Supporting Information

Metal-Free Iodine-Catalyzed Direct Cross-Dehydrogenative Coupling (CDC) Between Pyrazoles and Thiols

Daoshan Yang,* Pengfei Sun, Wei Wei, Lingduan Meng, Lingchao He, Baokai Fang, Wei Jiang, and Hua Wang* The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.

Fax: +86-5374458306

E-mail: yangdaoshan@tsinghua.org.cn; huawang_qfnu@126.com

Table of contents

General Information	P2
General experimental procedures for synthesis of C-4 sulfenylated pyrazoles	P2
General procedure for synthesis of compound 7	P3
General procedure for synthesis of compound $\mathbf{8}$	P3
Characterization data of products 3a-3ae, 7 and $\mathbf{8}$	P4
Reference	P20
The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds	P21
Kinetic Isotopic Effect (KIE) Studies:	P54

General information

All commercially available reagent-grade chemicals were purchased from chemical suppliers and used as received without further purification unless otherwise stated. pyrazoles were prepared according to previous literatures. ${ }^{1}$ Proton and carbon magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded using either tetramethylsilane (TMS) as the internal standard in $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR: TMS at 0.00 ppm, CDCl_{3} at $7.24 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: CDCl_{3} at 77.0 ppm) or tetramethylsilane (TMS) as the internal standard in DMSO- d_{6} (1 HNMR : TMS at 0.00 ppm , DMSO at 2.50 ppm; ${ }^{13} \mathrm{C}$ NMR: DMSO at 40.0 ppm). The chemical shifts (δ) were expressed in ppm and J values were given in Hz . The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t) and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained by ESI on a TOF mass analyzer. Column chromatography was performed on silica gel (200-300 mesh).

General experimental procedures for synthesis of C-4 sulfenylated pyrazoles

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with iodine ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$), substituted various pyrazole (1) (0.2 mmol), thiols (2) (0.24 mmol), and DMSO (2 mL). The tube was sealed, and then the mixture was
stirred under air atmosphere at $100^{\circ} \mathrm{C}$ for 18 h . After completion of the reaction, the resulting solution was cooled down to room temperature, and the solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product (3).

General procedure for synthesis of compounds 7^{2}

A solution of $\mathbf{3 b}(0.3 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$. Then, m-CPBA ($0.104 \mathrm{~g}, 0.6 \mathrm{mmol}$) dissolved in $2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added drop wise to the stirred solution of 3b. The reaction progress was monitored by TLC. After completion of the reaction, the resulting solution was cooled to room temperature, and the solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product 7 in 73% yield as a white solid.

General procedure for synthesis of compounds 5

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with iodine ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$), benzenethiol (0.24 mmol), and DMSO (2 mL). The tube was sealed, and then the mixture was stirred under air atmosphere at $100^{\circ} \mathrm{C}$ for 18 h . After
completion of the reaction, the resulting solution was cooled down to room temperature, and the solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product (8).

Characterization data of products 3a-3ae, 4 and 5

5-Methyl-3-phenyl-4-(phenylthio)-1H-pyrazole (3a). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $50 \mathrm{mg}, 94 \%$ yield. (petroleum ether/ethyl acetate $=3: 1$, $\mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 11.46(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.78(\mathrm{dd}, 2 \mathrm{H}, J=5.0$ $\mathrm{Hz}), 7.35-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.07(\mathrm{~d}$, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 151.7, 149.5, 138.6, 129.0, 128.6, 128.5, 128.2, 127.9, 125.3, 124.9, 102.8, 10.6. HRMS m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 267.0950$, found: 267.0948 .

5-Methyl-3-phenyl-4-(p-tolylthio)-1H-pyrazole (3b). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $51 \mathrm{mg}, 92 \%$ yield. (petroleum ether/ethyl acetate $=3: 1$,
$\mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.71(\mathrm{dd}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.30-7.26$ $(\mathrm{m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 151.3,149.6,134.9,134.7,131.1,129.7$, 128.6, 127.8, 125.5, 103.4, 20.9, 10.7. HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 281.1107, found: 281.1110 .

