Supporting Information

Catalytic Applications of [IPr·GaX₂][SbF₆] and Related Species

Bastien Michelet,^[a] Shun Tang,^[a] Guillaume Thiery,^[a] Julien Monot,^[a] Huijing Li,^[a] Regis Guillot,^[a] Christophe Bour,^[a] and Vincent Gandon^[a,b]

> [a] ICMMO (CNRS UMR 8182), Univ. Paris-Sud, Université Paris-Saclay, bât. 420, 91405 Orsay cedex, France.

[b] ICSN (CNRS UPR 2301), Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France.

Table of contents

1. General Information	S1
2. Synthesis of Substrates 23, 53, 68, 69, 73 and 75	S1
3. C-O Bond Formation from Alkynes and Alkenes (Scheme 3)	S6
4. C-C Bond Formation from Alcohols (Scheme 4)	S7
5. C-H Bond Formation from Alcohols (Table 1)	S9
6. Hydroarylation of Alkynes and Alkenes (Schemes 5, 6, 7, 9, 13, 15, 16 and 17)	S13
7. Two-Step Formal Transfer Hydrogenative Cyclization of Enyne 8	S23
8. Single-crystal X-ray structure analyses of compounds 66, 76	S24
9. Calculations	S26
10. Copies of ¹ H and ¹³ C NMR Spectra	S38

1. General Information

All reactions were performed in oven-dried flasks under argon. Unless otherwise stated, commercially available reagents were used as received without further purification. Gallium chloride, bromide and iodide were obtained from Alfa Aesar and used as received. 1,4-Cyclohexadiene was obtained from Sigma-Aldrich and used as received. Anisole was distilled prior to use. 1,2-Dichloroethane was distilled from calcium hydride and degassed by Freeze-Pump-Thaw technique. Wet DCE was prepared by shaking DCE with water in a separatory funnel followed by collection of the organic layer. Unless otherwise stated, products were purified by chromatography over silica gel. TLC plates were visualized by UV light (254 nm) and p-anisaldehyde staining. GC analysis was performed on a Varian 430-GC Instrument, equipped with an autoinjector (CP8410) using a Zebron ZB-1MS or ZB-1 capillary GC column (15 m x 0.25 mm x 0.25 µm). dl : meso ratio was determined by HPLC equipped with a Circular Dichroism detector (PU-2089 JASCO, CD-2095 JASCO) using a chiral column (chiralpak IC, 250 x 4.6 mm). NMR spectra were recorded on AM250, AV300 or AV360 MHz Bruker spectrometers. Chemical shifts are reported in parts per million (ppm). The spectra were referenced to the residual ¹H and ¹³C signals of the solvents as follows: CDCl₃ (¹H, $\delta = 7.27$ ppm; ¹³C, $\delta = 77$ ppm), CD_2Cl_2 (¹H, $\delta = 5.32$ ppm). Data are given in the following order: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (J) in Hz and integration. Infrared spectra were recorded on a FTIR spectrometer (Perkin-Elmer spectrum one, NaCl pellets or Bruker Vertex 70 ATR Pike Germanium) and are reported in cm⁻¹. HRMS were performed on MicrOTOFq Bruker spectrometer by electrospray ionization. MS were recorded on DSQ Thermo Fisher instrument by electronic impact. IPr $GaX_3 \mathbf{1}$ (X = Cl, Br, I) and [IPr $GaCl_2(TFBN)$][SbF₆] **3** were synthesized following a reported procedure.¹ The following compounds were previously described: 4,² 6,² 7,^{1b} 8,³ 9,^{1b} 12,⁴ 15,⁵ 17,⁵ 18,⁶ 22,⁷ 28,⁸ 30,⁸ 32,⁸ 46,² 48,⁹ 49,⁹ 59,^{1b} 62,² 65,² 71,¹⁰ 72,¹¹ 77,² 86.² NMR spectra of the new compounds 20, 23, 24, 25, 26, 47, 49, 51, 53, 54, 56, 60, 63, 66, 67, 68, 69, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 88 are shown in the appendix.

2. Synthesis of Substrates 23, 53, 68, 69, 73 and 75:

Dimethyl 2-benzyl-2-(4-hydroxy-4,4-diphenylbut-2-yn-1-yl)malonate 23:

To a solution of arenyne **4** (1 equiv, 1 g, 3.84 mmol) in THF (40 mL) was added *n*-butyllithium (1.05 equiv, 1.6 M in hexane, 2.52 mL, 4.03 mmol) dropwise at -78 °C. The mixture was stirred for half an hour and benzophenone (1.05 equiv, 0.735 g, 4.03 mmol) was added in one portion. The resulting mixture was allowed to warm up to 0 °C gradually and stirred for an additional hour. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was then quenched with

¹ (a) N. Marion, E. C. Escudero-Adán, J. Benet-Buchholz, E. D. Stevens, L. Fensterbank, M. Malacria, S. P. Nolan, *Organometallics*, **2007**, 26, 3256-3259. (b) S. Tang, J. Monot, A. El-Hellani, B. Michelet, R. Guillot, C. Bour, V. Gandon, V. *Chem. Eur. J.*, **2012**, *18*, 10239-10243. (c) C. Bour, J. Monot, S. Tang, R. Guillot, J. Farjon, V. Gandon, *Organometallics*, **2014**, *33*, 594-599.

 ² B. Michelet, C. Bour, V. Gandon, *Chem. Eur. J.*, **2014**, *20*, 14488-14492.

³ J. W. Faller, P. P. Fontaine, *J. Organomet. Chem.*, **2006**, *691*, 1912-1918.

⁴ J. Mandal, S. K. Prasad, D. S. S. Rao, S. Ramakrishnan, J. Am. Chem. Soc., 2014, 136, 2538-2545.

⁵ H. J. Li, R. Guillot, V. Gandon, J. Org. Chem., 2010, 75, 8435-8449.

⁶ D. P. Curran, N. Fairweather, J. Org. Chem., 2003, 68, 2972-2974.

⁷ J. J. Kennedy-Smith, L. A. Young and F. D. Toste, Org. Lett., 2004, 6,1325–1327.

⁸ V. J. Meyer, M. Niggemann, Chem. Eur. J., 2012, 18, 4687-4691.

⁹ N. Chatani, H. Inoue, T. Ikeda, S. Murai, J. Org. Chem., 2000, 65, 4913-4918.

¹⁰ S. T. A. Shah, K. M. Khan, H. Hussain, M. U. Anwar, M. Fecker, W. Voelter, *Tetrahedron* 2005, *61*, 6652-6656.

¹¹ W. Huang, Q. Shen, J. Wang, X. Zhou, J. Org. Chem., 2008, 73, 1586-1589.

a satd aq. NaHCO₃ solution. The organic layer was separated and the aqueous layer was extracted with Et_2O . The combined organics were washed with brine and dried over MgSO₄. The solvent was removed under vacuum to give the crude product, which was further purified by silica gel chromatography to afford compound **23** (47%, 792 mg, 1.79 mmol).

Sticky yellow oil. ¹H NMR (250 MHz, CDCl₃) δ 7.62 (d, J = 7.7 Hz, 4H), 7.39-7.24 (m, 9H), 7.22-7.05 (m, 2H), 3.73 (s, 6H), 3.42 (s, 2H), 2.89 (br s, 1H), 2.82 (s, 2H). ¹³C NMR (63 MHz, CDCl₃) δ 170.2, 145.0, 135.3, 129.8, 128.4, 128.2, 127.7, 127.2, 126.0, 87.1, 82.9, 74.5, 58.5, 52.8, 37.9, 22.8. FT-IR (film): ν 3479, 3030, 1737, 1450, 1210, 701 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₈H₂₆O₅Na [M+Na]⁺: 465.1672 found: 465.1691.

Dimethyl 2-(3-chlorobenzyl)-2-(prop-2-yn-1-yl)malonate 53:

Dimethyl propargyl malonate (1 equiv, 742 mg, 4.1 mmol) was added to a suspension of NaH (1.2 equiv, 60% dispersion in mineral oil, 199 mg, 5.0 mmol) in 10 mL THF at -20 °C. The resulting mixture was stirred at room temperature until the evolution of hydrogen gas subsided. 1-(Bromomethyl)-3-chlorobenzene (1.2 equiv, 1 g, 5.0 mmol) was then added at 0 °C. The resulting mixture was stirred at room temperature for 20 h and 20 mL of water were added. The two layers were separated, and the aqueous layer was extracted with DCM (3×50 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by column chromatography over silica gel (cyclohexane, EtOAc) to afford compound **53** (87%, 1.1 g, 3.6 mmol).

White solid. mp = 73 °C. ¹H NMR (360 MHz, CDCl₃) δ 7.24-7.22 (m, 2H), 7.15 (m, 1H), 7.06 (dt, *J* = 6.4 Hz, *J* = 1.9 Hz, 1H), 3.77 (s, 6H), 3.39 (s, 2H), 2.70 (d, *J* = 2.8 Hz, 2H), 2.18 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (90 MHz, CDCl₃) δ 169.8, 137.5, 134.3, 129.9, 129.7, 128.0, 127.5, 78.9, 72.5, 58.1, 52.9, 37.1, 22.2. FT-IR (film): *v* 3288, 2363, 1734, 1432, 1208, 1195, 1179, 853 cm⁻¹. HRMS (ESI) *m/z*: Calcd for C₁₅H₁₅O₅ClNa [M+Na]⁺: 317.0551 found: 317.0545.

Dimethyl 2-(prop-2-yn-1-yl)-2-(2,4,6-trimethylbenzyl)malonate 68:

To a suspension of NaH (1.2 equiv, 60% dispersion in mineral oil, 316 mg, 7.9 mmol) in 30 mL THF, was added dimethyl propargylmalonate (1 equiv, 1.12 g, 6.6 mmol) dropwise at -78 °C. The resulting mixture was allowed to warm up to room temperature and stirred until the evolution of hydrogen gas subsided. 2-(Bromomethyl)-1,3,5-trimethylbenzene (1.2 equiv, 1.7 g, 7.9 mmol) was then added at -78 °C in one portion. The resulting mixture was stirred at room temperature for 20 h and water (20 mL) were added. The two layers were separated and the aqueous layer was extracted with Et₂O

(3 x 30 mL). The combined organic extracts were washed with brine, dried over anhydrous $MgSO_4$, filtered and concentrated. The residue was purified by chromatography over silica gel to afford compound **68** in quantitative yield (1.99 g, 6.6 mmol).

Colorless oil. ¹H NMR (360 MHz, CDCl₃) δ 6.81 (s, 2H), 3.62 (s, 6H), 3.57 (s, 2H), 2.83 (d, J = 2.5 Hz, 2H), 2.29 (s, 6H), 2.23 (s, 3H), 2.07 (t, J = 2.5 Hz, 1H). ¹³C NMR (90 MHz, CDCl₃) δ 170.9, 138.2, 136.1, 130.6, 129.1, 79.8, 71.4, 58.5, 52.5, 31.4, 25.2, 20.8, 20.7. FT-IR (film): v 3283, 2953, 1736, 1435, 1199 cm⁻¹. HRMS (ESI) m/z: Calcd for C₁₈H₂₂O₄Na [M+Na]⁺: 325.1410 found: 325.1397.

Ethyl 2-benzylpent-4-ynoate 69:

Diisopropylamine (1.1 equiv, 8.7 mL, 62.4 mmol) was added dropwise at -78 °C to *n*-butyllithium (1.05 equiv, 1.6 M in hexane, 37 mL, 59.5 mmol). Ethyl 3-phenylpropanoate (1 equiv, 10 g, 56.7 mmol) was added dropwise and the resulting mixture was stirred for 1 h at -78 °C. Propargyl bromide (1.05 equiv, 6.41 mL, 59.5 mmol) was then added and the mixture was stirred for 2 h at -78 °C. After allowing the solution to warm to room temperature, the reaction was quenched with a satd aq. NH₄Cl solution and the organic layer was extracted three times with EtOAc. The organic layer was washed with an aq. HCl 2M solution, then with a satd aq. NaHCO₃ solution, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography over silica gel (cyclohexane, EtOAc) to afford compound **69** (66%, 8.1 g, 37.4 mmol).

Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.19 (m, 5H), 4.14 (q, J = 7.2 Hz, 2H), 3.09-2.93 (m, 2H), 2.90-2.81 (m, 1H), 2.47-2.38 (m, 2H), 2.06 (t, J = 2.5 Hz, 1H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 173.6, 138.4, 129.0, 128.4, 126.5, 81.2, 70.3, 60.6, 46.2, 36.9, 20.5, 14.1. HRMS (ESI) m/z: Calcd for C₁₄H₁₆O₂Na [M+Na]⁺: 239.1043 found: 239.1038.

1-Phenyl-2,2-bis(phenylsulfonyl)pent-4-yne 73:

To a suspension of NaH (1.1 equiv, 60% dispersion in mineral oil, 0.52 g, 13 mmol) in 10 mL THF was slowly added a solution of bis(phenylsulfonyl)methane (3.5 g, 11.8 mmol) in THF (40 mL). The resulting mixture was stirred at room temperature for 5 min and at 50 °C for 15 min. Propargyl bromide (1.05 equiv, 1.84 g, 1.38 mL, 12.4 mmol) was then added dropwise and the mixture was stirred under reflux for 20 h. The reaction was diluted with Et_2O (20 mL) and quenched with a satd aq. NH₄Cl solution (20 mL). The two layers were separated and the aqueous phase was extracted three times with Et_2O . The combined organics were washed with an aq. HCl 5% solution, brine, dried over MgSO₄ and concentrated under vacuum. The crude product was filtered on a pad of silica gel (DCM) and concentrated in vacuo to obtain a pale yellow foam which was further purified by chromatography over silica gel (cyclohexane, EtOAc) and recrystallized from EtOH to afford 1,1-bis(phenylsulfonyl)but-3-yne (36%, 1.43 g, 4.26 mmol).

1,1-bis(phenylsulfonyl)but-3-yne

White solid. ¹H NMR (250 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 4H), 7.70-7.58 (m, 6H), 4.60 (t, J = 6.1 Hz, 1H), 3.14 (dd, J = 6.1 Hz, J = 2.7 Hz, 2H), 1.95 (t, J = 2.7 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃) δ 137.6, 134.9, 129.8, 129.2, 82.0, 76.9, 72.2, 16.6. HRMS (ESI) *m*/*z*: Calcd for C₁₆H₁₄O₄S₂Na [M+Na]⁺: 357.0226 found: 357.0227. The data correspond to those previously reported in the literature.¹²

To a suspension of NaH (1.1 equiv, 60% dispersion in mineral oil, 92.2 mg, 2.31 mmol) in 10 mL THF was slowly added a solution of 1,1-bis(phenylsulfonyl)but-3-yne (1 equiv, 700 mg, 2.09 mmol) in THF (10 mL). The resulting mixture was stirred at room temperature for 5 min and at 50 °C for 15 min. Benzyl bromide (1.2 equiv, 429 mg, 0.3 mL, 2.51 mmol) was then added dropwise and the mixture was stirred under reflux for 20 h. The reaction was diluted with Et₂O (20 mL) and quenched with a satd aq. NH₄Cl solution (20 mL). The two layers were separated and the aqueous phase was extracted three times with Et₂O. The combined organics were washed with an aq. HCl 5% solution, brine, dried over MgSO₄ and concentrated under vacuum. The crude product was purified by chromatography over silica gel (pentane, Et₂O) to obtain a pale yellow foam which was triturated with boiling Et₂O and filtered while still warm to afford compound **73** (21%, 188 mg, 0.443 mmol).

