Supplementary Information

Facile Synthesis of Annulated Heterocyclic Benzo[*kl*]acridine Derivatives via One-pot N-H/C-H Coupling

Yulian Zagranyarski,^{a,c,†} Artem Skabeev,^{a,†} Yingjie Ma,^a Klaus Müllen^{a,b} and Chen Li^{a*}

eventer and the second the second state of the second states and t

^aMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. E-mail: lichen@mpip-mainz.mpg.de

^bInstitute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.

^cFaculty of Chemistry and Pharmacy, Sofia University 'St. Kliment Ohridski', 1 James Bourchier Ave., Sofia 1164, Bulgaria.

⁺ These authors contributed equally.

Table of Contents

Materials and Methods	
Experimental Section	S2
Optical and Electrochemical Properties	
¹ H NMR and ¹³ C NMR Spectra	

Materials and Methods

¹H and ¹³C NMR spectra were recorded on Bruker AC300 NMR spectrometers using the residual proton or the carbon signal of the deuterated solvent as an internal standard. Chemical shifts are reported in parts per million. FD mass spectra were performed with a VG-Instrument ZAB 2-SE-FDP. The elemental analyses were carried out by the Microanalytical Laboratory of Johannes Gutenberg University. All chemicals and solvents were purchased from commercial suppliers and used without further purification unless otherwise specified. Column chromatography was performed with dichloromethane (Fisher Scientific), methanol, tetrahydrofuran, hexane or acetone (Sigma-Aldrich) on silica gel (Macherey-Nagel, Si60). All reported yields of compounds **3a-3e** are isolated yields.

Experimental Section

General Procedure for 3a-3e: A mixture of dibromoaryl compound (3.5 mmol), diarylamine (3 mmol), sodium *tert*-butoxyde (7 mmol, 0.67 g), $Pd(OAc)_2$ (3 mol%, 0.09 mmol, 0.02 g), $Pd_2(dba)_3$ (3 mol%, 0.09 mmol, 0.082 g), tricyclohexylphosphine (7 mol%, 0.21 mmol, 0.06 g) and tri-*tert*-butylphosphine (7 mol%, 0.21 mmol, 0.043 g) in 50 ml dry toluene was stirred at 90°C for 10 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography using hexane/dichloromethane as eluent on silica.

7-Phenyl-7*H*-benzo[*kl*]acridine (3*a*):

Yield from 1,8-dibromonaphthalene 0.80 g (91%) and from 1,2-diiodonaphthalene 0.84 g (95%).

¹**H-NMR** (δ (ppm), CD₂Cl₂): 5.75 (dd, 1H, ${}^{3}J_{HH} = 6.8$ Hz, ${}^{4}J_{HH} = 2.0$ Hz); 6.21 (dd, 1H, ${}^{3}J_{HH} = 8.3$ Hz, ${}^{4}J_{HH} = 1.0$ Hz); 6.89-7.06 (m, 4H); 7.33-7.46 (m, 4H); 7.55-7.64 (m, 2H); 7.68-7.73 (m, 2H); 7.91 (dd, 1H, {}^{3}J_{HH} = 7.8 Hz, ${}^{4}J_{HH} = 1.4$ Hz).

¹³C-NMR (δ (ppm), CD₂Cl₂): 105.34; 113.76; 115.92; 117.14; 121.41;, 123.43; 124.60; 124.88; 127.62; 127.81; 129.29; 129.64; 131.10; 131.15; 132.18; 136.41; 140.84; 142.20; 142.56.

MS (FD, 8 kV): m/z (%) calcd for 293.37; found: 293.8 (100) [M]⁺

Elemental analysis calcd (%) for C₂₂H₁₅N: C, 90.07; H, 5.15; N, 4.77; found: C, 90.10; H, 5.02; N, 4.68.

10-(2,4,4-Trimethylpentan-2-yl)-7-(4-(2,4,4-trimethylpentan-2-yl)phenyl)-7*H*-benzo[*kl*]acridine (*3b*):

Yield from 1,8-dibromonaphthalene 1.31 g (84%) and from 1,2-diiodonaphthalene 1.48 g (95%).