4-(4-Chlorophenylthio)-5-methyl-3-phenyl-1H-pyrazole (3c). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $52 \mathrm{mg}, 87 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.4) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.74(\mathrm{dd}, 2 \mathrm{H}, J=10.0$ $\mathrm{Hz}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.23(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 151.3,149.7,137.1,130.9,130.8,129.1$, 128.8, 128.6, 127.6, 126.6, 102.6, 10.8. HRMS m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 301.0561, found: 301.0564.

4-(4-Bromophenylthio)-5-methyl-3-phenyl-1H-pyrazole (3d). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $61 \mathrm{mg}, 89 \%$ yield. (petroleum ether/ethyl
acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.74(\mathrm{dd}, 2 \mathrm{H}, J=10.0$ $\mathrm{Hz}), 7.38-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.23(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 151.3,149.8,137.8,131.9,130.7,128.8$, 128.6, 127.6, 126.9, 118.5, 10.8. HRMS m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 345.0061, 347.0041 , found: $345.0052,347.0059$.

5-Methyl-3-phenyl-4-(m-tolylthio)-1H-pyrazole (3e). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $48 \mathrm{mg}, 86 \%$ yield. (petroleum ether/ethyl acetate $=3: 1$, $\mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.78(\mathrm{dd}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.40-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, 2 \mathrm{H}$, $J=10.0 \mathrm{~Hz}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 150.8$, $150.0,138.8,138.3,130.9,130.8,128.8,128.7,128.6,127.6,125.9,122.3,103.0$, 21.4, 10.9. $\mathrm{HRMS} m / \mathrm{z}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 281.1107, found: 281.1105.

3-(4-Methoxyphenyl)-5-methyl-4-(p-tolylthio)-1H-pyrazole (3f). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $55 \mathrm{mg}, 89 \%$ yield. (petroleum ether/ethyl
acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 12.00(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.0 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ $159.9,150.9,149.9,135.2,134.6,129.8,129.2,125.5,123.5,113.9,102.7,55.2,20.9$, 10.9. $\mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 311.1213$, found: 311.1214 .

4-(4-Bromophenylthio)-3-(4-methoxyphenyl)-5-methyl-1H-pyrazole (3g). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $65 \mathrm{mg}, 88 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.4) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 12.36(\mathrm{br}, \mathrm{s}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz})$, $6.84(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 160.0,151.0,149.9,138.0,132.0,129.1,126.8,123.1,118.5,114.0,101.7,55.2$, 10.8. HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 376.0245,378.0224$, found: 376.0047, 378.0231.

3-(4-Methoxyphenyl)-5-methyl-4-(m-tolylthio)-1H-pyrazole (3h). Eluent petroleum
ether/ethyl acetate (4:1). Brown solid, $52 \mathrm{mg}, 84 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.5) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 11.8(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 159.9$, $151.1,150.0,138.8,138.6,129.2,128.9,125.9,125.8,123.5,122.3,113.9,102.3$, 55.2, 21.5, 10.9. HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$: 311.1213, found: 311.1214

3-(4-Chlorophenyl)-5-methyl-4-(phenylthio)-1H-pyrazole (3i). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $83 \mathrm{mg}, 92 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.4) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.70(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz})$, 7.29-7.23 (m, 4H), $7.14(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.22(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 151.2,149.1,138.2,134.7,129.4,129.1,129.0$, 128.7, 125.4, 125.2, 103.2, 10.5. HRMS m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 301.0561, found: 301.0564

3-(4-Chlorophenyl)-5-methyl-4-(p-tolylthio)-1H-pyrazole (3j). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $53 \mathrm{mg}, 85 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.78(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz})$, $7.34(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.34(\mathrm{~s}$, 3H), $2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 50.9,148.8,135.0,134.5$, 129.8, 129.4, 129.0, 128.7, 128.6, 128.5, 103.7, 20.9, 10.6. HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 315.0717$, found: 315.0719.

