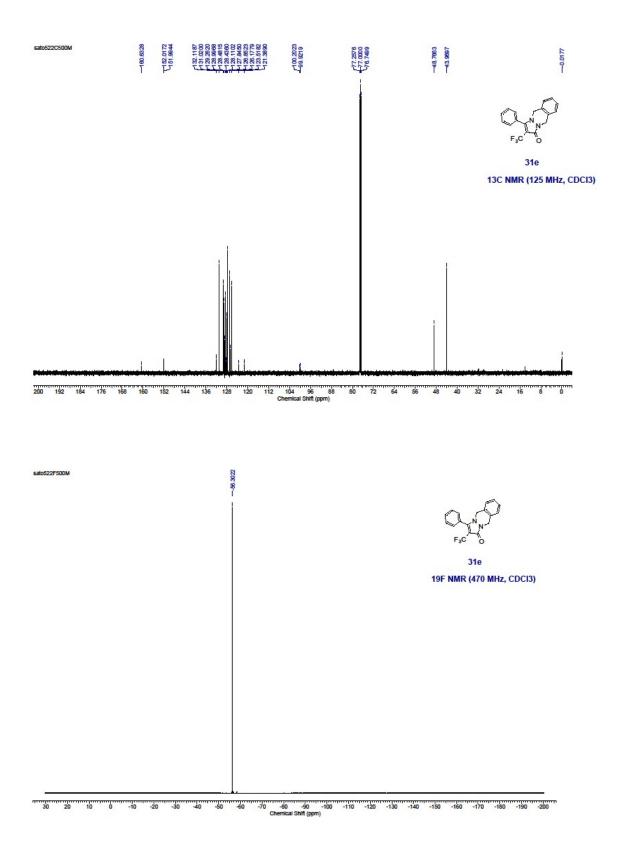












 1.71 3.00 0.61
 1.07
 1.12

 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0

 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 1.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0

 Chemical Shift (ppm)

