Supporting Information

A novel spirocyclic triterpenoid and a new taraxerane triterpenoid from

Teucrium viscidum

Zheng-Yu Li,^a Feng-Ming Qi,^b De-Juan Zhi,^a Qiao-Ling Hu,^a Ying-Hong Liu,^a Zhan-Xin Zhang^{*a} and Dong-Qing Fei^{*a}

^a School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China. E-mail: <u>zhangzhx@lzu.edu.cn</u> (Z.-X. Zhang); <u>feidq@lzu.edu.cn</u> (D.-Q. Fei); Fax: +86 931 8915686; Tel: +86 931 8915686

^b State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

Supporting Information Contents

Experimental section

- Fig. 1S ¹H NMR (400MHz, CDCl₃) of compound 1
- Fig. 2S ¹³C NMR and DEPT135 (100MHz, CDCl₃) of compound 1
- Fig. 3S ¹H-¹H COSY spectrum of compound 1
- Fig. 4S HSQC spectrum of compound 1
- Fig. 5S HMBC spectrum of compound 1
- Fig. 6S NOESY spectrum of compound 1
- Fig. 7S HR-ESI-MS spectrum of compound 1
- Fig. 8S IR spectrum of compound 1
- **Fig. 9S** ¹H NMR (400MHz, C_5D_5N) of compound **2**
- Fig. 10S 13 C NMR and DEPT135 (100MHz, C₅D₅N) of compound 2
- Fig. 11S ¹H-¹H COSY spectrum of compound 2
- Fig. 12S HSQC spectrum of compound 2
- Fig. 13S HMBC spectrum of compound 2
- Fig. 14S NOESY spectrum of compound 2
- Fig. 15S HR-ESI-MS spectrum of compound 2
- Fig. 16S IR spectrum of compound 2

Experimental section

General Experimental Procedures: Melting points were determined on an X-4 digital display micro-melting point apparatus which are uncorrected. Optical rotations were measured on a Perkin Elmer 341 polarimeter. IR spectra were taken on a Nicolet NEXUS 670 FT-IR spectrometer. NMR spectra were recorded on a Bruker AVANCE III-400 NMR spectrometer. HR-ESI-MS data were recorded on a Thermo LTQ Orbitrap Elite mass spectrometer. The X-ray crystallographic data were collected on an Agilent Technologies SuperNova, Dual source, EOS CCD with mirror optics using graphite monochromated Cu-K α radiation. Silica gel (200-300 mesh) used for column chromatography, and silica gel GF₂₅₄ used for TLC were both supplied by the Qingdao Marine Chemical Factory, Qingdao, China.

Plant Material: The whole plants of *Teucrium viscidum* were purchased from Hebei Anguo Medicine Market in Anguo County, Hebei Province, China, in August, 2014 and identified by Dr. Jian-Yin Li, a doctor at school of Pharmacy, Lanzhou University. A voucher specimen (No. 20140821TV) is deposited in the school of Pharmacy, Lanzhou University.

Extraction and Isolation: The dried whole plants of *Teucrium viscidum* (20 kg) were percolated four times (each one week) with 95% EtOH at room temperature to give 2520 g crude extract. After removal of organic solvents, the extract was suspended in $H_2O(1.5L)$ and extracted with EtOAc (3×1.5L) and *n*-BuOH (3×1.5L). The EtOAc fraction (852 g) was chromatographed on a silica gel column with a stepwise gradient of petroleum ether-acetone (40:1-1:1) to give six major fractions (A-F). The fraction A (70g) was subjected to silica gel column chromatograph (CC) and eluted with petroleum ether-acetone successively to give Fr.A1-Fr.A3. The Fr.A1 (13.6 g) was separated by silica gel CC (petroleum ether/acetone, 20:1-10:1) to afford three fractions. The Fr.A1.1 (3.0 g) was subjected to silica gel CC (petroleum ether/EtOAc, 30:1-2:1) to yield **1** (8 mg). Fraction C was subjected to silica gel CC and eluted with

CHCl₃/EtOAc (80:1-10:1) to give three fractions. The subfraction Fr.C2 was further applied to a silica gel CC (CHCl₃/acetone, 100:1-10:1) to yield **2** (20 mg).

Bioactivity Assay for Delaying Paralysis in Transgenic Alzheimer Disease *Caenorhabditis elegans* Procedure: The transgenic *Caenorhabditis elegans* strains CL2006 (unc-54/A β 1-42), CL4176 (smg-1ts [myo-3/A β 1-42 long 3'-untranslated region (UTR)]) is obtained from Caenorhabditis Genetics Center (CGC) (University of Minnesota, Minneapolis, MN). Worms were propagated at 16 °C on nematode growth medium (NGM) seeded with *E. coli* (OP50) as standard food resource. 100 eggs of CL4176 were added onto NGM containing tested compound at concentration of 100 μ M in 0.1% DMSO, and 0.1% DMSO was used as control group. The animals were kept at 16 °C till they are at their L3 larval stage, then transferred into a 25 °C incubator for 34 h. Paralysis worms were counted under a dissecting stereo microscope at 2 h intervals until all animals got into paralysis. A paralysis worm did not respond to any mechanical stimulus or only moved its head. The anti-AD bioactivity was described as the capacity of tested compound delaying worm paralysis. More worms are not paralysis, higher anti-AD bioactivity of the tested compounds have.

Fig. 2S ¹³C NMR and DEPT135 (100MHz, CDCl₃) of compound 1

Fig. 7S HR-ESI-MS spectrum of compound 1

Fig. 9S ¹H NMR (400MHz, C₅D₅N) of compound 2

Fig. 10S ¹³C NMR and DEPT135 (100MHz, C₅D₅N) of compound 2

Fig. 15S HR-ESI-MS spectrum of compound 2

Fig. 16S IR spectrum of compound 2