White solid. mp = 95-97 °C. ¹H NMR (250 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 4H), 7.67 (tt, J = 7.4 Hz, J = 1.1 Hz, 2H), 7.53-7.46 (m, 6H), 7.30-7.26 (m, 3H), 3.77 (s, 6H), 3.80 (s, 2H), 3.22 (d, J = 2.8 Hz, 2H), 2.14 (t, J = 2.8 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃) δ 137.4, 134.6, 132.5, 131.5 (2C), 128.5, 128.3, 127.7, 90.7, 75.8, 35.1, 22.2 (one quaternary C is missing). FT-IR (film): v 3273, 1447, 1334, 1311, 1145, 1076, 753, 733, 579 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₃H₂₁O₄S₂ [M+H]⁺: 425.0876 found: 425.0875.

¹² J. R. Rodríguez, L. Castedo , J. L. Mascareñas, J. Org. Chem., 2000, 65, 2528-2531.

N-(5-benzyl-2-methoxybenzyl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide 75:

To a solution of 1-benzyl-4-methoxybenzene⁵ (1 equiv, 1.98 g, 10.0 mmol) and α,α -dichloromethyl methyl ether (1.1 equiv, MeOCHCl₂, 1.26 g, 11.0 mmol) in DCM (30 mL), TiCl₄ (1.1 equiv, 1.2 mL, 11.0 mmol) in DCM (20 mL) was added dropwise over 20 minutes at 0 °C. The mixture was magnetically stirred at room temperature overnight, then 50 mL of DCM and 30 mL of water were added. The two layers were separated, and the aqueous layer was extracted with DCM (3×50 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography using cyclohexane/EtOAc (80/20) as eluent to afford 5-benzyl-2-methoxybenzaldehyde (81%, 1.84 g, 8.1 mmol).

5-benzyl-2-methoxybenzaldehyde

Yellow oil. ¹H NMR (250 MHz, CDCl₃) δ 10.48 (s, 1H), 7.72 (s, 1H), 7.40-7.18 (m, 6H), 6.93 (d, J = 8.7 Hz, 1H), 3.97 (s, 2H), 3.91 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 189.6, 160.2, 140.6, 136.3, 133.4, 129.9, 129.2, 128.6, 128.4, 128.3, 126.1, 124.4, 111.7, 55.5, 40.6. HRMS (ESI) *m/z*: Calcd for C₁₅H₁₄O₂Na [M+H]⁺: 249.0891, found: 226.0888.

5-Benzyl-2-methoxybenzaldehyde (1 equiv, 1.81 g, 8.0 mmol), tosylamide (2 equiv, 2.04 g, 16.0 mmol) and triethylamine (5 equiv, 4.05 g, 40.0 mmol) were dissolved in DCM (50 mL) and cooled to 0 °C. TiCl₄ (1 equiv, 0.9 mL, 8.0 mmol) in DCM (10 mL) was added dropwise over 10 minutes, then the ice-bath was removed and stirring was continued for 1 hour. The mixture was hydrolyzed with a satd aq. NaHCO₃ solution, the two phases were separated, the aqueous phase was extracted three times with DCM and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. To a solution of the above crude product in MeOH (30 mL), NaBH₄ (0.61 g, 16.0 mmol) was added in small portions at room temperature, then the solution was magnetically stirred overnight. After hydrolysis with water (30 mL), phase separation, extraction with DCM (3×50 mL), drying of the organic phase over MgSO₄ and concentration under reduced pressure, the crude product was purified by silica gel column chromatography using cyclohexane/EtOAc (85/15) as eluent to afford *N*-(5-benzyl-2-methoxybenzyl)-4-methylbenzenesulfonamide (68%, 1.93 g, 5.1 mmol).

N-(5-benzyl-2-methoxybenzyl)-4-methylbenzenesulfonamide

Pale yellow oil. ¹H NMR (250 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2H), 7.33-7.14 (m, 7H), 7.00 (dd, J = 8.3, 2.3 Hz, 1H), 6.91 (d, J = 2.3 Hz, 1H), 6.65 (d, J = 8.3 Hz, 1H), 5.27 (t, J = 6.4 Hz, 1H), 4.12

(d, J = 6.4 Hz, 2H), 3.83 (s, 2H), 3.72 (s, 3H), 2.39 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 155.1, 142.5, 140.4, 136.6, 133.0, 129.7, 129.3, 128.5, 128.1, 127.2, 126.2, 124.3, 112.7, 56.4, 43.5, 41.0, 21.5. HRMS (ESI) m/z: Calcd for C₂₂H₂₃O₃NSNa [M+Na]⁺: 404.1296, found: 404.1298.

To a mixture of propargyl bromide (1.2 equiv, 80% in toluene, 0.97 g, 6.5 mmol) and K₂CO₃ (3.7 equiv, 2.76 g, 20.0 mmol) in 50 mL acetone was added *N*-(5-benzyl-2-methoxybenzyl)-4-methylbenzenesulfonamide (1 equiv, 1.93 g, 5.4 mmol). The reaction mixture was magnetically stirred at 60 °C for 12 hours, and then quenched with water. The aqueous layer was extracted with ether (3×20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and solvents were evaporated under reduced pressure. The crude product was purified by silica gel column chromatography using cyclohexane/EtOAc (90/10) as eluent to give **75** (75%, 2.07 g, 4.9 mmol).

White solid. mp = 82-83°C. ¹H NMR (250 MHz, CDCl₃) δ 7.80 (d, *J* = 8.3 Hz, 2H), 7.32-7.17 (m, 8H), 7.07 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.77 (d, *J* = 8.3 Hz, 1H), 4.43 (s, 2H), 4.01 (d, *J* = 2.3 Hz, 2H), 3.93 (s, 2H), 3.76 (s, 3H), 2.47 (s, 3H), 2.00 (t, *J* = 2.3 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃) δ 156.2, 143.3, 141.4, 136.5, 133.3, 130.5, 129.3, 128.7, 128.4, 127.8, 126.0, 123.3, 110.7, 77.2, 73.4, 55.4, 44.7, 41.0, 36.3, 21.5. HRMS (ESI) *m*/*z*: Calcd for C₂₅H₂₆O₃NS [M+H]⁺: 420.1628, found: 420.1622. Calcd for C₂₅H₂₅O₃NSNa [M+Na]⁺: 442.1447, found: 442.1440.

3. C-O Bond Formation from Alkynes and Alkenes (Scheme 3):

General procedure: IPr·GaX₃ (X = Cl, Br or I, 5 mol%, 0.0125 mmol) and AgSbF₆ (7 mol%, 6 mg, 0.0175 mmol) were mixed in a screw-cap vial under argon. Wet DCE (0.5 mL) was added and the mixture was stirred at room temperature for 5 min. A solution of phenylacetylene, **12**, or **18** (1 equiv, 0.25 mmol) diluted in wet DCE (0.5 mL) was added and the mixture was stirred at 80 °C for 20 h. The mixture was then filtered on a short pad of silica gel, which was rinsed with DCM (5 mL). Unless otherwise stated, solvents were removed under reduced pressure and the yield was determined by ¹H NMR analysis after addition of *p*-anisaldehyde (1 equiv, 30 µL) as internal standard.

Acetophenone:

63%. ¹H NMR (250 MHz, CDCl₃) δ 8.01-7.97 (m, 2H), 7.63-7.46 (m, 3H), 2.64 (s, 3H).

Diethyl 3-methyl-5-oxocyclohex-3-ene-1,1-dicarboxylate 14:

Following the general procedure and using $IPr \cdot GaBr_3$ as precatalyst. After the work-up, solvents were removed under reduced pressure and the crude product was purified by chromatography over silica gel (cyclohexane, EtOAc) to afford compound **14** (79%, 26 mg, 0.102 mmol).

¹H NMR (360 MHz, CDCl₃) δ 5.89 (br s, 1H), 4.20 (q, J = 7.1 Hz, 4H), 2.88 (s, 2H), 2.86 (s, 2H), 2.01 (s, 3H), 1.24 (t, J = 7.1 Hz, 6H). The data correspond to those previously reported in the literature.¹³

Methyl 3-benzyl-5-methyl-2-oxotetrahydrofuran-3-carboxylate 20:

Following the general procedure and using $IPr \cdot GaCl_3$ as precatalyst. After the work-up, solvents were removed under reduced pressure and the crude product was purified by chromatography over silica gel (cyclohexane, EtOAc) to afford compound **20** (64%, 40 mg, 0.16 mmol).

Isolated as a mixture of diastereoisomers, *d.r.* = 7:3 (determined by ¹H NMR). Colorless oil. Major isomer: ¹H NMR (250 MHz, CDCl₃) δ 7.34-7.16 (m, 5H), 4.61 (m, 1H), 3.82 (s, 3H), 3.33 (d, *J* = 3.0 Hz, 2H), 2.68 (dd, *J* = 13.1 Hz, *J* = 6.1 Hz, 1H), 1.82 (dd, *J* = 13.1 Hz, *J* = 9.8 Hz, 1H), 1.21 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 173.9, 169.8, 135.6, 130.0, 128.6, 127.3, 75.1, 57.9, 53.2, 39.5, 38.3, 20.6. Minor isomer: ¹H NMR (250 MHz, CDCl₃) δ 7.34-7.16 (m, 5H), 3.85 (s, 3H), 3.73 (m, 1H), 3.39 (d, *J* = 13.7 Hz, 1H), 3.24 (d, *J* = 13.7 Hz, 1H), 2.43 (dd, *J* = 7.5 Hz, *J* = 6.1 Hz, 2H), 1.31 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 173.9, 170.7, 135.1, 129.9, 128.8, 127.6, 74.6, 57.2, 53.2, 39.7, 37.8, 21.3. FT-IR (film): *v* 2955, 2931, 2850, 1773, 1736, 1497, 1455, 1348, 1266, 1180, 1107, 1031, 997, 948, 703 cm⁻¹. GC-MS (CI) *m/z*: Calcd for C₁₄H₂₀O₄N [M+NH₄]⁺: 266.1 found: 266.0 (maj), 266.2 (min).

4. C-C Bond Formation from Alcohols (Scheme 4):

(3-(4-Methoxyphenyl)prop-1-yne-1,3-diyl)dibenzene 22:

A [IPr·GaCl₂][SbF₆] solution was prepared by adding IPr·GaCl₃ (5 mol%, 7 mg, 0.0125 mmol) and AgSbF₆ (7 mol%, 6 mg, 0.0175 mmol) to DCE (1 mL) in a screw-cap vial under argon. In a separated

¹³ C. Zhang, D.-M. Cui, L.-Y. Yao, B.-S. Wang, Y.-Z. Hu, T. Hayashi, J. Org. Chem. 2008, 73, 7811-13.

tube, anisole (3 equiv, 81.1 mg, 0.0815 mL, 0.75 mmol) was added to a solution of **21** (1 equiv, 52.1 mg, 0.25 mmol) in DCE (0.9 mL). 0.1 mL of the [IPr·GaCl₂][SbF₆] solution previously prepared was then added and the mixture was stirred at room temperature for 1 h. The reaction was monitored by TLC. After filtration on a celite pad and evaporation of the volatiles, the crude product was purified by chromatography over silica gel (cyclohexane) to afford compound **22** (80%, 60 mg, 0.201 mmol).

Pale yellow oil. ¹H NMR (250 MHz, CDCl₃) δ 7.48-7.20 (m, 12 H), 6.84 (d, J = 8.7 Hz, 2H), 5.15 (s, 1H), 3.75 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 158.5, 142.0, 133.9, 131.6, 128.9, 128.6, 128.2, 127.9, 127.8, 126.8, 123.5, 114.0, 90.5, 84.7, 55.2, 42.9. The data correspond to those previously reported in the literature.¹⁴

Cyclization of compound 23:

A [IPr·GaCl₂][SbF₆] solution was prepared by adding IPr·GaCl₃ (5 mol%, 7 mg, 0.0125 mmol) and AgSbF₆ (7 mol%, 6 mg, 0.0175 mmol) to DCE (1 mL) in a screw-cap vial under argon. In a separated tube, compound **23** (1 equiv, 111 mg, 0.25 mmol) was dissolved in DCE (0.9 mL). 0.1 mL of the [IPr-GaCl₂][SbF₆] solution previously prepared was then added and the mixture was stirred at the indicated temperature for 1-16 h. The mixture was then filtered on a short pad of silica gel, which was rinsed with DCM (5 mL). After evaporation, the crude product was purified by flash chromatography over silica gel (cyclohexane, EtOAc).

Dimethyl 4-(2,2-diphenylvinylidene)-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate 24:

Sticky white paste. ¹H NMR (360 MHz, C₆D₆) δ 7.80 (d, *J* = 7.3 Hz, 1H), 7.66 (d, *J* = 7.3 Hz, 4H), 7.30-7.19 (m, 6H), 7.14-7.01 (m, 3H), 3.50 (s, 2H), 3.40 (s, 2H), 3.35 (s, 6H). ¹³C NMR (90 MHz, C₆D₆) δ 206.6, 170.8, 137.3, 133.7, 130.2, 129.8, 129.1, 128.9, 127.9, 127.8, 127.2, 126.9, 114.3, 102.7, 54.2, 52.3, 35.8, 34.3. FT-IR (film): *v* 3024, 2952, 2279, 1736, 1598, 1492, 1443, 1251, 1074, 769, 697 cm⁻¹. HRMS (ESI) *m*/*z*: Calcd for C₂₈H₂₄O₄Na [M+Na]⁺: 447.1567 found: 447.1554.

¹⁴ Z.-P. Zhan, J.-L.Yu, H.-J. Liu, Y.-Y. Cui, R.-F. Yang, W.-Z. Yang, J.-P. Li, J. Org. Chem., 2006, 71, 8298-8301.

White solid. mp = 144 °C. ¹H NMR (250 MHz, CDCl₃) δ 7.43-7.35 (m, 6H), 7.25-7.15 (m, 8H), 6.72 (d, *J* = 1.6 Hz, 1H), 5.80 (d, *J* = 1.6 Hz, 1H), 3.58 (s, 6H), 3.36 (s, 2H). ¹³C NMR (90 MHz, CDCl₃) δ 170.3, 146.0, 142.7, 139.9, 137.0, 132.7, 132.5, 129.9, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.0, 126.8, 125.7, 124.8, 123.7, 54.6, 52.8, 34.2. FT-IR (film): *v* 3056, 3023, 2953, 1737, 1445, 1434, 1271, 1227, 766, 732, 700 cm⁻¹. HRMS (ESI) *m/z*: Calcd for C₂₈H₂₄O₄Na [M+Na]⁺: 447.1567 found: 447,1579.