¹**H-NMR** (δ (ppm), CD₂Cl₂): 0.78 (s, 9H, CH₃); 0.83 (s, 9H, CH₃); 1.39 (s, 6H, CH₃); 1.48 (s, 6H, CH₃); 1.75 (s, 2H, CH₂); 1.86 (s, 2H, CH₂); 5.74-5.80 (m, 1H); 6.18 (d, 1H, ${}^{3}J_{HH}$ = 8.8 Hz); 6.98 (d, 1H, ${}^{4}J_{HH}$ = 1.5 Hz); 7.00 (s, 3H); 7.04 (dd, 1H, ${}^{3}J_{HH}$ = 8.7 Hz, ${}^{4}J_{HH}$ = 2.2 Hz); 7.23 (d, 2H, ${}^{3}J_{HH}$ = 8.4 Hz);7.34-7.43 (m, 2H); 7.64 (dd, 1H, ${}^{3}J_{HH}$ = 6.9 Hz, ${}^{4}J_{HH}$ = 1.7 Hz); 7.70 (d, 2H, ${}^{3}J_{HH}$ = 8.5 Hz); 7.90 (d, 1H, ${}^{4}J_{HH}$ = 2.2 Hz).

¹³**C-NMR** (δ (ppm), CD₂Cl₂): 31.93; 32.14; 32.20; 32.83; 32.95; 38.62; 39.25; 57.22; 57.62; 104.94; 113.23; 115.41; 116.60; 120.37; 120.70; 124.52; 124.67; 127.61; 130.03; 130.14; 131.66; 136.54; 137.89; 139.90; 142.69; 143.04; 151.47.

MS (FD, 8 kV): m/z (%) calcd for 517.80; found: 516.7 (100) [M]⁺

Elemental analysis calcd (%) for C₃₈H₄₇N: C, 88.15; H, 9.15; N, 2.71; found: C, 87.90; H, 9.70; N, 2.41.

Benzo[kl]benzo[6,7]azepino[3,2,1-de]acridine (3c):

Yield from 1,8-dibromonaphthalene 0.75 g (79%) and from 1,2-diiodonaphthalene 0.79 g (83%).

¹**H-NMR** (δ (ppm), CD₂Cl₂): 6.46-6.49 (m, 1H); 6.77 (d, 1H, ${}^{3}J_{HH}$ = 11.4 Hz); 6.86-6.93 (m, 2H); 7.03-7.18 (m, 5H); 7.28-7.33 (m, 1H); 7.43-7.52 (m, 2H); 7.69 (d, 1H, ${}^{3}J_{HH}$ = 8.1 Hz); 7.76-7.81 (m, 2H).

¹³C-NMR (δ (ppm), CD₂Cl₂): 116.25; 116.55; 121.17; 125.03; 125.31; 126.63; 127.24; 127.47; 127.47; 127.69; 128.58; 129.22; 129.84; 130.31; 130.74; 131.71; 132.33; 133.60; 134.97; 135.55; 143.89; 147.26; 153.12.

MS (FD, 8 kV): m/z (%) calcd for 317.39; found: 317.8 (100) [M]⁺

Elemental analysis calcd (%) for C₂₄H₁₅N: C, 90.82; H, 4.76; N, 4.41; found: C, 90.75; H, 4.66; N, 4.28.

Benzo[4,5]quinolino[3,2,1-*kl*]phenothiazine (3*d*):

Yield from 1,8-dibromonaphthalene 0.82 g (85%) and from 1,2-diiodonaphthalene 0.86 g (89%).

¹**H-NMR** (δ (ppm), CD₂Cl₂): 7.06-7.18 (m, 4H); 7.27-7.52 (m, 6H); 7.61-7.72 (m, 3H).

¹³C-NMR (δ (ppm), CD₂Cl₂): 113.94; 116.54; 118.61; 121.28; 122.49; 124.93; 125.07; 125.39; 125.53; 126.56; 126.89; 127.37; 127.64; 127.96; 128.09; 129.23; 129.30; 135.72; 138.25; 141.07; 144.50.

