Supporting Information

Bisimino-functionalized dibenzo[a,c]acridines as highly conjugated pincer frameworks for palladium(II): synthesis, characterization and catalytic performance in Heck coupling

Qaiser Mahmood,^a Erlin Yue,^a Wenjuan Zhang,^{a,b} Gregory A. Solan,^{a,c} Tongling Liang ^a and Wen-Hua Sun^{a,d,*}

^aKey Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^bSchool of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China

°Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK

^dUniversity of Chinese Academy of Sciences, Beijing 100049, China

Contents

- 1. Additional catalytic testing
- 2. ¹H and ¹³C NMR spectra for all organic and inorganic compounds
- 3. Crystal structure description, data and structural refinements for 1 and 2
- 4. Perspective views of Pd2 and Pd3

1. Additional catalytic testing

Na₂CO₃

Na₂CO₃

Table S1a. Screening 4-iodotoluene/styrene using Pd1 as catalyst ^a							
- - - - - - - - - -							
Entry	Base	Solvent	Temp. (°C)	Time (h)	Conv. (%) ^ь	TON ^c	
1	Na ₂ CO ₃	DMF	140	8	96	48000	
 ^a Reaction conditions: 4 × 10⁻⁵ mmol Pd1, 2.0 mmol 1-iodo-4-methylbenzene, 2.4 mmol styrene, 2.2 mmol base, 4.0 mL solution. ^b Determined by GC. ^cTON: mol product/mol Pd. Table S1b. Screening 4-iodobenzene/styrene using Pd1 as catalyst; exploring loading and reaction duration effects 							
Pd1 (0.001 - 0.002 mol%) Base, Solvent, Heat Heat							
Entry	Base	Solvent	Temp. (°C)	Time (h)	Conv. (%) ^b	τον	

140 Reaction conditions: ^d 2 × 10⁻⁵ mmol Pd1 (0.001 mol%), 2.0 mmol iodobenzene. ^e 4 × 10⁻⁵ mmol Pd1 (0.002 mol%), 2.0 mmol iodobenzene.

140

8

24

88

92

88000

46000

2. ¹H and ¹³C NMR spectra for all organic and inorganic compounds

DMF

DMF

¹H NMR spectrum of **1**

2^d

3^e

¹H NMR spectrum of **2**

¹H NMR spectrum of 4

¹H NMR spectrum of **5**

¹H NMR spectrum of L1

¹H NMR spectrum of L2

¹H NMR spectrum of Pd1

¹H NMR spectrum of Pd2

¹H NMR spectrum of Pd3

3. Crystal structure description, data and structural refinements for 1 and 2

Suitable crystals for single crystal X-ray diffraction studies of **1** and **2** were grown by layering a dichloromethane solution of **1** and **2** with heptane. ORTEP diagrams of **1** and **2** are shown in Figures S1 and S2; selected bond distances and angles are collected in the corresponding figure caption. The structure of spiro-[7-ethyl-3-methylindoline-2,10-phenanthren-9-one] **1** consists of a six- and five-membered ring systems which are linked by chiral center C13; both enantiomers are present within this centrosymmetric space group. The six-membered ring further contains two linked aryl groups and a ketone unit that are essentially co-planar with each other. By contrast the more strained five-membered ring is completed by a secondary amine and a tertiary carbon which are 1,2-linked by an ethyl-substituted aryl ring. The C14-O1 bond distance of 1.225(3) Å is consistent with a ketonic carbon-oxygen double bond.

Figure S1. ORTEP diagram of **1** with thermal ellipsoids set at 50% probability level; all hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): O(1)-C(14) 1.225(3), N(1)-C(13) 1.462(3), N(1)-C(22) 1.392(3), C(14)-C(13) 1.519(4), C(15)-C(13) 1.585(3), C(12)-C(13) 1.534(3), N(1)-C(13)-C(14) 111.45(19), N(1)-C(13)-C(12) 113.4(2), C(14)-C(13)-C(12) 110.4(2), N(1)-C(13)-C(15) 102.45(19), C(14)-C(13)-C(15) 110.4(2) C(12)-C(13)-C(15) 108.42(19).

The structure of 10-ethyl-14-methyldibenzo[a,c]acridine **2** consists of a slightly twisted dibenzo[a,c]acridine polyaromatic system in which the two fused benzo rings are not perfectly planar (dihedral angle *ca*. 18.0°) with respect to the pyridine ring N1-C14-C13-C15-C17-C22. At the 10- and 15-poistions are located the ethyl and methyl groups, respectively.

Figure S2. ORTEP diagram of **2** with thermal ellipsoids set at 50% probability level; all hydrogen atoms are omitted for clarity. N(1)-C(14) 1.324(2), N(1)-C(22)1.364(2), C(22)-C(21)1.434(3), C(14)-C(1) 1.479(3), C(1)-C(2) 1.401(3), C(21)-C(23)1.508(3),C(10)-C(11) 1.378(3), N(1)-C(14)-C(1)116.44(17), C(2)-C(1)-C(14)120.05(18), C(22)-C(21)-C(23)118.54(17)

	1	2
Empirical	C ₂₄ H ₂₁ NO	C ₂₄ H ₁₉ N
formula		
Formula weight	339.42	321.40
Temperature/K	173(2)	173(2)
Wavelength/ Å	0.71073	0.71073
Crystal system	monoclinic	orthorhombic
Space group	$P2_l/c$	Pbca
a/ Å	9.2943(19)	11.335(2)
b/ Å	18.714(4)	7.4991(15)
c/ Å	20.557(4)	37.869(8)
Alpha/°	90.00	90.00
Beta/°	95.79(3)	90.00
Gamma/°	90.00	90.00
Volume/ Å ³	9.2943(19)	3218.9(11)
Ζ	8	8
$D_{calcd}/(g \cdot cm^{-3})$	1.268	1.326
μ/mm^{-1}	0.077	0.076
<i>F</i> (000)	1440.0	1360.0
Crystal size/mm	$0.375\times0.261\times0.083$	$0.289\times0.115\times0.031$
θ Range (°)	4.54 to 50	5.6 to 54.96
Limiting indices	$-11 \le h \le 11$,	$-10 \le h \le 14$,
	$-21 \le k \le 22$,	$-9 \le k \le 9$,
	$-24 \le l \le 24$	$-28 \le 1 \le 48$
No. of rflns	19024	11343
collected		
No. unique rflns	6173	3672
R(int)	0.0365	0.0472
No. of params	473	228
Completeness to	98.6	99.4
θ		
Goodness of fit on F ²	1.038	1.172
Final R indices [I	$R_1 = 0.0700,$	$R_1 = 0.0693$
$>2\Sigma(I)$]	$wR_2 = 0.1381$	$wR_2 = 0.1375$
R indices (all	$R_1 = 0.0781$	$R_1 = 0.0799$
data)	$wR_2 = 0.1456$	$wR_2 = 0.1441$
Largest diff. peak,	0.65/-0.57	0.29/-0.22
and hole/(e Å ⁻³)		

 Table S1. Crystal data and structure refinements for 1 and 2

4. Perspective views of Pd2 and Pd3

Figure S3. ORTEP diagram of **Pd2** with thermal ellipsoids set at 50% probability level; all hydrogen atoms are omitted for clarity. Selected bond length (Å) and angles (°) are given in Table 2.

Figure S4. ORTEP diagram of **Pd3** with thermal ellipsoids set at 50% probability level; all hydrogen atoms are omitted for clarity. Selected bond length (Å) and angles (°) are given in Table 2.