Dimethyl 3-phenyl-2'*H*-spiro[indene-1,1'-naphthalene]-3',3'(4'*H*)-dicarboxylate 26:

White solid. mp = 162 °C. ¹H NMR (360 MHz, CDCl₃) δ 7.61-7.57 (m, 3H), 7.48-7.43 (m, 3H), 7.41-7.32 (m, 2H), 7.26-7.22 (m, 3H), 7.17 (td, J = 7.5 Hz, J = 1.3 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.50 (dd, J = 8.0 Hz, J = 1.0 Hz, 1H), 6.43 (s, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.71 (dd, J = 16.3 Hz, J = 2.2 Hz, 1H), 3.33 (d, J = 16.3 Hz, 1H), 2.97 (d, J = 14.3 Hz, 1H), 2.60 (dd, J = 14.3 Hz, J = 2.2 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃) δ 172.0, 171.7, 155.1, 142.7, 141.7, 141.6, 135.3, 135.3, 133.9, 129.0, 128.6, 127.8, 127.7, 127.1, 127.0, 126.9, 126.7, 126.3, 123.5, 120.8, 54.7, 53.3, 52.9, 52.6, 38.1, 35.3. FT-IR (film): v 3062, 3025, 2952, 1736, 1491, 1445, 1273, 1244, 1213, 911, 754, 735, 700 cm⁻¹ HRMS (ESI) m/z: Calcd for C₂₈H₂₄O₄Na [M+Na]⁺: 447.1567 found: 447,1561.

5. C-H Bond Formation from Alcohols (Table 1):

General procedure A: a [IPr·GaCl₂][SbF₆] solution was prepared by adding IPr·GaCl₃ (5 mol%, 7 mg, 0.0125 mmol) and AgSbF₆ (7 mol%, 6 mg, 0.0175 mmol) to DCE (1 mL) in a screw-cap vial under argon. In a separated tube, Et₃SiH or Ph₂SiHCl (3 equiv, 0.75 mmol) was added to a solution of alcohol **21**, **34**, **42** or **44** in DCE (0.9 mL). 0.1 mL of the [IPr·GaCl₂][SbF₆] solution was then added and the mixture was stirred at room temperature for 1 h. After filtration on a celite pad and evaporation of the volatiles, the crude product was purified by chromatography over silica gel (cyclohexane, EtOAc) to afford the corresponding deoxygenated product.

General procedure B: [IPr·GaCl₂(TFBN)][SbF₆] (5 mol%, 11.5 mg, 0.0125 mmol) was dissolved in DCE (1 mL) in a screw-cap vial under argon. In a separated tube, Et₃SiH or Ph₂SiHCl (3 equiv, 0.75 mmol) was added to a solution of alcohol **21**, **28**, **30**, **32**, **34**, **36**, **38**, **40** or **42** in DCE (0.9 mL). 0.1 mL of the [IPr·GaCl₂(TFBN)][SbF₆] solution was then added and the mixture was stirred at room temperature for 1 h. After filtration on a celite pad and evaporation of the volatiles, the crude product was purified by chromatography over silica gel (cyclohexane, EtOAc) to afford the corresponding deoxygenated product.

Prop-1-yne-1,3-diyldibenzene 27:

Following the general procedure **B**. 50%. Colorless oil. ¹H NMR (250 MHz, CDCl₃) δ 7.55-7.26 (m, 10H), 3.88 (s, 2H). ¹³C NMR (63 MHz, CDCl₃) δ 136.8, 131.6, 128.5, 128.2, 127.9, 127.8, 126.6, 123.7, 87.5, 82.7, 25.8. MS (EI) *m*/*z* (%I): 192.1 (82) [M]⁺, 191.1 (100), 105.0 (27), 77.0 (21). The data correspond to those previously reported in the literature.⁸

1-Methoxy-4-(3-phenylprop-2-yn-1-yl)benzene 29:

Following the general procedure **B**. 90%. Yellow oil. ¹H NMR (360 MHz, CDCl₃) δ 7.49-7.46 (m, 2H), 7.36-7.30 (m, 5H), 6.91 (d, J = 8.6 Hz, 2H), 3.81 (s, 3H), 3.79 (s, 2H). The data correspond to those previously reported in the literature.⁸

1-Chloro-4-(3-phenylprop-2-yn-1-yl)benzene 31:

Following the general procedure **B**. 53%. Yellow oil. ¹H NMR (360 MHz, CDCl₃) δ 7.49-7.46 (m, 2H), 7.39-7.27 (m, 7H), 3.82 (s, 2H). The data correspond to those previously reported in the literature.⁸

5-(3-Phenylprop-2-yn-1-yl)benzo[d][1,3]dioxole 33:

Following the general procedure **B**. 90%. Yellow oil. ¹H NMR (360 MHz, CDCl₃) δ 7.49-7.46 (m, 2H), 7.34-7.27 (m, 3H), 6.95 (s, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 5.96 (s, 2H), 3.77 (s, 2H). The data correspond to those previously reported in the literature.⁸

Diphenylmethane 35:

Following the general procedure **B**. 95%. Yellow oil. ¹H NMR (250 MHz, CDCl₃) δ 7.40-7.24 (m, 10H), 4.06 (s, 2H).

9H-Xanthene 37:

Following the general procedure **B**. 85%. White solid. ¹H NMR (250 MHz, CDCl₃) δ 7.30-7.21 (m, 4H), 7.13-7.05 (m, 4H), 4.11 (s, 2H). The data correspond to those previously reported in the literature.¹⁵

2-Ethyl-6-methoxynaphthalene 39:

Following the general procedure **B**. 95%. White solid. ¹H NMR (250 MHz, CDCl₃) δ 7.75-7.71 (m, 2H), 7.61 (s, 1H), 7.37 (dd, J = 3.3 Hz, J = 1.6 Hz, 1H), 7.20-7.16 (m, 2H), 3.96 (s, 3H), 2.83 (q, J = 7.5 Hz, 2H), 1.37 (t, J = 7.5 Hz, 3H). The data correspond to those previously reported in the literature.¹⁶

¹⁵ Z. Cong, T. Miki, O. Urakawa, H. Nishino, J. Org. Chem. 2009, 74, 3978-81.

¹⁶ B.-T. Guan, S.-K. Xiang, B.-Q. Wang, Z.-P. Sun, Y. Wang, K.-Q. Zhao, Z.-J. Shi, J. Am. Chem. Soc. 2008, 130, 3268-3269.

(*E*)-Prop-1-ene-1,3-diyldibenzene 41:

Following the general procedure **B**. 91%. Yellow oil. ¹H NMR (250 MHz, CDCl₃) δ 7.43-7.22 (m, 10H), 6.55-6.35 (m, 2H), 3.60 (d, J = 6.4 Hz, 2H). ¹³C NMR (63 MHz, CDCl₃) δ 140.2, 137.5, 131.1, 129.2, 128.6, 128.5 (2C), 127.1, 126.2, 126.1, 39.3. MS (EI) m/z (%I): 194.1 (100) [M]⁺, 179.1 (47), 115.0 (75). The data correspond to those previously reported in the literature.¹⁷

Deoxypodophyllotoxin 43:

Following the general procedure **B**. 62%. White solid. ¹H NMR (250 MHz, CDCl₃) δ 6.68 (s, 1H), 6.53 (s, 1H), 6.35 (s, 2H), 5.96 (s, 1H), 5.94 (s, 1H), 4.61 (brs, 1H), 4.49-4.43 (1H), 3.97-3.89 (m, 1H), 3.81 (s, 3H), 3.76 (s, 6H), 3.12-3.03 (m, 1H), 2.80-2.74 (m, 3H). The data correspond to those previously reported in the literature.¹⁸

Adamantane 45:

Following the general procedure **A** using 5 mol% of $[IPr \cdot GaCl_2][SbF_6]$ at 80 °C. 99% conversion determined by ¹H-NMR analysis of the crude product using *p*-anisaldehyde (1 equiv) as internal standard.

¹⁷ P. Liu, Y.-m. Pan, K. Hu, X.-c. Huang, Y. Liang, H.-s. Wang, *Tetrahedron*, **2013**, 69, 7925-7930.

¹⁸ J. Wang, X. Zhi, X. Yu, H. Xu, J. Agric. Food Chem. 2013, 61, 6336-6343.

6. (Di)Hydroarylation of Arenynes (Schemes 5, 6, 7, 9, 13, 14, 15, 16 and 17):

General procedure: IPr·GaCl₃ (5 mol%, 7 mg, 0.0125 mmol) and AgSbF₆ (7 mol%, 6 mg, 0.0175 mmol) were mixed in a screw-cap vial under argon. DCE (0.5 mL) was added and the mixture was stirred at room temperature for 5 min. Arenyne **4**, **46**, **48**, **53**, **62**, **65**, **68**, **69-73**, **77** or **86** (1 equiv, 0.25 mmol) and the corresponding aromatic nucleophile (0 or 3 equiv, 0.75 mmol) diluted in DCE (0.5 mL) were added and the mixture was stirred at the indicated temperature until completion of the reaction. The mixture was then filtered on a short pad of silica gel, which was rinsed with DCM (5 mL). After evaporation, the crude product was purified by flash chromatography over silica gel (cyclohexane, EtOAc).

Dimethyl 5,7-dimethoxy-4-methylnaphthalene-2,2(1H)-dicarboxylate 47:

White solid. mp = 133-135 °C. ¹H NMR (360 MHz, CDCl₃) δ 6.40 (d, J = 2.4 Hz, 1H), 6.32 (d, J = 2.4 Hz, 1H), 5.75 (q, J = 1.4 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 3.71 (s, 6H), 3.25 (s, 2H), 2.24 (d, J = 1.4 Hz, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 171.0, 159.8, 158.1, 136.6, 135.3, 119.3, 115.9, 105.3, 97.8, 55.2, 55.2, 54.3, 52.8, 36.5, 23.5. FT-IR (film): ν 2955, 2840, 1736, 1604, 1573, 1457, 1432, 1332, 1260, 1230, 1199, 1162, 1112, 1069, 1050, 825 cm⁻¹. HRMS (ESI) m/z: Calcd for C₁₇H₂₀O₆Na [M+Na]⁺: 343.1152 found: 343.1153.

Dimethyl 7-methoxy-4-methylnaphthalene-2,2(1*H*)-dicarboxylate 49:

Colorless oil. ¹H NMR (250 MHz, CDCl₃) δ 7.19 (d, J = 8.2 Hz, 1H), 6.78-6.71 (m, 2H), 5.84 (s, 1H), 3.80 (s, 3H), 3.72 (s, 6H), 3.45 (s, 2H), 2.11 (d, J = 1.0 Hz, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 171.1, 159.3, 134.7, 134.5, 126.5, 124.7, 118.6, 113.8, 111.5, 55.2, 54.8, 52.9, 35.0, 19.4. FT-IR (film): ν 2954, 1736, 1609, 1571, 1502, 1433, 1257, 1228, 1140, 831 cm⁻¹. HRMS (ESI) m/z: Calcd for C₁₆H₁₈O₅Na [M+Na]⁺: 313.1046 found: 313.1056.

Dimethyl 5-methoxy-4-methylnaphthalene-2,2(1*H*)-dicarboxylate 50:

This regioisomer was observed in low proportion and could not have been fully characterized. ¹H NMR (250 MHz, CDCl₃) δ 7.14 (dd, J = 8.2 Hz, J = 7.1 Hz, 1H), 6.84 (d, J = 7.1 Hz, 1H), 6.78 (d, J = 8.2 Hz, 1H), 5.89 (q, J = 1.7 Hz, 1H), 3.79 (s, 3H), 3.70 (s, 6H), 3.29 (s, 2H), 2.28 (d, J = 1.7 Hz, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 170.9, 156.9, 135.6, 135.5, 128.6, 121.9, 120.8, 116.9, 110.9, 55.3, 55.2, 52.9, 35.9, 23.5.

Dimethyl 7-methoxy-4-(4-methoxyphenyl)-4-methyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 51:

Colorless oil. ¹H NMR (360 MHz, CDCl₃) δ 7.07 (d, J = 8.8 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 6.80 (m, 1H), 6.78-6.73 (m, 3H), 3.83 (s, 3H), 3.75 (s, 3H), 3.71 (s, 3H), 3.36 (d, J = 16.2 Hz, 1H), 3.16 (s, 3H), 3.07 (d, J = 16.2 Hz, 1H), 2.87 (d, J = 14.5 Hz, 1H), 2.46 (d, J = 14.5 Hz, 1H), 1.66 (s, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 172.3, 170.8, 157.9, 157.5, 141.3, 135.1, 133.6, 129.5, 128.6, 113.0, 112.9, 112.8, 55.2, 55.1, 52.7, 52.2, 52.1, 43.6, 40.9, 35.4, 32.4. FT-IR (film): v 2953, 1735, 1610, 1508, 1444, 1250, 1179, 1033 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₃H₂₆O₆Na [M+Na]⁺: 421.1622 found: 421.1629.

Dimethyl 5-methoxy-4-(4-methoxyphenyl)-4-methyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 52:

This regioisomer was observed in low proportion and could not have been fully characterized. ¹H NMR (360 MHz, CDCl₃) δ 7.21 (dd, J = 8.7 Hz, J = 7.7 Hz, 1H), 6.94 (d,

J = 8.7 Hz, 2H, 6.80 (d, J = 7.7 Hz, 1H, 6.75-6.72 (m, 3H), 3.76 (s, 3H), 3.71 (s, 3H), 3.45 (s, 3H), 3.34 (d, J = 10.3 Hz, 1H, 3.23 (s, 3H), 3.17 (d, J = 10.3 Hz, 1H), 2.65 (d, J = 14.1 Hz, 1H), 2.49 (d, J = 14.1 Hz, 1H), 1.75 (s, 3H).¹³C NMR (90 MHz, CDCl₃) δ 172.2, 170.1, 158.4, 157.0, 141.9, 135.6, 130.0, 127.5, 127.3, 121.7, 112.7, 110.2, 55.2, 52.8, 52.5, 52.2, 51.7, 46.6, 40.7, 35.9, 28.6.

Dimethyl 7-chloro-4-methylnaphthalene-2,2(1H)-dicarboxylate 54:

White solid. mp = 71 °C. ¹H NMR (250 MHz, CDCl₃) δ 7.20-7.18 (m, 3H), 5.99 (q, J = 1.5 Hz, 1H), 3.73 (s, 6H), 3.35 (s, 2H), 2.12 (d, J = 1.5 Hz, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 170.6, 134.6, 134.2, 133.4, 131.9, 127.8, 127.0, 124.7, 121.5, 54.6, 53.0, 34.3, 19.4. FT-IR (film): v 2953, 2923, 1736, 1434, 1270, 1230, 839 cm⁻¹. HRMS (ESI) m/z: Calcd for C₁₅H₁₅O₄ClNa [M+Na]⁺: 317.0551 found: 317.0545.

The regioisomer 55 was observed in very low proportion and could not have been isolated.