MS (FD, 8 kV): m/z (%) calcd for 323.41; found: 323.7 (100) [M]⁺

Elemental analysis calcd (%) for C₂₂H₁₃NS: C, 81.70; H, 4.05; N, 4.33; S, 9.91, found: C, 81.72; H, 4.00; N, 4.03; S, 10.69.

Benzo[4,5]quinolino[3,2,1-*kl*]phenoxazine (3*e*):

Yield from 1,8-dibromonaphthalene 0.71 g (77%) and from 1,2-diiodonaphthalene 0.75 g (81%).

¹**H-NMR** (δ (ppm), CD₂Cl₂): 6.84 (dd, ${}^{3}J_{HH} = 7.9$, ${}^{4}J_{HH} = 1.2$ Hz, 1H), 6.91-7.06 (m, 4H), 7.25-7.36 (m, 2H), 7.37-7.48 (m, 3H), 6.91-7.06 (m, 4H), 7.57 (d, ${}^{3}J_{HH} = 14.2$ Hz, ${}^{4}J_{HH} = 0.7$ Hz 1H), 7.60 (dd, ${}^{3}J_{HH} = 14.1$, ${}^{4}J_{HH} = 0.7$ Hz, 1H) (d, ${}^{3}J_{HH} = 7.1$ Hz, 1H).

¹³C-NMR (δ (ppm), CD₂Cl₂): 109.64, 114.69, 115.75, 115.81, 118.04, 118.54, 120.04, 123.96, 124.00, 124.35, 125.17, 126.19, 126.65, 126.75, 127.58, 129.08, 130.71, 131.83, 135.51, 136.09, 147.20, 149.04.

MS (FD, 8 kV): m/z (%) calcd for 307.35; found: 307.7 (100) [M]⁺

Elemental analysis calcd (%) for C₂₂H₁₃NO: C, 85.97; H, 4.26; N, 4.56; found: C, 85.74; H, 4.24; N, 4.54.

Optical and Electrochemical Properties

Figure S1. Absorption (left) and emission (right) spectra of compounds 3a, 3c and 3d

_	ϵ_0^{a}	λ_{max}	$\lambda_{max,PL}$	E _{ox} ^b	HOMO ^c	LUMO ^d	HOMO ^d
Compound	$(L \text{ mol}^{-1}\text{cm}^{-1})$	(nm)	(nm)	(V)	(eV)	(eV)	(eV)
3a	9400	416	463	0.156	-4.96	-1.75	-5.00
3c	6200	369	565	0.340	-5.14	-2.00	-5.21
3d	10700	412	476	0.324	-5.12	-2.00	-5.18

Table S1. Summary of final products' (3a, 3c and 3d) optical and electrochemical properties.

^aMeasured at λ_{max} in CH₂Cl₂ at rt; ^bOnset potentials, determined by cyclic voltammetric measurements in 0.1 M solution of Bu₄NPF₆ in CH₂Cl₂ vs Fc⁺/Fc; ^cEstimated vs. vacuum level from E_{HOMO} = -4.80 eV - E_{ox1} ; ^dthe measurements of the HOMO/LUMO values are done: Gaussian 09, function: DFT B3LYP 6-311+G**

¹H-NMR spectrum of compound 3a in CD_2Cl_2

$^{13}\text{C-NMR}$ spectrum of compound 3a in CD_2Cl_2

 $^1\text{H-NMR}$ spectrum of compound 3b in CD_2Cl_2

 $^1\text{H-NMR}$ spectrum of compound 3c in CD_2Cl_2

$^{13}\text{C-NMR}$ spectrum of compound 3c in CD_2Cl_2

 $^1\text{H-NMR}$ spectrum of compound 3d in CD_2Cl_2

$^{13}\text{C-NMR}$ spectrum of compound 3d in CD_2Cl_2

 $^1\text{H-NMR}$ spectrum of compound 3e in CD_2Cl_2

$^{13}\text{C-NMR}$ spectrum of compound 3e in CD_2Cl_2