4-(4-Bromophenylthio)-3-(4-chlorophenyl)-5-methyl-1H-pyrazole (3k). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $65 \mathrm{mg}, 86 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.5) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.71(\mathrm{~d}, 2 \mathrm{H}, J$ $=10.0 \mathrm{~Hz}), 7.33(\mathrm{dd}, 4 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (, $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 151.1,148.8,137.4,134.8,132.0,129.6,128.8$, 128.7, 126.9, 125.6, 118.7, 10.6. HRMS m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 378.9671, 380.9651, found: 378.9680, 380.9654.

3-(4-Chlorophenyl)-5-methyl-4-(m-tolylthio)-1H-pyrazole (31). Eluent petroleum ether/ethyl acetate (4:1). Brown solid, $53 \mathrm{mg}, 85 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.4) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 10.3(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.12(\mathrm{dd}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz})$, $6.94(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 151.1, 150.0, 138.9, 137.9, 134.6, 129.7, 129.0, 128.9, 128.7, 126.1, 125.9, 122.3, 103.3, 21.5, 10.6. HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 315.0717$, found: 315.0719.

3-(4-Methoxyphenyl)-5-methyl-4-(phenethylthio)-1H-pyrazole (3m). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $42 \mathrm{mg}, 65 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.4) .{ }^{1} \mathrm{H}$ NMR $\left(, \mathrm{CDCl}_{3} 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 11.7$ (br, s, $1 \mathrm{H}), 7.87(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.06(\mathrm{~d}$, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $2.76(\mathrm{~d} 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.70(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}, \mathrm{ppm}) \delta 159.7,150.0,148.5,140.4,129.2,128.5,128.4,126.2,124.2,113.8$, 105.4, 55.2, 37.5, 36.0, 10.9. HRMS m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 325.1369$, found: 325.1365 .

4-(4-Bromophenylthio)-1,5-dimethyl-3-phenyl-1H-pyrazole (3n). Eluent petroleum ether/ethyl acetate (4:1). White solid, $64 \mathrm{mg}, 90 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.85(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz})$, 7.38-7.32 (m, 5H), $6.92(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~d} 2 \mathrm{H}, J=10.0 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 152.8,145.2,138.3,132.5,131.9,128.3,128.1$, 127.5, 126.8, 118.4, 101.9, 37.2, 10.0. HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 359.0212, 361.0197, found: 359.0215, 361.0219.

5-tert-Butyl-4-(4-chlorophenylthio)-3-phenyl-1H-pyrazole (3o). Eluent petroleum ether/ethyl acetate (4:1). White solid, $53 \mathrm{mg}, 77 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.32(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz})$, 7.35-7.33 (m, 3H), $7.17(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 1.46(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 1148.1,141.0,127.0,125.9,123.9,123.8,122.3$, 120.6, 118.5, 114.4, 114.2, 113.8, 58.5, 18.5, 15.3. HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 343.1030$, found: 343.1038 .

5-tert-Butyl-3-(4-methoxyphenyl)-4-(p-tolylthio)-1H-pyrazole (3p). Eluent petroleum ether/ethyl acetate (5:1). White solid, $57 \mathrm{mg}, 82 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.4) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 13.1(\mathrm{br}, \mathrm{s}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 6.83$ (d, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}$), $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz}, \mathrm{ppm}) \delta 159.7,158.6,147.8,140.9,131.5,128.9,124.9,121.5,120.6,114.3$, 113.6, 55.3, 44.7, 30.1, 27.4. HRMS m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 353.1682$, found: 353.1685 .

5-Benzyl-4-(4-chlorophenylthio)-3-phenyl-1H-pyrazole (3q). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $59 \mathrm{mg}, 78 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.73(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz})$, 7.36-7.33 (m, 3H), 7.21-7.18 (m, 3H), $7.15(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=10.0$ $\mathrm{Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 126.63, 126.61, 102.4, 31.9. HRMS m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 377.0874$, found: 377.0883.