Dimethyl 7-loro-4-(4-methoxyphenyl)-4-methyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 56:

Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.23 (d, J = 2.3 Hz, 1H), 7.17 (dd, J = 8.5 Hz, J = 2.3 Hz, 1H), 7.08 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 9.0 Hz, 2H), 6.75 (d, J = 9.0 Hz, 2H), 3.76 (s, 3H), 3.71 (s, 3H), 3.32 (d, J = 16.5 Hz, 1H), 3.21 (s, 3H), 3.08 (d, J = 16.5 Hz, 1H), 2.88 (d, J = 14.4 Hz, 1H), 2.45 (d, J = 14.4 Hz, 1H), 1.65 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 171.9, 170.6, 157.7, 140.5, 140.3, 135.9, 132.0, 129.8, 128.5, 128.4, 126.6, 113.1, 55.2, 52.7, 52.3, 52.2, 43.4, 41.4, 34.8, 32.0. FT-IR (film): v 2953, 2838, 1736, 1608, 1509, 1486, 1435, 1250, 1179, 1097, 1035, 910, 830, 734 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₂H₂₃O₅ClNa [M+Na]⁺: 425.1126 found: 425.1114.

Dimethyl 4,5,7-trimethylnaphthalene-2,2(1*H*)-dicarboxylate 63:

White solid. mp = 85 °C. ¹H NMR (250 MHz, CDCl₃) δ 6.90 (s, 1H), 6.83 (s, 1H), 5.97 (s, 1H), 3.70 (s, 6H), 3.25 (s, 2H), 2.44 (s, 3H), 2.27 (s, 3H), 2.26 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 170.9, 137.0, 136.6, 134.3, 132.2, 130.5, 126.9, 123.2, 54.4, 52.8, 36.7, 24.1, 23.4, 20.8. FT-IR (film): *v* 2955, 1737, 1611, 1435, 1263, 1223 cm⁻¹. HRMS (ESI) *m/z*: Calcd for C₁₇H₂₀O₄Na [M+Na]⁺: 311.1254 found: 311.1248.

Dimethyl 5,7-dimethyl-4-methylene-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 64:

Obtained as a mixture of regioisomers (**63** : **64** = 4 : 1 ; determined by ¹H NMR). **64**: ¹H NMR (250 MHz, CDCl₃) δ 6.90 (s, 1H), 6.83 (s, 1H), 5.31 (s, 1H), 5.19 (s, 1H), 3.72 (s, 6H), 3.23 (s, 2H), 3.00 (s, 2H), 2.42 (s, 3H), 2.25 (s, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 171.5, 139.0, 134.7, 134.6, 132.0, 130.5, 126.7, 116.0, 55.2, 52.7, 40.0, 35.7, 21.9, 20.9 (1 quaternary carbon is missing). GC-MS (EI) *m/z* (%I): 288.0 (15) [M]⁺, 229.0 (41), 197.0 (86), 169.0 (100).

Dimethyl 4,5,6,8-tetramethylnaphthalene-2,2(1*H*)-dicarboxylate 66:

White solid. mp = 123-125 °C. ¹H NMR (360 MHz, CDCl₃) δ 6.89 (s, 1H), 6.10 (s, 1H), 3.70 (s, 6H), 3.18 (s, 2H), 2.29 (s, 3H), 2.27 (s, 3H), 2.24 (s, 3H), 2.23 (s, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 171.0, 137.1, 135.5, 134.7, 132.0, 131.4, 130.7, 130.5, 124.1, 54.5, 52.8, 32.9, 23.6, 20.6, 19.7, 18.6. FT-IR (film): *v* 2952, 1737, 1437, 1264, 1158 cm⁻¹. HRMS (ESI) *m/z*: Calcd for C₁₈H₂₂O₄Na [M+Na]⁺: 325.1410 found: 325.1424.

Figure S1. Crystal structure of 66 (thermal ellipsoids at 50% probability, hydrogen atoms omitted for clarity).

Dimethyl 5,6,8-trimethyl-4-methylene-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 67:

White solid. mp = 103-104 °C. ¹H NMR (360 MHz, CDCl₃) δ 6.90 (s, 1H), 5.36 (s, 1H), 5.09 (s, 1H), 3.72 (s, 6H), 3.12 (s, 2H), 3.02 (s, 2H), 2.32 (s, 3H), 2.26 (s, 3H), 2.25 (s, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 171.8, 140.1, 136.4, 135.3, 132.3, 130.6, 130.4, 130.3, 116.7, 55.4, 52.7, 39.4, 32.2, 20.6. FT-IR (film): ν 2951, 1735, 1436, 1255, 1197, 1170, 1065, 908 cm⁻¹. HRMS (ESI) *m/z*: Calcd for C₁₈H₂₂O₄Na [M+Na]⁺: 325.1410 found: 325.1410.

Ethyl 4-(4-methoxyphenyl)-4-methyl-1,2,3,4-tetrahydronaphthalene-2-carboxylate 74 syn:

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.02 (m, 4H), 7.17 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.15-3.10 (m, 2H), 3.02-2.95 (m, 1H), 2.16-2.13 (m, 2H), 1.70 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 157.6, 144.8, 143.0, 134.5, 129.5, 128.8, 128.3, 126.2, 125.8, 113.3, 60.5, 55.2, 44.3, 43.2, 37.8, 32.7, 29.5, 14.2. FT-IR (film): v 2929, 1731, 1510, 1250, 1180, 1034 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₁H₂₄ O₃Na [M+Na]⁺: 347.1618 found: 347.1607. Relative stereochemistry determined by 1D selective NOE experiment.

Ethyl 4-(4-methoxyphenyl)-4-methyl-1,2,3,4-tetrahydronaphthalene-2-carboxylate 74 anti:

74 anti

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.19 (m, 4H), 6.90 (d, J = 8.9 Hz, 2H), 6.77 (d, J = 8.9 Hz, 2H), 4.12 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 3.07-3.01 (m, 2H), 2.58-2.50 (m, 1H), 2.33 (dt, J = 12.9 Hz, J = 2.1 Hz, 1H), 2.00 (t, J = 12.9 Hz, 1H), 1.78 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 157.5, 142.4, 142.2, 135.3, 129.0, 128.3, 128.2, 126.3, 126.3, 113.3, 60.4, 55.2, 42.8, 42.37, 36.2, 32.6, 30.7, 14.2. FT-IR (film): ν 2930, 1731, 1510, 1251, 1182, 1035 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₁H₂₄O₃Na [M+Na]⁺: 347.1618 found: 347.1600. Relative stereochemistry determined by 1D selective NOE experiment.

(3Z,8Z)-3,8-bis(5-benzyl-2-methoxyphenyl)-1,6-ditosyl-1,2,5,6,7,10-hexahydro-1,6-diazecine 76:

To a solution of arenyne **75** (1 equiv, 210 mg, 0.5 mmol) in DCE (2 mL) was added GaCl₃ (10 mol%, 8.8 mg, 0.05 mmol) in one portion. The mixture was stirred at room temperature for 20 h and the reaction was quenched with water. The two layers were separated and the aqueous phase was extracted with Et₂O (3 x 10 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by chromatography over silica gel (cyclohexane, EtOAc) and recrystallized in Et₂O to afford compound **76** (12%, 25 mg, 0.03 mmol).

Colorless crystals. mp = 99-101 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.36-6.67 (m, 24H), 5.63 (t, *J* = 8.3 Hz, 2H), 4.75 (d, *J* = 13.6 Hz, 2H), 4.25 (d, *J* = 13.6 Hz, 2H), 3.98 (d, *J* = 8.3 Hz, 4H), 3.91 (s, 4H), 3.69 (s, 6H), 2.33 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 155.1, 142.5, 141.2, 138.8, 133.1, 130.3, 130.1, 129.3, 129.0, 128.8, 128.5, 128.3, 126.9, 126.1, 111.0, 55.4, 42.5, 41.4, 40.9, 21.4. HRMS (ESI) *m*/*z*: Calcd for C₅₀H₅₀O₆N₂S₂Na [M+Na]⁺: 861.3008 found: 861.2996.

Tetramethyl 5a'-methyl-5a',6'-dihydro-1*H*,5'*H*-spiro[phenanthrene-4,4'-pyrene]-2,2,7',7'(3*H*,8'*H*)-tetracarboxylate 78:

White solid. mp > 275 °C. ¹H NMR (360 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.40 (t, J = 8.0 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.12-7.04 (m, 2H), 6.64 (d, J = 7.2 Hz, 1H), 3.82 (s, 3H), 3.77 (d, J = 16.8 Hz, 1H), 3.72 (s, 3H), 3.65 (s, 3H), 3.61 (d, J = 16.8 Hz, 1H), 3.45 (s, 2H), 3.29 (s, 3H), 3.21 (d, J = 15.5 Hz, 1H), 3.15 (d, J = 14.4 Hz, 1H), 2.84 (d, J = 14.6 Hz, 1H), 2.55 (d, J = 14.4 Hz, 1H), 2.38 (d, J = 14.6 Hz, 1H), 2.20 (d, J = 15.5 Hz, 1H), 1.24 (s, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 173.2, 172.6, 172.0, 170.9, 142.2, 136.8, 135.0, 134.5, 134.2, 133.3, 130.8, 130.6, 129.8, 129.3, 128.4, 128.4, 127.8, 127.5, 126.1, 125.8, 125.1, 124.8, 124.4, 124.2, 54.5, 53.0, 52.9, 52.6, 52.5, 51.3, 45.3, 44.2, 43.2, 37.2, 35.0, 33.6, 32.5, 26.9. FT-IR (film): v 2953, 1734, 1434, 1256, 1211, 736 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₈H₃₇O₈ [M+H]⁺: 621.2483 found: 621.2466. Crystals suitable for X-ray diffraction were obtained by slow diffusion of a DCM solution of **78** in cyclohexane.

Dimethyl 7-chloro-4-(3,4-dimethoxyphenyl)-4-methyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 79:

Colorless oil. ¹H NMR (250 MHz, CDCl₃) δ 7.23 (d, J = 2.2 Hz, 1H), 7.18 (dd, J = 8.4 Hz, J = 2.2 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H), 6.59 (d, J = 2.4 Hz, 1H), 6.45 (dd, J = 8.5 Hz, J = 2.4 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.71 (s, 3H), 3.29 (d, J = 16.4 Hz, 1H), 3.23 (s, 3H), 3.07 (d, J = 16.4 Hz, 1H), 2.90 (d, J = 14.5 Hz, 1H), 2.43 (d, J = 14.5 Hz, 1H), 1.66 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 172.0, 170.7, 148.2, 147.2, 141.0, 140.3, 136.0, 132.1, 129.7, 128.5, 126.6, 119.7, 111.2, 110.4, 55.8, 52.8, 52.3, 52.2, 43.3, 41.8, 34.8, 32.0. FT-IR (film): v 2953, 2850, 2255, 1736, 1595, 1512, 1447, 1262, 1027, 912, 733 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₃H₂₅O₆ClNa [M+Na]⁺: 455.1232 found: 455.1219.

Dimethyl 7-chloro-4-methyl-4-(1-(phenylsulfonyl)-1*H*-indol-3-yl)-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 80:

White solid. mp = 175 °C. ¹H NMR (250 MHz, CDCl₃) δ 7.97-7.89 (m, 3H), 7.57-7.42 (m, 4H), 7.26 (m, 1H), 7.15-7.07 (m, 3H), 7.01-6.97 (m, 2H), 3.72 (s, 3H), 3.32 (s, 2H), 3.05 (d, J = 14.5 Hz, 1H), 2.91 (s, 3H), 2.43 (d, J = 14.5 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 171.8, 170.7, 138.9, 138.0, 135.7, 134.9, 133.8, 132.5, 129.9, 129.3, 129.2, 128.7, 128.5, 127.0, 126.9, 124.5, 124.4, 123.0, 121.3, 113.7, 52.7, 51.9, 51.8, 39.8, 37.8, 34.5, 29.9. FT-IR (film): v 2933, 1736, 1595, 1448, 1365, 1268, 1177, 1136, 962, 903, 752, 728 cm⁻¹. HRMS (ESI) *m/z*: Calcd for C₂₉H₂₆O₆NCISNa [M+Na]⁺: 574.1062 found: 574.1048.

Dimethyl 4-(4-methoxyphenyl)-4,5,7-trimethyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 81:

Colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.00 (d, J = 8.6 Hz, 2H), 6.92 (s, 1H), 6.81 (s, 1H), 6.77 (d, J = 8.6 Hz, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.40 (s, 3H), 3.28 (s, 2H), 2.61 (d, J = 14.1 Hz, 1H), 2.51 (d, J = 14.1 Hz, 1H), 2.29 (s, 3H), 1.82 (s, 3H), 1.71 (s, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 172.1, 171.2, 157.3, 142.0, 137.3, 136.5, 135.7, 134.1, 132.0, 127.8, 127.7, 113.3, 55.2, 52.5, 52.3, 51.7, 47.9, 41.7, 36.6, 28.5, 22.5, 20.6. FT-IR (film): ν 2952, 1736, 1609, 1509, 1250, 1215, 1180, 1034 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₄H₂₈O₅Na [M+Na]⁺: 419.1829 found: 419.1813.

Dimethyl 4-(3,4-dimethoxyphenyl)-7-methoxy-4-methyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 82 and dimethyl 4-(3,4-dimethoxyphenyl)-5-methoxy-4-methyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 83:

82 : 83 = 9 : 1

Obtained as a mixture **82** : **83** = 9 : 1 (determined by GC). NMR of the major isomer **82**: ¹H NMR (300 MHz, CDCl₃) δ 7.08 (d, *J* = 8.5 Hz, 1H), 6.79-6.73 (m, 2H), 6.68 (d, *J* = 8.1 Hz, 1H), 6.60 (d, *J* = 2.1 Hz, 1H), 6.48 (dd, *J* = 8.5 Hz, *J* = 2.1 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.76 (s, 3H), 3.70 (s, 3H), 3.33 (d, *J* = 16.0 Hz, 1H), 3.17 (s, 3H), 3.06 (d, *J* = 16.0 Hz, 1H), 2.88 (d, *J* = 14.4 Hz, 1H), 2.44 (d, *J* = 14.4 Hz, 1H), 1.66 (s, 3H). ¹³C NMR (90 MHz, CDCl₃) δ 172.2, 170.8, 157.9, 148.0, 146.9, 141.8, 135.2, 133.6, 129.4, 119.8, 112.8, 111.3, 110.2, 55.8, 55.7, 55.1, 52.7, 52.3, 52.1, 43.5, 43.4, 41.2, 35.3, 32.3. GC-MS (IE) *m/z*: Calcd for C₂₃H₂₆O₆ [M]: 428.47 found: **82**: 428.1, **83**: 428.2. Minor isomer **83** was obtained in very low proportion and could not have been fully characterized by NMR.

Dimethyl 7-methoxy-4-methyl-4-(1-(phenylsulfonyl)-1*H*-indol-3-yl)-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 84:

White solid. mp = 99 °C. ¹H NMR (250 MHz, CDCl₃) δ 7.95-7.87 (m, 3H), 7.55-7.43 (m, 3H), 7.27-7.21 (m, 2H), 7.12 (dd, J = 7.1 Hz, J = 1.1 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 6.94 (s, 1H), 6.77 (d, J = 2.8 Hz, 1H), 6.72 (dd, J = 8.5 Hz, J = 2.8 Hz, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 3.38 (d, J = 16.5 Hz, 1H), 3.26 (d, J = 16.5 Hz, 1H), 3.06 (d, J = 14.1 Hz, 1H), 2.80 (s, 3H), 2.43 (d, J = 14.1 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 172.1, 170.9, 158.1, 145.5, 138.0, 135.7, 134.1, 133.7, 132.5, 130.7, 129.2, 128.9, 127.0, 124.6, 124.2, 122.8, 121.5, 113.6, 113.2, 113.1, 55.1, 52.6, 52.1, 51.5, 39.9, 37.4, 34.9, 30.1. FT-IR (film): ν 2954, 1735, 1610, 1502, 1448, 1370, 1259, 1175, 1134, 748, 727 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₀H₂₉O₇NSNa [M+Na]⁺: 570.1557 found: 570.1552.

Dimethyl 4-(4-methoxyphenyl)-4,5,6,8-tetramethyl-3,4-dihydronaphthalene-2,2(1*H*)-dicarboxylate 85:

White solid. mp = 142-144 °C. ¹H NMR (250 MHz, CDCl₃) δ 7.07-6.97 (m, 3H), 6.77 (d, J = 8.5 Hz, 2H), 3.78 (s, 3H), 3.73 (s, 3H), 3.29 (s, 3H), 3.19 (d, J = 16.5 Hz, 1H), 3.08 (d, J = 16.5 Hz, 1H), 2.61 (d, J = 14.2 Hz, 1H), 2.49 (d, J = 14.2 Hz, 1H), 2.32 (s, 3H), 2.16 (s, 3H), 1.74 (s, 3H), 1.72 (s, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 172.5, 171.3, 157.3, 142.4, 139.5, 136.0, 133.3, 133.2, 130.5, 130.4, 127.8, 113.3, 55.2, 52.5, 52.3, 51.4, 47.6, 42.3, 33.3, 29.4, 20.8, 20.4, 19.2. FT-IR (film): v 2952, 1736, 1608, 1509, 1463, 1248, 1180, 1034, 912, 834, 733 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₅H₃₀O₅Na [M+Na]⁺: 433.1985 found: 433.1983.

Tetramethyl 4,5-dimethylanthracene-2,2,7,7(1H,8H)-tetracarboxylate 87:

White solid. mp = 195 °C. ¹H NMR (360 MHz, CDCl₃) δ 7.15 (s, 1H), 7.05 (s, 1H), 5.94 (s, 2H), 3.72 (s, 12H), 3.35 (s, 2H), 2.14 (d, J = 1.4 Hz, 6H). ¹³C NMR (63 MHz, CDCl₃) δ 170.9, 134.8, 132.4, 132.0, 127.4, 120.6, 118.7, 54.7, 52.9, 34.3, 19.5. FT-IR (film): ν 2956, 2539, 1721, 1431, 1255, 1219, 1172, 1069, 1048, 905, 829, 817 cm⁻¹. HRMS (ESI) m/z: Calcd for C₂₄H₂₆O₈Na [M+Na]⁺: 465.1520 found: 465.1499. The data correspond to those previously reported in the literature.²

Tetramethyl 4,5-bis(4-methoxyphenyl)-4,5-dimethyl-3,4,5,6-tetrahydroanthracene-2,2,7,7(1*H*,8*H*)-tetracarboxylate 88:

Obtained as a mixture dl : meso = 3 : 1 (determined by HPLC-Circular Dichroism). White solid. mp = 214 °C. ¹H NMR (360 MHz, CDCl₃) δ 7.09 (s, 1H, dl), 7.08 (s, 1H, *meso*), 6.95 (s, 1H, dl), 6.94 (s, 1H, *meso*), 6.91 (br d, J = 8.6 Hz, 4H), 6.70 (br d, J = 8.6 Hz, 4H), 3.74-3.72 (m, 12H), 3.42 (br d, J = 16.4 Hz, 2H), 3.15 (s, 6H, *dl*), 3.07 (s, 6H, *meso*), 3.07 (br d, J = 16.4 Hz, 2H), 2.85 (d, J = 14.2 Hz, 2H, *meso*), 2.84 (d, J = 14.2 Hz, 2H, *dl*), 2.47 (d, J = 14.2 Hz, 2H, *meso*), 2.46 (d, J = 14.2 Hz, 2H, *dl*), 1.60 (s, 6H, *dl*), 1.56 (s, 6H, *meso*). ¹³C NMR (90 MHz, CDCl₃) δ 172.4, 170.8 (*dl*), 170.7 (*meso*), 157.4, 141.0, 139.6 (*dl*), 139.0 (*meso*), 132.2 (*dl*), 132.1 (*meso*), 129.1 (*meso*), 128.9 (*dl*), 128.7 (*dl*), 128.6 (*meso*), 112.9, 55.2, 52.7, 52.1 (*dl*), 52.0 (*meso*), 43.6 (*meso*), 43.5 (*dl*), 41.3, 34.7 (*meso*), 34.6 (*dl*), 32.8, 32.3. FT-IR (film): v 2957, 2364, 1723, 1509, 1432, 1240, 1174, 1086, 1026, 802 cm⁻¹. HRMS (ESI) m/z: Calcd for C₃₈H₄₂O₁₀Na [M+Na]⁺: 681.2670 found: 681.2651.

7. Two-Step Formal Transfer Hydrogenative Cyclization of Enyne 8:

Dimethyl 3,5-dimethylcyclohex-3-ene-1,1-dicarboxylate and dimethyl 3,5-dimethylcyclohex-2-ene-1,1-dicarboxylate 60:

IPr·GaCl₃ (5 mol%, 7 mg, 0.0125 mmol) and AgSbF₆ (7 mol%, 6 mg, 0.0175 mmol) were mixed in a screw-cap vial under argon. DCE (0.5 mL) was added and the mixture was stirred at room temperature for 5 min. A solution of Friedel-Crafts adduct **9** (1 equiv, 0.25 mmol) and CHD-1,4 (1.2 equiv, 29 μ L, 0.30 mmol) in DCE (0.5 mL) was added and the mixture was stirred at 80 °C for 2 h. The crude mixture was then filtered through a pad of Celite and the volatiles were removed under reduced pressure. The crude product was purified by chromatography over silica gel (cyclohexane, EtOAc) to afford compound **60** as an equimolar mixture of regioisomers (74%, 42 mg, 0.19 mmol).

Colorless oil. Isolated as an equimolar mixture of regioisomers **60** and **60**' (determined by ¹H NMR). ¹H NMR peaks attribution determined by 1D selective TOCSY experiments. ¹H NMR of **60**: (360 MHz, CDCl₃) δ 5.57 (s, 1H), 3.72 (s, 6H), 2.39-2.32 (m, 2H), 2.15 (m, 1H), 1.75 (s, 3H), 1.64-1.57 (m, 1H), 1.41 (dd, J = 12.5 Hz, J = 13.2 Hz, 1H), 0.98 (d, J = 1.8 Hz, 3H). ¹H NMR of **60**': (360 MHz, CDCl₃) δ 5.21 (s, 1H), 3.72 (s, 6H), 2.61 (d, J = 16.8 Hz, 1H), 2.23 (d, J = 16.8 Hz, 1H), 1.96 (dd, J = 17.1 Hz, J = 5.0 Hz, 1H), 1.83 (m, 1H), 1.70 (s, 3H), 1.49 (dd, J = 13.0 Hz, J = 10.8 Hz, 1H), 1.00 (d, J = 1.2 Hz, 3H). ¹³C NMR of **60** and **60**' (63 MHz, CDCl₃) δ 172.7, 172.4, 171.5, 171.5, 139.1, 130.4, 126.6, 117.7, 56.2, 54.2, 52.7, 52.6, 52.6, 52.5, 38.3, 36.7, 36.0, 35.1, 27.9, 26.2, 23.8, 23.2, 21.7, 21.6. FT-IR (film): v 2954, 2927, 1736, 1434, 1250, 1151 cm⁻¹ HRMS (ESI) m/z: Calcd for $C_{21}H_{26}O_4$ Na [M+Na]⁺: 365.1723 found: 365.1728. HRMS (ESI) m/z: Calcd for $C_{12}H_{18}O_4$ Na [M+Na]⁺: 249.1097 found: 249.1093.

8. Single-crystal X-ray structure analyses of compounds 66, 76:

X-ray diffraction data for compounds **76** was collected by using a Kappa X8 APPEX II Bruker diffractometer with graphite-monochromated $M_{0K\square}$ radiation. X-ray diffraction data for compound **66** was collected by using a VENTURE PHOTON100 CMOS Bruker diffractometer with Micro-focus IuS source Mo_{K□} radiation. Crystal was mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flashfrozen in a nitrogen-gas stream at 100 K. The temperature of the crystal was maintained at the selected value (100K) by means of a 700 series Cryostream cooling device to within an accuracy of ±1 K. The data were corrected for Lorentz polarization, and absorption effects. The structures were solved by direct methods using SHELXS-97¹⁹ and refined against F^2 by full-matrix least-squares techniques using SHELXL-2014²⁰ with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map and introduced into the calculations as a riding model with isotropic thermal parameters. All calculations were performed by using the Crystal Structure crystallographic software package WINGX.²¹

The crystal data collection and refinement parameters are given in Table S1.

CCDC 1483915-1483916 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/Requestastructure.

¹⁹ Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, **1997**.

²⁰ G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122

²¹ Farrugia, L. J. J. Appl. Cryst., **1999**, 32, 837.

Compound	66	76
Empirical Formula	$C_{18} H_{22} O_4$	$C_{50}H_{50}N_2O_6S_2$
M _r	302.35	839.04
Crystal size, mm ³	0,11 x 0.10 x 0.03	0.21 x 0.17 x0.09
Crystal system	orthorhombic	monoclinic
Space group	Pbca	$P 2_1/c$
a, Å	7.6825(3)	12.0255(7)
b, Å	17.5861(8)	18.0910(12)
c, Å	22.9639(11)	10.1121(7)
α, °	90	90
β, °	90	105.935(2)
γ, °	90	90
Cell volume, Å ³	3102.5(2)	2115.4(2)
Z;Z'	8;1	2;1/2
Т, К	100(1)	100(1)
Radiation type ; wavelength Å	ΜοΚα ; 0.71073	ΜοΚα ; 0.71073
F ₀₀₀	1296	888
μ , mm ⁻¹	0.090	0.180
θ range, °	2.918 - 33.765	1.761 - 30.561
Reflection collected	33 166	25 809
Reflections unique	5 651	6 061
R _{int}	0.0423	0.0506
GOF	1.041	1.023
Refl. obs. $(I>2\sigma(I))$	4 920	4 268
Parameters	205	273
wR ₂ (all data)	0.1604	0.1223
R value $(I > 2\sigma(I))$	0.0581	0.0468
Largest diff. peak and hole (e- .Å ⁻³)	-0.324 ; 0.735	-0.417 ; 0.465

 Table S1. Crystallographic data and structure refinement details for compounds 66 and 76.

9. Calculations:

K E(RM062X) = -4305.49913421					E(RM062 Frequ	TS _{KL} X) = -4305.47048 μency -215.5918	622
С	-2.286685000	2.358003000	-0.811673000	0	-3.521889000	1.942653000	-0.158076000
С	-0.303268000	-0.113726000	-0.856046000	н	-1.262924000	2.366827000	-0.993473000
С	-1.201926000	-0.890686000	-0.619103000	С	-0.358049000	2.457850000	-0.404920000
Ga	0.313580000	-2.611582000	-0.266766000	С	0.286021000	0.576159000	-0.714069000
Cl	2.325193000	-2.361295000	-1.042950000	С	-0.359143000	1.955122000	0.923016000
Cl	0.044898000	-2.721039000	1.890337000	С	0.684571000	2.338535000	1.790323000
Cl	-0.877723000	-4.046675000	-1.385088000	С	1.660371000	3.181897000	1.292572000
н	-2.126827000	-1.385200000	-0.407764000	С	1.539675000	0.314509000	-0.627552000
С	0.748077000	0.830516000	-1.216446000	С	1.666939000	3.699502000	-0.022362000
н	1.646182000	0.256982000	-1.463536000	н	2.482633000	3.456782000	1.947927000
н	0.411851000	1.339531000	-2.127017000	С	0.627676000	3.367499000	-0.868356000
С	1.097648000	1.901833000	-0.153280000	С	-1.384939000	0.957893000	1.381890000
С	-0.060049000	2.876778000	0.179607000	н	-0.910406000	0.277197000	2.089469000
С	-1.433811000	2.257056000	0.292124000	н	-2.187970000	1.470505000	1.918736000
С	1.715044000	1.316836000	1.120948000	С	-1.999517000	0.101757000	0.251633000
0	2.082739000	2.012393000	2.027330000	н	2.305631000	1.038827000	-0.360959000
0	1.844751000	-0.004992000	1.084646000	С	-1.008483000	-0.107275000	-0.931885000
С	2.579461000	-0.581412000	2.177223000	н	-0.789590000	-1.171118000	-1.050243000
н	3.514319000	-0.038410000	2.310088000	н	-1.443566000	0.220649000	-1.879152000
н	2.758208000	-1.614912000	1.896436000	Ga	1.949670000	-1.687681000	-0.366310000
н	1.983820000	-0.529817000	3.088793000	Cl	0.748737000	-2.060730000	1.496532000
С	2.246247000	2.717009000	-0.788073000	Cl	1.131970000	-2.916743000	-1.994660000
0	2.143618000	3.819551000	-1.242023000	Cl	4.097217000	-1.897398000	-0.017636000
0	3.371256000	1.999376000	-0.807341000	С	-2.445303000	-1.231256000	0.884701000
С	4.517298000	2.650006000	-1.370822000	0	-2.929283000	-1.276150000	1.982621000
н	4.325879000	2.909179000	-2.411989000	0	-2.257414000	-2.273890000	0.094312000
н	4.744350000	3.554064000	-0.806325000	с	-2.536553000	-3.554662000	0.673587000
н	5.327923000	1.931350000	-1.293702000	н	-2.314680000	-4.277969000	-0.105610000
н	-0.079564000	3.619411000	-0.618859000	н	-1.887304000	-3.707012000	1.535892000
н	0.223636000	3.408782000	1.090456000	н	-3.581952000	-3.607645000	0.977190000

Table S2. Coordinates (x,y,z) and energy (Hartree) of the computed species.

С	-1.879304000	1.565100000	1.425334000	С	-3.257247000	0.779096000	-0.297343000
С	-3.150549000	0.991036000	1.390704000	о	-3.999429000	-0.075752000	-0.997439000
н	-1.947376000	2.916239000	-1.681064000	С	-5.184807000	0.466839000	-1.592482000
С	-3.547320000	1.773026000	-0.849249000	н	-4.923107000	1.260263000	-2.292708000
С	-3.988181000	1.067383000	0.280513000	н	-5.839709000	0.868062000	-0.819554000
н	-3.496376000	0.450994000	2.268047000	н	-5.658413000	-0.363050000	-2.108629000
С	-4.423457000	1.901638000	-2.067067000	С	0.565044000	3.872272000	-2.280301000
н	-3.925677000	2.476378000	-2.848386000	н	1.348209000	3.402248000	-2.885050000
н	-4.678709000	0.920585000	-2.478041000	н	-0.396730000	3.645758000	-2.740167000
н	-5.365386000	2.402153000	-1.825532000	н	0.724063000	4.951919000	-2.325928000
С	-5.349452000	0.423580000	0.297740000	С	2.778231000	4.608335000	-0.474363000
н	-6.137999000	1.169800000	0.164516000	н	3.565228000	4.673227000	0.276551000
н	-5.457874000	-0.301657000	-0.513870000	н	3.222475000	4.251183000	-1.406780000
н	-5.527181000	-0.092240000	1.241420000	н	2.403590000	5.619117000	-0.659402000
С	-1.018256000	1.345598000	2.641932000	С	0.779553000	1.780670000	3.184153000
н	-1.640225000	1.169484000	3.520603000	н	-0.156734000	1.904945000	3.732097000
н	-0.393707000	0.453576000	2.508165000	н	1.004285000	0.709043000	3.150122000
Н	-0.358503000	2.187858000	2.851155000	н	1.572352000	2.277822000	3.742487000
		for a	(• در د		
			r s				L -f
Н	-1.891285000	-0.853722000	1.281617000	Н	-2.097160000	-0.543993000	0.976488000
НСС	-1.891285000 -1.865511000	-0.853722000 -0.908987000	1.281617000 0.148181000	НСС	-2.097160000 -1.840362000	-0.543993000 -0.947484000	0.976488000
H C C	-1.891285000 -1.865511000 0.607822000	-0.853722000 -0.908987000 -1.252933000	1.281617000 0.148181000 0.415379000	H C C	-2.097160000 -1.840362000 0.586877000	-0.543993000 -0.947484000 -1.322671000	0.976488000 -0.140610000 0.252495000
H C O	-1.891285000 -1.865511000 0.607822000 -1.070812000	-0.853722000 -0.908987000 -1.252933000 1.225883000	1.281617000 0.148181000 0.415379000 2.232865000	H C O	-2.097160000 -1.840362000 0.586877000 -1.152433000	-0.543993000 -0.947484000 -1.322671000 1.097823000	0.976488000 -0.140610000 0.252495000 2.099465000
H C C C	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000	H C C C	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000
H C C O C	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000	H C C C C C	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000
н с с с с	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000 2.102129000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000	н с с о с	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000
н с о с н	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000 2.102129000 1.035901000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000	н с с о с н	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000
н с с с с н н	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000 0.786272000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000 2.102129000 1.035901000 2.564019000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000 3.569344000	н с о с н н	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000 0.461011000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000 2.621071000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000 3.601046000
н с о с н н	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000 0.786272000 2.367292000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000 2.102129000 1.035901000 2.564019000 2.573711000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000 3.569344000 2.704466000	н с с о с н н н	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000 0.461011000 2.099018000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000 2.621071000 2.734607000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000 3.601046000 2.860320000
н с о с н н с	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000 0.786272000 2.367292000 -0.910585000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000 2.102129000 1.035901000 2.564019000 2.573711000 1.836910000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000 3.569344000 2.704466000 -0.092939000	н с о с н н с	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000 0.461011000 2.099018000 -0.907499000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000 2.621071000 2.734607000 1.819529000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000 3.601046000 2.860320000 -0.184621000
н с о с о с н н н с	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000 0.786272000 2.367292000 -0.910585000 -0.206241000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000 2.102129000 1.035901000 2.564019000 2.573711000 1.836910000 0.713795000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000 3.569344000 2.704466000 -0.092939000 -0.895048000	н с о с о с н н н с с	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000 0.461011000 2.099018000 -0.907499000 -0.137781000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000 2.621071000 2.734607000 1.819529000 0.733743000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000 3.601046000 2.860320000 -0.184621000 -0.974729000
н с о с н н с с	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000 0.786272000 2.367292000 -0.910585000 -0.206241000 -0.398415000	-0.853722000 -0.908987000 -1.252933000 1.252933000 1.25883000 2.102129000 1.035901000 2.564019000 2.573711000 1.836910000 0.713795000 -0.569048000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000 3.569344000 2.704466000 -0.092939000 -0.895048000 -0.133407000	н ссосо сн н ссс	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000 0.461011000 2.099018000 -0.907499000 -0.384506000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000 2.621071000 2.734607000 1.819529000 0.733743000 -0.594062000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000 3.601046000 2.860320000 -0.184621000 -0.974729000 -0.307785000
н с о с н н н с с ба	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000 0.786272000 2.367292000 -0.910585000 -0.910585000 -0.206241000 -0.398415000 2.547066000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.758021000 2.288603000 2.102129000 1.035901000 2.564019000 2.564019000 2.573711000 1.836910000 0.713795000 -0.569048000 -1.136969000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000 3.569344000 2.704466000 -0.092939000 -0.895048000 -0.133407000 -0.111173000	н с о с н н н с с с ба	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000 0.461011000 2.099018000 -0.907499000 -0.137781000 -0.384506000 2.567537000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000 2.621071000 2.734607000 1.819529000 0.733743000 -0.594062000 -1.136067000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000 3.601046000 2.860320000 -0.184621000 -0.974729000 -0.307785000 -0.065462000
H C O C O C H H H C C C Ga C I C	-1.891285000 -1.865511000 0.607822000 -1.070812000 -0.426308000 0.766065000 1.393900000 1.512137000 0.786272000 2.367292000 -0.910585000 -0.910585000 -0.206241000 -0.398415000 2.547066000 3.526386000	-0.853722000 -0.908987000 -1.252933000 1.225883000 1.225883000 2.102129000 1.035901000 2.564019000 2.573711000 1.836910000 0.713795000 -0.569048000 -1.136969000 -2.908734000	1.281617000 0.148181000 0.415379000 2.232865000 1.361567000 1.511810000 2.791246000 2.981071000 3.569344000 2.704466000 -0.092939000 -0.895048000 -0.133407000 -0.111173000 0.787879000	H C O C O C H H C C C G a C I C	-2.097160000 -1.840362000 0.586877000 -1.152433000 -0.504871000 0.612336000 1.153968000 1.323771000 0.461011000 2.099018000 -0.907499000 -0.137781000 -0.384506000 2.567537000 3.512058000	-0.543993000 -0.947484000 -1.322671000 1.097823000 1.724541000 2.361146000 2.201372000 1.144218000 2.621071000 2.734607000 1.819529000 0.733743000 -0.594062000 -1.136067000 -2.934586000	0.976488000 -0.140610000 0.252495000 2.099465000 1.292012000 1.548524000 2.871902000 3.068025000 3.601046000 2.860320000 -0.184621000 -0.974729000 -0.307785000 -0.307785000 -0.307785000 0.810218000

Н	0.348541000	-2.063773000	1.095317000	Н	0.281417000	-2.184847000	0.843277000
Cl	3.522599000	0.752494000	0.535745000	Cl	3.386397000	0.730387000	0.828113000
н	0.852048000	0.943157000	-1.007768000	н	0.925352000	0.968208000	-0.986815000
н	-0.655799000	0.672355000	-1.895148000	н	-0.496754000	0.745681000	-2.010497000
С	-2.419281000	1.606266000	-0.109099000	С	-2.410978000	1.564756000	-0.276164000
С	-0.621836000	3.239425000	-0.626959000	С	-0.625039000	3.239585000	-0.675481000
0	0.535043000	3.314504000	-1.261136000	0	0.554097000	3.348614000	-1.261670000
С	0.932181000	4.620604000	-1.693479000	С	0.943662000	4.671204000	-1.649584000
Н	0.993469000	5.290098000	-0.835725000	Н	0.977161000	5.316797000	-0.772163000
Н	1.907559000	4.488877000	-2.152284000	Н	1.930619000	4.564285000	-2.089593000
н	0.211433000	5.013547000	-2.410605000	Н	0.233750000	5.074520000	-2.371581000
0	-1.378921000	4.161685000	-0.466371000	0	-1.405324000	4.143807000	-0.525378000
н	-2.909406000	2.193162000	0.673010000	Н	-2.944713000	2.184537000	0.445170000
н	-2.822754000	1.991016000	-1.055188000	Н	-2.761498000	1.880150000	-1.267521000
С	-2.851370000	0.176808000	-0.021553000	С	-2.828346000	0.127181000	-0.144112000
С	-2.344597000	-2.301585000	-0.043769000	С	-2.317492000	-2.322847000	-0.200790000
С	-1.390023000	-3.440483000	-0.193650000	С	-1.394594000	-3.467443000	-0.507040000
н	-0.499002000	-3.135994000	-0.743554000	н	-0.524515000	-3.139894000	-1.072915000
н	-1.053698000	-3.810321000	0.780803000	Н	-1.030009000	-3.947915000	0.406315000
С	-3.709944000	-2.545372000	-0.045297000	С	-3.668037000	-2.572165000	-0.021102000
С	-4.274616000	-3.942930000	-0.109482000	С	-4.209330000	-3.978164000	0.004993000
н	-1.874738000	-4.269860000	-0.705956000	Н	-1.930124000	-4.224765000	-1.079536000
н	-3.812054000	-4.593195000	0.634579000	Н	-3.607445000	-4.623430000	0.646532000
н	-4.108643000	-4.391972000	-1.092119000	н	-4.206379000	-4.415353000	-0.997490000
н	-5.348895000	-3.929387000	0.072645000	н	-5.235418000	-3.988381000	0.371209000
С	-4.589033000	-1.454433000	-0.033008000	С	-4.570468000	-1.497044000	0.089476000
С	-4.207950000	-0.112848000	-0.056910000	С	-4.202330000	-0.172425000	-0.000919000
Н	-5.654748000	-1.671762000	-0.037278000	Н	-5.622562000	-1.728377000	0.229642000
С	-5.245143000	0.975276000	-0.132850000	С	-5.224691000	0.928801000	0.057678000
Н	-5.193097000	1.630394000	0.740213000	Н	-5.083386000	1.546877000	0.948245000
Н	-5.098672000	1.600864000	-1.016704000	Н	-5.153928000	1.587793000	-0.810723000
Н	-6.247496000	0.551198000	-0.181827000	Н	-6.230591000	0.512075000	0.087983000
	E(RM062	XX) = -4305.48291	616		E(RM062 Freq	X) = -4305.47588 uency -848.9633	290
	×		ad a		~	J.J.	a da
	-17	XX			-	Y J	
н	-2.305205000	-0.024540000	1.429238000	н	-2.142029000	0.266835000	1.071112000
С	-1.695721000	-1.172614000	-0.142360000	С	-1.795654000	-1.030773000	-0.430079000
С	0.699947000	-1.472571000	0.181628000	С	0.580264000	-1.520619000	-0.044173000

Т

Г

0	-1.114319000	1.498729000	2.175227000	0	-1.220823000	0.974064000	1.883968000
С	-0.590575000	1.981437000	1.200430000	С	-0.606619000	1.737601000	1.135164000
0	0.443990000	2.795626000	1.232177000	0	0.287887000	2.571157000	1.556820000
С	1.014828000	3.055425000	2.525869000	С	0.646658000	2.512664000	2.956162000
н	1.257163000	2.114076000	3.014551000	н	0.940721000	1.495995000	3.206569000
н	0.307013000	3.629348000	3.124437000	н	-0.203933000	2.838169000	3.554040000
н	1.919825000	3.622311000	2.330379000	н	1.488546000	3.189575000	3.056779000
С	-1.043696000	1.712394000	-0.241635000	С	-0.862764000	1.768960000	-0.367086000
С	-0.112054000	0.666258000	-0.880059000	С	-0.008286000	0.682901000	-1.060583000
С	-0.313314000	-0.713558000	-0.282311000	С	-0.358027000	-0.700109000	-0.550182000
Ga	2.668602000	-1.041195000	0.073085000	Ga	2.560956000	-1.175207000	0.040906000
Cl	3.796850000	-2.766011000	0.856676000	CI	3.571525000	-2.953767000	0.861220000
Cl	3.078929000	-0.684252000	-2.085187000	CI	3.294311000	-0.637249000	-1.985089000
н	0.423660000	-2.434592000	0.614055000	н	0.230452000	-2.461036000	0.377700000
Cl	3.102657000	0.816779000	1.219879000	Cl	2.870280000	0.601718000	1.378856000
н	0.925367000	0.983804000	-0.777586000	н	1.049698000	0.894039000	-0.916357000
н	-0.323804000	0.631926000	-1.954284000	н	-0.205189000	0.763422000	-2.135042000
С	-2.497324000	1.229414000	-0.253215000	С	-2.344550000	1.458698000	-0.595600000
С	-1.003260000	3.062007000	-0.965697000	С	-0.563095000	3.184762000	-0.866396000
0	0.042951000	3.185222000	-1.767249000	0	0.629444000	3.280225000	-1.427336000
С	0.197875000	4.461254000	-2.398638000	С	1.018789000	4.590649000	-1.857058000
н	0.308881000	5.235441000	-1.639473000	н	2.008022000	4.471235000	-2.288523000
н	1.097253000	4.379873000	-3.001760000	н	0.311241000	4.967783000	-2.595208000
н	-0.670867000	4.682822000	-3.018373000	н	1.046086000	5.264961000	-1.001359000
0	-1.844359000	3.907439000	-0.804406000	0	-1.343647000	4.091716000	-0.746318000
н	-3.115849000	1.949533000	0.280632000	н	-2.954479000	2.219235000	-0.109007000
н	-2.850860000	1.189681000	-1.288134000	н	-2.557247000	1.504446000	-1.667184000
С	-2.660938000	-0.172510000	0.382037000	С	-2.685502000	0.058525000	-0.060786000
С	-2.106745000	-2.476235000	-0.437071000	С	-2.299992000	-2.336795000	-0.527619000
С	-1.199738000	-3.500054000	-1.075735000	С	-1.497169000	-3.488149000	-1.083332000
н	-0.348679000	-3.025213000	-1.559231000	н	-0.634190000	-3.137218000	-1.644272000
н	-0.806685000	-4.206972000	-0.339381000	н	-1.132431000	-4.151445000	-0.293570000
С	-3.443724000	-2.823958000	-0.169741000	С	-3.627751000	-2.573603000	-0.131847000
С	-3.917834000	-4.217373000	-0.440558000	С	-4.185931000	-3.967409000	-0.167078000
н	-1.744323000	-4.076335000	-1.824948000	н	-2.121414000	-4.088787000	-1.747251000
н	-3.217586000	-4.953883000	-0.041510000	н	-3.501308000	-4.678469000	0.299636000
н	-3.969033000	-4.385019000	-1.521908000	н	-4.327012000	-4.292808000	-1.202387000
н	-4.906347000	-4.391914000	-0.019645000	н	-5.148362000	-4.018537000	0.339706000
С	-4.391987000	-1.893465000	0.332693000	С	-4.465414000	-1.531611000	0.300030000
С	-4.064073000	-0.593558000	0.553933000	С	-4.054239000	-0.221549000	0.273713000
Н	-5.405038000	-2.236721000	0.511466000	н	-5.477141000	-1.769222000	0.610320000
С	-5.070057000	0.407696000	1.022436000	С	-5.001254000	0.890474000	0.616960000
Н	-4.673353000	0.996033000	1.853915000	н	-4.571137000	1.559492000	1.366733000
Н	-5.304686000	1.110707000	0.216790000	н	-5.223847000	1.494845000	-0.267287000
Н	-5.992686000	-0.080153000	1.333860000	Н	-5.938324000	0.491952000	1.003653000
N E(RM062X) = -4305.50925847			TS_{NO} E(RM062X) = -4305.50214629				

					Frequency -932.0186			
н	-0.132817000	-0.151867000	1.326129000	н	0.179179000	-0.341433000	1.108230000	
С	-2.077780000	-0.786412000	-0.280639000	С	-2.062782000	-0.785754000	-0.230751000	
С	0.269585000	-1.602487000	0.134755000	С	0.295691000	-1.456586000	0.318657000	
0	-0.026533000	0.701637000	1.871143000	0	0.162810000	0.753170000	1.842314000	
С	0.080424000	1.707367000	1.102911000	С	0.122275000	1.760347000	1.131578000	
0	0.543505000	2.793824000	1.584013000	0	0.597483000	2.898462000	1.536013000	
С	1.130397000	2.767146000	2.914838000	С	1.315978000	2.895598000	2.791823000	
н	1.907697000	2.004139000	2.926600000	н	2.138287000	2.184974000	2.719587000	
н	0.351140000	2.551784000	3.643459000	н	0.638490000	2.618509000	3.597850000	
н	1.539429000	3.762093000	3.051922000	н	1.675721000	3.912328000	2.910851000	
С	-0.496068000	1.748046000	-0.288174000	С	-0.562634000	1.795263000	-0.228401000	
С	-0.105109000	0.508782000	-1.132915000	С	-0.138695000	0.568675000	-1.075860000	
С	-0.596263000	-0.737820000	-0.436476000	С	-0.598354000	-0.674318000	-0.362629000	
Ga	2.281170000	-1.501131000	0.002589000	Ga	2.316922000	-1.469489000	0.011323000	
Cl	3.220784000	-2.994818000	1.308094000	Cl	3.211274000	-2.997177000	1.300587000	
Cl	2.913788000	-1.612626000	-2.110532000	Cl	2.606430000	-1.812530000	-2.152302000	
н	-0.170877000	-2.435500000	0.683217000	н	-0.143027000	-2.271948000	0.892790000	
Cl	2.882357000	0.585768000	0.714948000	Cl	3.098174000	0.582882000	0.495826000	
н	0.967022000	0.499277000	-1.314722000	н	0.933596000	0.582639000	-1.257160000	
н	-0.614362000	0.623389000	-2.095330000	н	-0.654781000	0.640282000	-2.037793000	
С	-2.036302000	1.781595000	-0.126315000	С	-2.093675000	1.776993000	-0.017156000	
С	-0.005611000	3.030710000	-0.979464000	С	-0.143747000	3.087318000	-0.945047000	
0	1.291259000	2.953698000	-1.225469000	0	1.125090000	3.019996000	-1.320792000	
С	1.886684000	4.090936000	-1.862478000	С	1.662642000	4.190978000	-1.946458000	
н	2.943049000	3.853658000	-1.944871000	н	2.696603000	3.948387000	-2.173273000	
н	1.442299000	4.239959000	-2.846359000	н	1.105973000	4.418797000	-2.855230000	
н	1.730357000	4.981583000	-1.253714000	н	1.601755000	5.036302000	-1.260864000	
0	-0.713299000	3.954128000	-1.270520000	0	-0.872681000	4.018715000	-1.142930000	
н	-2.308865000	2.410928000	0.727315000	н	-2.350619000	2.340914000	0.885150000	
н	-2.409397000	2.321753000	-1.001712000	н	-2.524691000	2.354844000	-0.840251000	
С	-2.735143000	0.436605000	-0.043591000	С	-2.758380000	0.414077000	0.011161000	
С	-2.800858000	-1.994074000	-0.332978000	С	-2.722860000	-2.027784000	-0.283987000	
С	-2.163468000	-3.305077000	-0.726980000	С	-2.013300000	-3.307607000	-0.654961000	
н	-1.231383000	-3.159555000	-1.269148000	н	-1.058489000	-3.129969000	-1.146531000	
н	-1.947388000	-3.929032000	0.146371000	н	-1.826686000	-3.929336000	0.226715000	
С	-4.175330000	-1.970057000	-0.060730000	С	-4.099827000	-2.060401000	-0.034781000	

С	-4.992572000	-3.236318000	-0.089134000	С	-4.864153000	-3.358141000	-0.078382000
Н	-2.841683000	-3.873909000	-1.364616000	н	-2.634040000	-3.895459000	-1.332928000
Н	-4.525745000	-4.026967000	0.502624000	н	-4.379870000	-4.127437000	0.527276000
Н	-5.098827000	-3.615979000	-1.109487000	н	-4.930100000	-3.743792000	-1.099867000
Н	-5.992336000	-3.057985000	0.307009000	н	-5.879290000	-3.220133000	0.293679000
С	-4.796100000	-0.758421000	0.228192000	С	-4.768090000	-0.871920000	0.250249000
С	-4.109602000	0.449690000	0.224115000	С	-4.133126000	0.365155000	0.269143000
н	-5.860327000	-0.753772000	0.444243000	н	-5.834380000	-0.910400000	0.452807000
С	-4.843485000	1.737657000	0.498115000	С	-4.917393000	1.617998000	0.561182000
Н	-4.490612000	2.212475000	1.418654000	н	-4.580411000	2.092336000	1.487556000
Н	-4.708603000	2.460664000	-0.310899000	н	-4.809046000	2.356650000	-0.237497000
Н	-5.911717000	1.552920000	0.608728000	н	-5.977714000	1.391061000	0.668872000
	E(RM062	X) = -4305.55120			E(RM062	X) = -4305.49678	873
н	-0.951248000	-1.417215000	1.833030000	С	1.951891000	2.737935000	-0.867886000
С	-0.028392000	1.465517000	0.115241000	С	-0.193655000	0.324547000	-0.865565000
С	-1.112138000	-0.409999000	1.458096000	С	-1.131126000	1.078164000	-0.720204000
0	2.013754000	-0.522546000	2.243050000	Ga	-2.567897000	-0.705104000	-0.333553000
С	2.645967000	-0.369475000	1.236220000	Cl	-1.935528000	-2.669186000	-1.010654000
0	3.933084000	-0.009827000	1.208112000	Cl	-2.792603000	-0.377870000	1.806654000
С	4.552675000	0.161436000	2.487460000	Cl	-4.159921000	0.147188000	-1.543234000
Н	4.499505000	-0.767391000	3.055317000	н	-1.788194000	1.913232000	-0.593558000
Н	4.050575000	0.953353000	3.043177000	С	0.929078000	-0.566457000	-1.131499000
Н	5.585156000	0.429144000	2.280860000	н	0.523402000	-1.563733000	-1.327910000
С	2.105453000	-0.552106000	-0.181924000	н	1.396989000	-0.213361000	-2.055890000
С	0.643487000	-0.987641000	-0.136437000	С	2.010844000	-0.667724000	-0.024517000
С	-0.226545000	0.057450000	0.523662000	С	2.745048000	0.659816000	0.313943000
Ga	-2.620628000	-1.204917000	-0.097685000	С	1.901354000	1.915012000	0.273927000
Cl	-4.436745000	-0.954655000	1.073732000	С	1.497012000	-1.347332000	1.249357000
Cl	-2.504145000	-0.014936000	-1.923874000	0	2.203794000	-1.543739000	2.199037000
н	-1.711259000	0.236618000	2.078115000	0	0.226445000	-1.726874000	1.164567000
Cl	-1.960610000	-3.267219000	-0.359545000	С	-0.257944000	-2.507436000	2.269625000
н	0.539490000	-1.941839000	0.376554000	н	0.427107000	-3.333977000	2.454407000
н	0.302822000	-1.114786000	-1.173332000	н	-1.238040000	-2.863848000	1.968083000
С	2.192731000	0.737065000	-0.982784000	н	-0.332695000	-1.879874000	3.157953000
С	2.929780000	-1.646554000	-0.861217000	С	3.041951000	-1.659833000	-0.606674000
о	3.041650000	-2.711197000	-0.063602000	о	4.091045000	-1.355886000	-1.096932000
	2 760765000	2 922779000	0 60965 2000		2 572678000	2 0075 27000	0 551701000

Н	3.745766000	-4.588261000	0.162937000	С	3.436180000	-3.923509000	-1.079499000
н	3.268775000	-4.178683000	-1.514040000	н	3.647243000	-3.726578000	-2.130364000
н	4.783163000	-3.528261000	-0.844171000	н	4.370023000	-3.942782000	-0.518183000
0	3.388286000	-1.577818000	-1.965632000	н	2.894662000	-4.857480000	-0.961342000
н	3.202958000	1.138717000	-0.907308000	н	3.566981000	0.749272000	-0.392595000
н	2.041958000	0.484104000	-2.038391000	н	3.203267000	0.520503000	1.295109000
С	1.175942000	1.776886000	-0.569418000	С	1.053141000	2.265525000	1.337466000
С	-0.957715000	2.503345000	0.409878000	С	0.252530000	3.400671000	1.228312000
С	-2.317985000	2.276151000	1.020038000	С	1.125028000	3.857067000	-0.945066000
н	-2.803081000	1.379221000	0.647249000	н	1.160253000	4.478255000	-1.835252000
н	-2.273834000	2.213126000	2.112456000	С	0.261838000	4.203533000	0.090835000
С	-0.629352000	3.825433000	0.081561000	н	-0.406568000	3.656490000	2.053224000
С	-1.544978000	4.982055000	0.404049000	С	2.899075000	2.458855000	-2.012410000
н	-2.982991000	3.100111000	0.775051000	н	2.789118000	1.452360000	-2.422580000
н	-1.854816000	4.974261000	1.451147000	н	2.733807000	3.169683000	-2.821894000
н	-2.450657000	4.960731000	-0.208285000	н	3.939997000	2.553984000	-1.690829000
н	-1.037521000	5.927009000	0.210616000	С	0.905338000	1.411608000	2.570980000
С	0.567175000	4.094533000	-0.572215000	н	0.519353000	2.008343000	3.398145000
С	1.464955000	3.098578000	-0.924221000	н	0.179486000	0.609286000	2.391901000
н	0.801112000	5.123426000	-0.829596000	н	1.841311000	0.952119000	2.888799000
С	2.720197000	3.460277000	-1.677748000	С	-0.599617000	5.436700000	0.003946000
н	3.616222000	3.291011000	-1.073866000	н	-0.087398000	6.293173000	0.451150000
н	2.824841000	2.867100000	-2.589285000	н	-0.824681000	5.689302000	-1.033433000
н	2.701724000	4.512771000	-1.960289000	н	-1.541211000	5.300987000	0.538716000
	E/DN 4062	TS _{PQ}	120		E/DN 4062	Q	CC4
	E(RIVIO62 Freq	uency -389.8358	126		E(RIVIU62	x) = -4305.48681	664
Frequency -389.8358							
			-				- fe
			-43				
C	-1.789089000	-1.017959000	-0.521370000	С	-1.812712000	-0.877178000	-0.291476000
C C	-1.789089000 -0.366013000	-1.017959000 -0.554503000	-0.521370000 -0.621033000	C C	-1.812712000 -0.427176000	-0.877178000 -0.493185000	-0.291476000 -0.508474000
C C C	-1.789089000 -0.366013000 0.643997000	-1.017959000 -0.554503000 -1.294718000	-0.521370000 -0.621033000 -0.148450000	C C C	-1.812712000 -0.427176000 0.601297000	-0.877178000 -0.493185000 -1.277006000	-0.291476000 -0.508474000 -0.103317000
C C C Ga	-1.789089000 -0.366013000 0.643997000 2.637810000	-1.017959000 -0.554503000 -1.294718000 -0.998071000	-0.521370000 -0.621033000 -0.148450000 -0.064321000	C C C Ga	-1.812712000 -0.427176000 0.601297000 2.612204000	-0.877178000 -0.493185000 -1.277006000 -1.054189000	-0.291476000 -0.508474000 -0.103317000 -0.085970000
C C C Ga Cl	-1.789089000 -0.366013000 0.643997000 2.637810000 3.345395000	-1.017959000 -0.554503000 -1.294718000 -0.998071000 1.058081000	-0.521370000 -0.621033000 -0.148450000 -0.064321000 -0.508528000	C C Ga Cl	-1.812712000 -0.427176000 0.601297000 2.612204000 3.404013000	-0.877178000 -0.493185000 -1.277006000 -1.054189000 0.952810000	-0.291476000 -0.508474000 -0.103317000 -0.085970000 -0.564186000
C C Ga Cl Cl	-1.789089000 -0.366013000 0.643997000 2.637810000 3.345395000 3.214289000	-1.017959000 -0.554503000 -1.294718000 -0.998071000 1.058081000 -1.532752000	-0.521370000 -0.621033000 -0.148450000 -0.064321000 -0.508528000 2.016885000	C C Ga CI CI	-1.812712000 -0.427176000 0.601297000 2.612204000 3.404013000 3.170571000	-0.877178000 -0.493185000 -1.277006000 -1.054189000 0.952810000 -1.602085000	-0.291476000 -0.508474000 -0.103317000 -0.085970000 -0.564186000 1.995039000
C C Ga Cl Cl Cl	-1.789089000 -0.366013000 0.643997000 2.637810000 3.345395000 3.214289000 3.469824000	-1.017959000 -0.554503000 -1.294718000 -0.998071000 1.058081000 -1.532752000 -2.449166000	-0.521370000 -0.621033000 -0.148450000 -0.064321000 -0.508528000 2.016885000 -1.523874000	C C Ga Cl Cl Cl	-1.812712000 -0.427176000 0.601297000 2.612204000 3.404013000 3.170571000 3.284670000	-0.877178000 -0.493185000 -1.277006000 -1.054189000 0.952810000 -1.602085000 -2.580505000	-0.291476000 -0.508474000 -0.103317000 -0.085970000 -0.564186000 1.995039000 -1.546057000
C C Ga CI CI H	-1.789089000 -0.366013000 0.643997000 2.637810000 3.345395000 3.214289000 3.469824000 0.378991000	-1.017959000 -0.554503000 -1.294718000 -0.998071000 1.058081000 -1.532752000 -2.449166000 -2.263229000	-0.521370000 -0.621033000 -0.148450000 -0.064321000 -0.508528000 2.016885000 -1.523874000 0.281244000	C C Ga CI CI H	-1.812712000 -0.427176000 0.601297000 2.612204000 3.404013000 3.170571000 3.284670000 0.334130000	-0.877178000 -0.493185000 -1.277006000 -1.054189000 0.952810000 -1.602085000 -2.580505000 -2.237305000	-0.291476000 -0.508474000 -0.103317000 -0.085970000 -0.564186000 1.995039000 -1.546057000 0.342655000
C C Ga Cl Cl Cl H C	-1.789089000 -0.366013000 0.643997000 2.637810000 3.345395000 3.214289000 3.469824000 0.378991000 -0.223586000	-1.017959000 -0.554503000 -1.294718000 -0.998071000 1.058081000 -1.532752000 -2.449166000 -2.263229000 0.863090000	-0.521370000 -0.621033000 -0.148450000 -0.064321000 -0.508528000 2.016885000 -1.523874000 0.281244000 -1.111782000	C C Ga Cl Cl Cl H C	-1.812712000 -0.427176000 0.601297000 2.612204000 3.404013000 3.170571000 3.284670000 0.334130000 -0.217228000	-0.877178000 -0.493185000 -1.277006000 -1.054189000 0.952810000 -1.602085000 -2.580505000 -2.237305000 0.896880000	-0.291476000 -0.508474000 -0.508474000 -0.103317000 -0.085970000 -0.564186000 1.995039000 -1.546057000 0.342655000 -1.061788000

Н	-0.583209000	0.987751000	-2.141722000	н	-0.594788000	0.964040000	-2.088173000	
С	-1.063192000	1.771439000	-0.194563000	С	-1.003446000	1.882849000	-0.185180000	
С	-2.546165000	1.411280000	-0.287002000	С	-2.495435000	1.580534000	-0.277544000	
С	-2.816410000	-0.061412000	-0.132526000	С	-2.805603000	0.101672000	-0.187462000	
С	-0.593441000	1.540440000	1.252606000	С	-0.535586000	1.683901000	1.268004000	
0	-1.298979000	1.098087000	2.120361000	О	-1.261251000	1.353607000	2.168244000	
0	0.683323000	1.846301000	1.375111000	0	0.768749000	1.869673000	1.361464000	
С	1.317296000	1.518609000	2.623860000	С	1.385216000	1.545282000	2.618239000	
Н	0.953129000	2.186295000	3.405017000	н	1.045706000	2.240417000	3.386357000	
Н	2.380974000	1.649861000	2.444964000	н	2.453874000	1.630879000	2.441037000	
Н	1.105017000	0.481915000	2.882505000	н	1.133233000	0.522409000	2.897334000	
С	-0.899694000	3.260891000	-0.493115000	С	-0.768757000	3.346504000	-0.554988000	
0	-1.674862000	4.092039000	-0.098220000	0	-1.554637000	4.220370000	-0.297363000	
0	0.181371000	3.522499000	-1.213083000	0	0.387860000	3.534324000	-1.173200000	
С	0.467457000	4.908618000	-1.430842000	С	0.728053000	4.892500000	-1.470223000	
Н	-0.353170000	5.382672000	-1.969395000	н	-0.003591000	5.320957000	-2.155523000	
Н	0.610415000	5.409868000	-0.473742000	н	0.751162000	5.479302000	-0.552176000	
Н	1.382360000	4.927288000	-2.015537000	н	1.712463000	4.850359000	-1.927061000	
Н	-2.919649000	1.729809000	-1.271334000	н	-2.875084000	1.972648000	-1.228134000	
Н	-3.101526000	1.980767000	0.456441000	н	-3.013646000	2.119649000	0.515822000	
С	-4.020145000	-0.523970000	0.343238000	С	-4.123087000	-0.295126000	0.078149000	
С	-4.256449000	-1.925682000	0.435481000	С	-4.483751000	-1.662352000	0.251670000	
С	-2.098420000	-2.403739000	-0.433747000	С	-2.171571000	-2.325878000	-0.236746000	
Н	-1.297786000	-3.110404000	-0.622636000	н	-1.503075000	-2.833003000	0.468119000	
С	-3.346051000	-2.873701000	0.049657000	С	-3.569092000	-2.654609000	0.139124000	
Н	-5.214453000	-2.252890000	0.829452000	н	-5.513943000	-1.894701000	0.499410000	
С	-2.295254000	-1.568964000	-2.199650000	С	-1.877977000	-2.959514000	-1.637274000	
Н	-1.898245000	-0.647952000	-2.625112000	н	-0.842213000	-2.760385000	-1.909643000	
Н	-1.759223000	-2.407337000	-2.636434000	н	-2.035219000	-4.036709000	-1.598532000	
Н	-3.374638000	-1.627605000	-2.290810000	н	-2.541707000	-2.526751000	-2.388454000	
С	-5.088400000	0.427976000	0.811282000	С	-5.191066000	0.735775000	0.250447000	
Н	-5.999661000	-0.106351000	1.077348000	н	-6.183849000	0.289646000	0.249548000	
Н	-4.740913000	0.975730000	1.691737000	н	-5.040228000	1.245686000	1.209230000	
Н	-5.331997000	1.163067000	0.041485000	н	-5.132597000	1.502809000	-0.524084000	
С	-3.603046000	-4.351879000	0.123676000	С	-3.934799000	-4.093424000	0.325110000	
Н	-3.646240000	-4.788112000	-0.878405000	н	-4.085288000	-4.572792000	-0.647472000	
Н	-2.804397000	-4.859345000	0.669113000	н	-3.140275000	-4.639623000	0.837910000	
Н	-4.547250000	-4.559310000	0.626148000	н	-4.859851000	-4.190622000	0.892534000	
	E(RM062	ν' (X) = -4149.84176	093		E(RM062	Ι S_{P'Q'} X) = -4149.81460	050	
E(KIVIUDZX) = -4149.841/6093					Frequency -419.6708			

		the second			4		
С	2.074920000	2.842247000	-1.106692000	С	1.941640000	1.500018000	-0.554979000
С	0.439986000	0.304751000	-0.765293000	С	0.745757000	0.585489000	-0.551765000
С	-0.616890000	0.856279000	-0.469937000	С	-0.400027000	0.940005000	0.046591000
Ga	-1.771869000	-0.822384000	0.279737000	Ga	-2.045636000	-0.117656000	0.513407000
CI	-1.169575000	-2.748449000	-0.541469000	CI	-2.152451000	-2.249312000	-0.088753000
CI	-1.688826000	-0.470896000	2.424218000	CI	-2.330277000	0.137968000	2.694285000
н	-1.098363000	1.798665000	-0.256675000	н	-0.427066000	1.938887000	0.486511000
С	1.579853000	-0.497473000	-1.153499000	С	1.033465000	-0.796018000	-1.079798000
н	1.221997000	-1.533215000	-1.232160000	н	0.163407000	-1.439983000	-0.973024000
н	1.879964000	-0.178160000	-2.156978000	н	1.304487000	-0.780304000	-2.143270000
С	2.796821000	-0.439053000	-0.197733000	С	2.219686000	-1.381005000	-0.295413000
С	3.370927000	0.990529000	0.008837000	С	3.476189000	-0.537893000	-0.515810000
С	2.338746000	2.093663000	0.062035000	С	3.251153000	0.931727000	-0.285269000
С	2.525421000	-1.117000000	1.148595000	С	1.884934000	-1.367533000	1.204801000
0	3.354575000	-1.182445000	2.008503000	0	2.504036000	-0.744870000	2.023519000
0	1.301342000	-1.643928000	1.238474000	0	0.816087000	-2.108535000	1.446252000
С	1.068844000	-2.432165000	2.420912000	С	0.394992000	-2.201752000	2.820396000
н	1.855235000	-3.179420000	2.516749000	н	1.141398000	-2.755650000	3.389495000
н	0.098866000	-2.899584000	2.277227000	н	-0.553828000	-2.730250000	2.793504000
н	1.062196000	-1.786697000	3.299113000	н	0.267282000	-1.204586000	3.237814000
С	3.862864000	-1.307667000	-0.904196000	С	2.538912000	-2.831968000	-0.662006000
0	4.724735000	-0.871492000	-1.609793000	0	3.513342000	-3.395076000	-0.245659000
0	3.638273000	-2.600121000	-0.688467000	0	1.638147000	-3.372508000	-1.472217000
С	4.563343000	-3.508641000	-1.312181000	С	1.847006000	-4.758136000	-1.791390000
н	4.523763000	-3.393462000	-2.394859000	н	2.800427000	-4.883561000	-2.303678000
н	5.572796000	-3.303226000	-0.958424000	н	1.845133000	-5.350384000	-0.877193000
н	4.242212000	-4.501622000	-1.013375000	н	1.017645000	-5.037281000	-2.434089000
н	4.066985000	1.172059000	-0.807223000	н	3.812908000	-0.676778000	-1.553880000
н	3.969579000	0.958731000	0.920629000	н	4.272374000	-0.910499000	0.126164000
с	1.636257000	2.390601000	1.245630000	С	4.264697000	1.756461000	0.146758000
с	0.667741000	3.391574000	1.229519000	С	4.035278000	3.156725000	0.276417000
с	1.085886000	3.823651000	-1.083798000	с	1.785209000	2.910455000	-0.446704000
н	0.888968000	4.395053000	-1.986002000	н	0.785735000	3.319937000	-0.540726000
С	0.368028000	4.113928000	0.074307000	С	2.843905000	3.759903000	-0.029560000
н	0.135034000	3.618528000	2.148712000	н	4.857452000	3.773507000	0.626957000
С	2.877439000	2.655050000	-2.373081000	С	2.109401000	2.245673000	-2.244967000

Н	2.943279000	1.615074000	-2.699063000	н	1.939878000	1.264474000	-2.687983000
н	2.446173000	3.237398000	-3.186850000	н	1.351992000	2.930423000	-2.618029000
н	3.905819000	2.997883000	-2.227479000	н	3.126844000	2.589697000	-2.394783000
С	1.844976000	1.622949000	2.526142000	С	5.613590000	1.202567000	0.515848000
н	1.503398000	2.211918000	3.377571000	н	6.297458000	1.997893000	0.807984000
н	1.257560000	0.697504000	2.520719000	н	5.513733000	0.508799000	1.355110000
н	2.886754000	1.352038000	2.696311000	н	6.060764000	0.653630000	-0.315734000
С	-0.648229000	5.225459000	0.095310000	С	2.614754000	5.240735000	0.065644000
н	-0.159090000	6.177320000	0.319278000	н	2.461028000	5.673190000	-0.927405000
н	-1.142460000	5.332407000	-0.871757000	н	1.728674000	5.463016000	0.664260000
н	-1.407097000	5.060316000	0.861864000	н	3.468795000	5.738902000	0.522550000
С	-3.617603000	-0.416153000	-0.495663000	С	-3.727166000	0.629192000	-0.443392000
Ν	-3.932865000	-0.515989000	-1.802012000	Ν	-3.935107000	0.496386000	-1.769632000
н	-3.406946000	-0.535915000	-3.815456000	н	-3.166940000	0.305011000	-3.695542000
С	-3.012800000	-0.908404000	-2.872267000	С	-2.999138000	-0.120518000	-2.707593000
н	-2.919360000	-1.993056000	-2.902574000	н	-3.147614000	-1.199608000	-2.725904000
н	-2.036120000	-0.460625000	-2.693238000	н	-1.979137000	0.096790000	-2.390811000
С	-5.268397000	-0.257434000	-1.993912000	С	-5.188788000	0.946112000	-2.114912000
н	-5.726579000	-0.288698000	-2.967869000	н	-5.552049000	0.922944000	-3.128120000
н	-6.793435000	0.271623000	-0.474533000	н	-6.740631000	1.809263000	-0.790785000
С	-5.790859000	0.015100000	-0.771878000	С	-5.770388000	1.378301000	-0.969971000
Ν	-4.761691000	-0.086299000	0.133732000	Ν	-4.857436000	1.178849000	0.041105000
н	-4.641331000	-0.770938000	2.119838000	н	-4.298092000	2.054403000	1.867877000
С	-4.920303000	0.129735000	1.577033000	С	-5.126259000	1.488659000	1.448867000
н	-5.965554000	0.362369000	1.766581000	н	-5.250324000	0.566709000	2.014149000
н	-4.294795000	0.959265000	1.900431000	н	-6.038547000	2.079700000	1.492714000
	E/DM06	Q'	0017				
	E(KIVIOO	2/) = -4149.85390	5017				
		×					
		· · ·					
	1	là-					
		i so					
	4	to the	,				
		Jac Le	P				
			ter and the second s				
		20 2	•				
С	1.996490000	1.401795000	-0.315597000				
С	0.796234000	0.552484000	-0.407605000				
С	-0.380460000	0.909262000	0.150735000				
Ga	-2.060737000	-0.133684000	0.533938000				
Cl	-2.176159000	-2.264686000	-0.052992000				
Cl	-2.410433000	0.148935000	2.702103000				
н	-0.418709000	1.892520000	0.623306000				
С	1.024426000	-0.809648000	-1.018824000				
н	0.138540000	-1.432775000	-0.925108000				
Н	1.269921000	-0.718343000	-2.082985000				

С	2.212287000	-1.464047000	-0.302320000
С	3.477233000	-0.652306000	-0.558617000
С	3.258968000	0.832853000	-0.375420000
С	1.925048000	-1.472249000	1.208328000
0	2.600038000	-0.909190000	2.026075000
0	0.815024000	-2.147581000	1.461707000
С	0.400023000	-2.209740000	2.838170000
н	1.140113000	-2.760220000	3.418472000
н	-0.556282000	-2.725273000	2.825670000
н	0.286425000	-1.202072000	3.236088000
С	2.466839000	-2.913743000	-0.716375000
0	3.469275000	-3.499147000	-0.409936000
0	1.476625000	-3.429332000	-1.431942000
С	1.624333000	-4.814680000	-1.782473000
н	2.527322000	-4.955499000	-2.375769000
н	1.685985000	-5.418199000	-0.877550000
н	0.736806000	-5.067000000	-2.354769000
н	3.823685000	-0.842563000	-1.581485000
н	4.258871000	-1.005058000	0.113914000
С	4.393174000	1.661927000	-0.196275000
С	4.277868000	3.052054000	0.049298000
С	1.836852000	2.878668000	-0.180640000
н	1.128984000	3.088968000	0.629700000
С	3.065315000	3.664471000	0.087364000
н	5.183231000	3.623095000	0.222457000
С	1.185938000	3.437609000	-1.489058000
н	0.261654000	2.897391000	-1.687408000
н	0.963468000	4.497603000	-1.373379000
н	1.869237000	3.305555000	-2.329882000
С	5.757945000	1.063196000	-0.201282000
н	6.532898000	1.825592000	-0.246167000
н	5.889965000	0.487588000	0.723801000
н	5.884833000	0.359074000	-1.025927000
С	2.934378000	5.132544000	0.332474000
н	2.892796000	5.666496000	-0.623250000
н	2.020605000	5.368383000	0.880672000
н	3.793244000	5.513054000	0.884611000
с	-3.673440000	0.644105000	-0.504359000
N	-3.798866000	0.537236000	-1.842940000
н	-2.935988000	0.331882000	-3.727156000
С	-2.814176000	-0.082893000	-2.728202000
Н	-2.955827000	-1.163060000	-2.743163000
н	-1.811507000	0.144304000	-2.365485000
С	-5.020859000	1.014628000	-2.257606000
н	-5.320241000	1.014934000	-3.291904000
н	-6.639700000	1.880073000	-1.016632000

С	-5.666598000	1.436929000	-1.143304000
N	-4.822539000	1.203750000	-0.080853000
н	-4.369048000	2.050734000	1.788484000
С	-5.170457000	1.489479000	1.314595000
н	-5.321896000	0.557525000	1.856501000
н	-6.086507000	2.076175000	1.318628000

10. Copies of ¹H and ¹³C NMR Spectra:

