Supporting information

Reaction-based Indicator displacement Assay (RIA) for the colorimetric and fluorometric detection of hydrogen peroxide⁺

Xiaolong Sun,*^a Maria L. Odyniec,^a Adam C. Sedgwick,^a Karel Lacina,^{a,b} Suying Xu,^c Taotao Qiang,^d Steven D. Bull,^a Frank Marken,^a and Tony D. James*^a

- ^a Department of Chemistry, University of Bath, BA2 7AY, UK. Email: Xiaolong.sun86@gmail.com, T.D.James@bath.ac.uk
- ^b CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- ^c Department of Analytical Chemistry, Faculty of Science, Beijing University of Chemical and Technology, Beijing, 100029, China.
- ^d College of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.

Contents

1. General methods	2
2. ROS preparation	2
3. Supplementary spectra	2
4. References	8

1. General methods

The UV-Vis spectra and fluorescent titrations with hydrogen peroxide were carried out at 25 °C in pH 7.30 PBS buffer (KH₂PO₄, 1/15 M; Na₂HPO₄, 1/15 M). The electrochemical data was obtained in pH 7.30 PBS buffer (KCl, 100 mM; KH₂PO₄, 1/15 M; Na₂HPO₄, 1/15 M).

2. ROS preparation

- ¹O₂ was generated by the reaction of H₂O₂ with NaClO. Drop the solution of H₂O₂ into the aqueous NaClO and stir for 2 min.
- ROO• was generated from 2, 2'-azobis (2-amidinopropane) dihydrochloride. AAPH (2, 2'-azobis (2-amidinopropane) dihydrochloride, 10 M) was added in de-ionized water, and then stirred at 37 °C for 30 min.
- Superoxide was generated from KO₂ with a saturated solution of KO₂ in DMSO (~1 mM).
- Hydroxyl radical was generated by Fenton reaction. To prepare •OH solution, ferrous chloride (1 M) was added in the presence of 10 equiv of H₂O₂ (37.0 wt%).
- The concentration of -OCl was determined from the absorption at 292 nm ($\mathcal{E} = 350 \text{ M}^{-1}\text{cm}^{-1}$).¹ The concentration of H₂O₂ was determined from the absorption at 240 nm ($\mathcal{E} = 43.6 \text{ M}^{-1}\text{cm}^{-1}$).

All other chemicals were from commercial sources and of analytical reagent grade, unless indicated otherwise.

3. Supplementary spectra

Figure S1. UV-Vis spectra of ARS (50 μ M) and addition of phenylboronic acid (PBA, 200 μ M) and visible color change from purple to orange. The data was obtained in 1/15 M PBS buffer with 2.0 mM CTAB at 25 °C.

Figure S2. Fluorescence spectra ($\lambda_{ex} = 460 \text{ nm}$) of **ARS** (50 µM) in the presence of phenylboronic acid (**PBA**, 0, 200 µM, 600 µM). The data was obtained in 1/15 M PBS buffer with 2.0 mM CTAB at 25 °C.

Figure S3. Fluorescence spectra ($\lambda_{ex} = 460 \text{ nm}$) of **ARS-PBA** (**ARS**: 50 µM, **PBA**: 600 µM) in the presence of hydrogen peroxide (H₂O₂, 500 µM). (A) Emission spectral in different time; (B) Time curve and non-fitting correlation. The data was obtained in 1/15 M PBS buffer with 2.0 mM CTAB solution at 25 °C.

Figure S4. Fluorescence spectra ($\lambda_{ex} = 460 \text{ nm}$) of **ARS-PBA** (**ARS**: 50 µM, **PBA**: 600 µM) in the presence of hydrogen peroxide (H₂O₂, 0, 50 µM, 100 µM, 200 µM, 500 µM, 1000 µM), then stirred for 60 min. (A) Emission spectral in different dose of H₂O₂; (B) Dose-dependent curve and non-fitting correlation. The data was obtained in 1/15 M PBS buffer with 2.0 mM CTAB solution at 25 °C.

Figure S5. Fluorescence spectra ($\lambda_{ex} = 460 \text{ nm}$) of **ARS-PBA** (**ARS**: 50 µM, **PBA**: 200 µM) in the presence of hydrogen peroxide (H₂O₂, 0, 50 µM, 100 µM, 200 µM, 500 µM), then stirred for 60 min. (A) Emission spectral in different dose of H₂O₂; (B) Dose-dependent curve and non-fitting correlation. The data was obtained in 1/15 M PBS buffer with 2.0 mM CTAB solution at 25 °C.

Figure S6. (a) Fluorescence spectra of **ARS** (50 μ M), **ARS-PBA** (**ARS**: 50 μ M, **PBA**: 200 μ M) and **ARS-PBA** (**ARS**: 50 μ M, **PBA**: 200 μ M) with different concentrations of CTAB (1 mM, 2 mM, 5 mM, 10 mM, 15 mM, 20 mM). (b) Dose-dependent curve for ARS-PBA with CTAB. The data was obtained in 1/15 M PBS buffer at 25 °C. Fluorescence intensity were measured with $\lambda_{ex} = 460$ nm with Ex slit: 5 nm and Em slit: 5 nm.

Figure S7: (a) Fluorescence spectra and (b) intensity changes (before and after addition of H_2O_2) of **ARS-PBA** (**ARS**: 50 µM, **PBA**: 200 µM) with different concentrations of CTAB (1, 2, 5, 10, 15, 20 mM) in the presence of hydrogen peroxide (H_2O_2 , 500 µM) in 1/15 M PBS buffer at 25 °C. Each measurement was made after 30 min. Fluorescence intensity were measured with $\lambda_{ex} = 460 \text{ nm}/ \lambda_{em} = 590 \text{ nm}$ with Ex slit: 5 nm and Em slit: 5 nm.

Figure S8. Fluorescence spectra of **ARS-PBA** (**ARS**: 50 μ M, **PBA**: 200 μ M) in the presence of various ROS: OCl (500 μ M), H₂O₂ (500 μ M), ROO (500 μ M), O₂ (500 μ M), OH (500 μ M), ¹O₂ (500 μ M). The data was obtained in 1/15 M PBS buffer at 25 °C. Fluorescence intensity were measured with λ_{ex} = 460 nm with Ex slit: 5 nm and Em slit: 5 nm.

Figure S9. Fluorescence spectra of **ARS-PBA** (**ARS**: 50 μ M, **PBA**: 200 μ M) with 2 mM CTAB in the presence of various ROS: -OCl (500 μ M), H₂O₂ (500 μ M), ROO (500 μ M), -O₂ (500 μ M), OH (500 μ M), ¹O₂ (500 μ M). The data was obtained in 1/15 M PBS buffer at 25 °C. Fluorescence intensity were measured with λ_{ex} = 460 nm with Ex slit: 5 nm and Em slit: 5 nm.

Supporting information

Figure S10. Selectivity of **ARS-PBA** (**ARS**: 50 μ M, **PBA**: 200 μ M) without and with CTAB (2 mM) in the presence of various ROS: OCl (500 μ M), H₂O₂ (500 μ M), ROO (500 μ M), O₂ (500 μ M), OH (500 μ M), ¹O₂ (500 μ M). The data was obtained in 1/15 M PBS buffer at 25 °C. Fluorescence intensity were measured with λ_{ex} = 460 nm/ λ_{em} = 590 nm with Ex slit: 5 nm and Em slit: 5 nm.

4. References

(1). M. Abo, Y. Urano, K. Hanaoka, T. Terai, T. Komatsu and T. Nagano, J. Am. Chem. Soc., 2011, **133**, 10629-10637.