5-(4-Fluorobenzyl)-3-(4-fluorophenyl)-4-(p-tolylthio)-1H-pyrazole (3r). Eluent petroleum ether/ethyl acetate (5:1). White solid, $63 \mathrm{mg}, 80 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.70(\mathrm{~d}, 2 \mathrm{H}, J$ $=10.0 \mathrm{~Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=5.0$ $\mathrm{Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.77(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 161.6\left(\mathrm{~d}, J_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right), 159.9,158.2,134.1(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 134.6,129.9,129.8,129.6,129.3,128.8,125.5,123.2,114.0,113.98$, 113.94, 102.4, 31.1, 20.9. HRMS m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 393.1232$, found: 393.1236 .

4-(4-Chlorophenylthio)-5-(4-fluorobenzyl)-3-(4-fluorophenyl)-1H-pyrazole (3s).

 Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $62 \mathrm{mg}, 75 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ $7.64(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.85$ $(\mathrm{dd}, 4 \mathrm{H}, J=5.0 \mathrm{~Hz}), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}, \mathrm{ppm}) \delta 160.1\left(\mathrm{~d}, J_{\mathrm{CF}}=243.0 \mathrm{~Hz}\right), 158.2,153.5,150.3,137.1\left(\mathrm{~d}, J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right)$, $130.5,129.8,129.6,128.9,128.8,126.5,122.7,114.1,113.8,101.4,31.2$. HRMS m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 413.0685$, found: 413.0689 .

3,5-Dimethyl-4-(phenylthio)-1H-pyrazole (3t). Eluent petroleum ether/ethyl acetate (4:1). White solid, $38 \mathrm{mg}, 93 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.24(\mathrm{dd}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 7.12(\mathrm{dd}$, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, ppm) $\delta 148.9,138.6,128.9,125.3,124.8,104.2,103.7,11.1$. HRMS m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}:$205.0794, found: 205.0799.

3,5-Dimethyl-4-(p-tolylthio)-1H-pyrazole (3u). Eluent petroleum ether/ethyl acetate (4:1). White solid, $41 \mathrm{mg}, 95 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.08(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}$, $J=5.0 \mathrm{~Hz}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (, $\left.\mathrm{CDCl}_{3} 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 148.8$, 135.0, 134.7, 129.7, 125.6, 104.3, 20.9, 11.2. HRMS m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 219.0950$, found: 219.0959 .

4-(4-Chlorophenylthio)-3,5-dimethyl-1H-pyrazole (3v). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $43 \mathrm{mg}, 91 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 10.9(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.19$ (d, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}$), $6.94(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz}, \mathrm{ppm}) \delta 148.9,137.1,130.7$, 129.0, 126.6, 103.5, 11.1. HRMS m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 239.0404$, found: 239.0408.

4-(4-Bromophenylthio)-3,5-dimethyl-1H-pyrazole (3w). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $52 \mathrm{mg}, 93 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 12.5(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.34(\mathrm{~d}$, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, ppm) $\delta 148.9,137.9,131.9,126.9,118.4,103.3,11.1$. HRMS m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 8 2} .9905$, 284.9884, found: 282.9914, 284.9890.

3,5-Dimethyl-4-(m-tolylthio)-1H-pyrazole (3x). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $40 \mathrm{mg}, 92 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 12.0(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=$ $10.0 \mathrm{~Hz}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 148.9,138.7,138.3,128.8,125.9,125.8$, 122.4, 21.5, 11.2. HRMS m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 219.0950, found: 219.0959.

3,5-Dimethyl-4-(naphthalen-2-ylthio)-1H-pyrazole (3y). Eluent petroleum ether/ethyl acetate (4:1). White solid, 48 mg , 96% yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 12.1(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~d}$, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.49-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.46(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ $149.0,144.5,136.3,133.9,131.4,128.6,127.8,126.9,126.6,125.2,124.3,122.7$, 104.2, 103.4, 12.3. HRMS m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 255.0950$, found: 255.0956.

4-(Butylthio)-3,5-dimethyl-1H-pyrazole (3z). Eluent petroleum ether/ethyl acetate (4:1). Yellow solid, $23 \mathrm{mg}, 62 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.3$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 10.6(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 2.51(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0$ $\mathrm{Hz}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 147.8,146.2,106.7,36.1,31.7,21.7,13.7,12.9,11.2$. HRMS m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 185.1107 , found: 185.1101 .

3,5-Dimethyl-4-(phenethylthio)-1H-pyrazole (3aa). Eluent petroleum ether/ethyl acetate (4:1). White solid, $83 \mathrm{mg}, 94 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=$ 0.4). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 11.40(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.32(\mathrm{dd}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, J$ $=10.0 \mathrm{~Hz}), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 286-2.79$ (m, 4H), $2.41(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 148.1,140.5,128.5,128.4$, 126.3, 106.5, 37.5, 36.4, 11.3. HRMS m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 233.1107$, found: 233.1105 .

3ab

3,5-Dimethyl-1-phenyl-4-(p-tolylthio)-1H-pyrazole (3ab). Eluent petroleum ether/ethyl acetate (30:1). White solid, $48 \mathrm{mg}, 82 \%$ yield. (petroleum ether/ethyl acetate $=25: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.53-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.43-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.38$ $(\mathrm{s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ 153.1, 144.0, $139.8,134.8,134.7,129.7,129.2,127.8,125.8,124.7,106.7,20.9,12.1,11.6$. HRMS m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 295.1263 , found: 295.1269.

4-(4-Chlorophenylthio)-3,5-dimethyl-1-phenyl-1H-pyrazole (3ac). Eluent petroleum ether/ethyl acetate (30:1). White solid, 54 mg , 86% yield. (petroleum ether/ethyl acetate $=25: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \operatorname{NMR} \mathrm{CDCl}_{3}(, 500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.53-7.49$ (m, 4H), 7.44-7.41 (m, 1H), $7.22(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 153.1,144.2$, 139.7, 137.0, 130.8, 129.2, 129.0, 127.9, 126.7, 124.7, 105.8, 12.1, 11.5. HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 315.0717$, found: 315.0713.

4-(4-Bromophenylthio)-3,5-dimethyl-1-phenyl- \mathbf{H}-pyrazole (3ad). Eluent petroleum ether/ethyl acetate (30:1). White solid, 61 mg , 85% yield. (petroleum ether/ethyl acetate $=25: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.52-7.49(\mathrm{~m}$, 4H), 7.44-7.42 (m, 1H), 7.37 (d, 2H, $J=10.0 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 153.1,144.2,139.7,137.7$, 131.9, 129.2, 128.0, 127.0, 126.7, 124.7, 118.5, 105.6, 12.1, 11.5. HRMS m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 359.0218,361.0197$, found: 359.0215, 361.0194 .

3,5-Dimethyl-1-phenyl-4-(\boldsymbol{m}-tolylthio)-1H-pyrazole (3ae). Eluent petroleum ether/ethyl acetate (30:1). White solid, $52 \mathrm{mg}, 88 \%$ yield. (petroleum ether/ethyl acetate $=25: 1, \mathrm{Rf}=0.3) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.52-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.43-$ 7.41 (m, 1H), 7.15 (dd, 1H, $J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.86$ $(\mathrm{d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}, \mathrm{ppm}) \delta 153.2,144.1,139.8,138.7,138.1,129.2,128.8,127.8,126.0,125.9$, 124.7, 122.5, 106.2, 21.5, 12.1, 11.6. HRMS m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$:
295.1263, found: 295.1269 .

5-Methyl-3-phenyl-4-tosyl-1H-pyrazole (7). Eluent petroleum ether/ethyl acetate (3:1). White solid, $68 \mathrm{mg}, 73 \%$ yield. (petroleum ether/ethyl acetate $=3: 1, \mathrm{Rf}=0.2$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6} d_{6}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.42-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}$, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}$), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ $171.4,150.6,145.7,143.6,140.0,130.2,129.9,129.35,129.31,128.0,126.7,117.8$, 21.8, 11.3. $\mathrm{HRMS} m / \mathrm{z}$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 313.1005$, found: 313.1009.

1,2-Diphenyldisulfane (8). Eluent petroleum ether/ethyl acetate (50:1). White solid, $25.6 \mathrm{mg}, 98 \%$ yield. (petroleum ether/ethyl acetate $=50: 1, \mathrm{Rf}=0.8$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.55(\mathrm{~d}, 4 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.34(\mathrm{dd}, 4 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=$ 10.0 Hz), 7.27 (dd, $2 \mathrm{H}, J=5.0 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$, ppm) $\delta 137.1,129.1,127.5,127.2$.

Reference

1 (a) J. Wen, Y. Fu, R.-Y. Zhang, J. Zhang, S.-Y. Chen, X.-Q. Yu, Tetrahedron., 2011, 67, 9618; (b) L. Wang, X. Yu, X. Feng, M. Bao, J. Org. Chem., 2013, 78, 1693.

2 D. C. Mohan, S. N. Rao, C. Ravi, S. Adimurthy, Asian J. Org. Chem., 2014, 3, 609.

8UN
今日i

$\stackrel{9}{=}$

Coseres)

8	58	124	¢ 0 あ\%	\%
㫛	ํ.9	gig	สู่ํํํสส	$\stackrel{\text { ¢ }}{=}$
\uparrow	$1 /$	\checkmark	VVTJ	

$\stackrel{\infty}{\stackrel{\infty}{1}} \stackrel{\infty}{\mid}$

$\begin{aligned} & \text { \%8 } \\ & \text { 역 } \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Mos } \\ & \text { Nた } \end{aligned}$	∞ ¢ สิ
11	S			

气㐅

$\begin{array}{r}\infty 8 \\ 0 \\ \hline 1\end{array}$

$\stackrel{\circ}{8}$
$\stackrel{8}{1}$
年
i

\square	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

8	89	${ }^{2}$	준%ㅉ웡	$\stackrel{\square}{8}$	7	ำ88	ล	\%\%	8
8	¢ ¢ ¢	울	ส్రి	$\stackrel{\text { ¢ }}{ }$	$\stackrel{8}{9}$	EEK	8	5ik	\bigcirc
\|	11		4V1/		\|	\downarrow	\|	$1 /$	

$\stackrel{\infty}{\stackrel{+}{\square}}$
888
8
\%

ㅎ
$\stackrel{+}{1}$
।

1111

3o

88%
8
$\stackrel{ت}{1}$

111

¢여
Nは
$\stackrel{\overbrace{}}{\underset{1}{7}}$

$\stackrel{\square}{\square}$

\sim

$1 /$

$=$
$\underset{1}{7}$

IIIII

18
$\stackrel{18}{1}$
1
S $5 R$
NR
8 な
9.
a

,	1		1					1		1		1	1	1			
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]
s. m
ふiู
1111

\iint

$\stackrel{\text { a }}{\stackrel{\%}{1}} \stackrel{\text { \% }}{=}$

Kinetic Isotopic Effect (KIE) Studies:

A 25 ml Schlenk tube equipped with a magnetic stirring bar was charged with iodine ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$), 5 -methyl-3-phenyl-1 H-pyrazole $\mathbf{1 a}$ (0.1 mmol), $\mathbf{1 a}-\mathrm{d}_{4}(0.2 \mathrm{mmol})$, benzenethiol 2a (0.24 mmol), and DMSO (2 mL). The tube was sealed, and then the mixture was stirred under air atmosphere at $100^{\circ} \mathrm{C}$ for 18 h . After completion of the reaction, the resulting solution was cooled down to room temperature, and the solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product, the product was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \quad$ (Figure S1). The result was summarized in equation S 1 :

$\xrightarrow[\text { DMSO, air, } 100^{\circ} \mathrm{C}]{\mathrm{I}_{2}(10 \mathrm{~mol} \%)}$
91\% yiel
$3 \mathrm{~b}: 3 \mathrm{~b}^{\prime}=1: 1$
$K / E=1.0$

Figure S1. The $\mathbf{1 H}-N M R$ spectrum of $\mathbf{3 b}$ and $\mathbf{3 b}-\mathrm{d}_{3}$

[^0]:

