Supporting Information

Cobalt(III)-Catalyzed Cross-Coupling of Enamides with Allyl Acetates/Maleimides

Wenlong Yu,[†] Wei Zhang,[†] Yue Liu,[†] Zhanxiang Liu,[†] Yuhong Zhang^{†,‡,*}

†Department of Chemistry, Zhejiang University, Hangzhou 310027, China

‡State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou

730000, China

E-mail: <u>yhzhang@zju.edu.cn</u>

General Information	S2
The Optimization of the reaction conditions	.S2
Typical Procedure for the Product	S4
Characterization of products	.S7
References	S22
X-ray Crystallographic Data of Compound 5aa and 7	S23
1H NMR and 13C NMR Spectra.	S25

General General All reactions were performed under air in a flame-dried reaction flask. N-acyl enamides were synthesized according to published procedures.¹ vinylcyclopropane was prepared according to the previous work.² Methyl 2-acetamidoacrylate, N-vinylacetamide, maleimides, and 2-vinyloxirane were purchased from Tokyo Chemical Industry Co., Ltd. The other materials and solvents were purchased from common commercial sources and used without additional purification, if there is no special version. 1H NMR spectra were recorded at 400 MHz using TMS as internal standard. 13C NMR spectra were recorded at 100 MHz using TMS as internal standard. The multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), multiplet (m), and broad resonances (br). Mass spectroscopy data of the products were collected on an HRMS-TOF instrument.

NOTE: The corresponding alkylation products were sensitive to the acid in the CDCl₃. The

$CDCl_3$ should be purified with the dry K_2CO_3 .

	Ph N +	OAc	Cp*Co(CO)I ₂ (10 mol %) additive 1, additive 2 solvent, air , 10 h	► Ph	VHAc
	1a	2a		3aa	1
entry	additive 1 (20 mol %)	additive 2 (20	mol %) solvent (1 mL)	temp (°C)	Yield $(\%)^b$
1	AgOAc	-	CF ₃ CH ₂ OH	90	40
2	AgOAc	-	MeOH	90	NR
3	AgOAc	-	<i>t</i> -AmOH	90	NR
4	AgOAc	-	PhMe	90	NR
5	AgOAc	-	PhCl	90	NR
6	AgOAc	-	PhF	90	NR
7	AgOAc	-	Dioxane	90	NR
8	AgOAc	-	CH ₃ NO ₂	90	NR
9	AgOAc	-	DCE	90	NR
10	AgOAc	-	DCM	90	NR
11	AgOAc	-	NMP	90	NR
12	AgOAc	-	DMF	90	NR
13	AgOAc	-	DMSO	90	NR
14	AgOAc	-	CH ₃ CN	90	NR

The Optimization of the reaction conditions^a

15	$Cu(OAc)_2$	-	CF ₃ CH ₂ OH	90	38
16	Zn(OAc) ₂	-	CF ₃ CH ₂ OH	90	15
17	LiOAc	-	CF ₃ CH ₂ OH	90	30
18	NaOAc	-	CF ₃ CH ₂ OH	90	32
19	KOAc	-	CF ₃ CH ₂ OH	90	37
20	CsOAc	-	CF ₃ CH ₂ OH	90	38
21	N-Ac-L-Phe	-	CF ₃ CH ₂ OH	90	NR
22	N-Ac-L-Ile	-	CF ₃ CH ₂ OH	90	NR
23	N-Ac-L-Val	-	CF ₃ CH ₂ OH	90	NR
24	N-Ac-L-Ala	-	CF ₃ CH ₂ OH	90	NR
25	N-Ac-L-Leu	-	CF ₃ CH ₂ OH	90	NR
26	N-Ac-L-Gly	-	CF ₃ CH ₂ OH	90	NR
27	AgOAc	Li ₂ CO ₃	CF ₃ CH ₂ OH	90	30
28	AgOAc	Na ₂ CO ₃	CF ₃ CH ₂ OH	90	28
29	AgOAc	K ₂ CO ₃	CF ₃ CH ₂ OH	90	NR
30	AgOAc	Cs_2CO_3	CF ₃ CH ₂ OH	90	NR
31	AgOAc	NaHCO ₃	CF ₃ CH ₂ OH	90	36
32	AgOAc	-	CF ₃ CH ₂ OH	80	37
33	AgOAc	-	CF ₃ CH ₂ OH	100	34
33 ^c	AgOAc	-	CF ₃ CH ₂ OH	90	63
34 ^{<i>d</i>}	AgOAc	-	CF ₃ CH ₂ OH	90	73
35e	AgOAc	-	CF ₃ CH ₂ OH	90	NR
36 ^{<i>d</i>,<i>f</i>}	AgOAc	-	CF ₃ CH ₂ OH	90	60
37	-	-	CF ₃ CH ₂ OH	90	trace

^{*a*}Reaction conditions: substrate **1a** (0.1 mmol), allyl acetate **2a** (0.15 mmol), Cp*Co(CO)I₂ (10 mol %), additive 1 (20 mol%), additive 2 (20 mol%), solvent (1 mL), 90 °C, air, 10 h. ^{*b*}Isolated yields. ^{*c*}allyl acetate **2a** (0.3 mmol). ^{*d*}allyl acetate **2a** (0.45 mmol). ^{*c*}Cp*Co(CO)I₂ was not used. ^{*f*}[Cp*RhCl₂]₂ (5 mol %)/AgOAc (10 mol %) as the catalyst.

Typical Procedure for the Product

The enamides **1a** (0.1 mmol) and allyl acetate **2a** (0.45 mmol) were dissolved in 1mL CF₃CH₂OH in a sealed tube. 5 mg (10 mol%) Cp*Co(CO)I₂ and 4 mg (20 mol%) AgOAc were added. The tube was stirred at 90 °C for 10 h under air. The solvent was removed in vacuum and the product was isolated through column chromatography to afford the corresponding products.

Typical Procedure for the hydrogenation of 5aa

The enamides **5aa** (0.2 mmol) was dissolved in 1mL MeOH in a Schlenk tube. 20 mg Pd/C was added. The tube was stirred at RT for 10 h under H_2 balloons. The solvent was removed in vacuum and the product was isolated through column chromatography to afford the corresponding hydrogenation products.

The solvent effect in the NMR spectrums

Note: The ¹H-NMR and ¹³C-NMR spectrums of the allylation product were strong influenced by the solvent effect. We showed the NMR spectrums of 3aa in CDCl₃, DMSO- d_6 and Acetone d_6 . After the ¹H-NMR spectrums of 3aa in CDCl₃ was recorded, the CDCl₃ was removed in vacuum and the 3aa was dissolved in the Acetone- d_6 once again. This samlpe gave the ¹H-NMR spectrums of 3aa in Acetone- d_6 .

(Z)-N-(1-phenylpenta-1,4-dien-1-yl)acetamide

¹H NMR (CDCl₃, 400 MHz) δ 7.28-7.46 (m, 5H), 6.81, 6.73 (*NH*, 1H), 5.84-5.99 (m, 2H), 5.12 (d, *J* = 16Hz, 1H), 5.06 (d, *J* = 8Hz, 1H), 2.90-3.00 (m, 2H), 2.13 (s, 2H), 1.77 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 168.0, 137.5, 137.3, 135.4, 134.2, 133.7, 128.3, 128.0, 127.9, 127.5, 125.2, 125.1, 123.7, 122.6, 115.6, 115.1, 32.1, 31.5, 22.9, 20.4. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 9.18 (s, 1H), 7.39 (d, *J* = 8Hz, 2H), 7.32 (t, *J* = 8Hz, 2H), 7.25 (t, *J* = 8Hz, 1H), 5.85-5.93 (m, 1H), 5.82 (t, *J* = 8Hz, 1H), 5.11 (dd, J = 1.6Hz, *J* = 16Hz, 1H), 5.02 (dd, *J* = 2Hz, 12Hz, 1H), 2.85 (t, *J* = 8Hz, 2H), 2.01 (s, 3H). ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 168.0, 138.0, 136.4, 134.4, 128.2, 127.4, 125.3, 121.8, 115.4, 31.9, 22.5. ¹H NMR (acetone-*d*₆, 400 MHz) δ 8.39 (*NH*, s, 1H), 4

7.44 (d, J = 8Hz, 2H), 7.30 (t, J = 8Hz, 2H), 7.24 (t, J = 8Hz, 1H), 5.87-5.97 (m, 1H),
5.80 (t, J = 8Hz, 1H), 5.10 (d, J = 20Hz, 1H), 4.99 (d, J = 12Hz, 1H), 2.92 (t, J = 8Hz,
2H), 2.09 (s, 3H). HRMS (EI-TOF) calcd for C₁₃H₁₅NO (M⁺): 201.1154, found:
201.1154.

Characterization of products

(Z)-N-(1-phenylpenta-1,4-dien-1-yl)acetamide

Yield: 73 %; white solid; ¹H NMR (DMSO- d_6 , 400 MHz) δ 9.18 (s, 1H), 7.39 (d, J = 8Hz, 2H), 7.32 (t, J = 8Hz, 2H), 7.25 (t, J = 8Hz, 1H), 5.85-5.93 (m, 1H), 5.82 (t, J = 8Hz, 1H), 5.11 (dd, J = 1.6Hz, J = 16Hz, 1H), 5.02 (dd, J = 2Hz, 12Hz, 1H), 2.85 (t, J = 8Hz, 2H), 2.01 (s, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz) δ 168.0, 138.0, 136.4, 134.4, 128.2, 127.4, 125.3, 121.8, 115.4, 31.9, 22.5.

(Z)-N-(1-(p-tolyl)penta-1,4-dien-1-yl)acetamide

Yield: 74 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.36 (*NH*, br, 1H), 7.32 (d, J = 8Hz, 2H), 7.11 (d, J = 8Hz, 2H), 5.85-5.95 (m, 1H), 5.75 (t, J = 8Hz, 1H), 5.09 (dd, J = 1.2Hz, 12Hz, 1H), 4.98 (d, J = 8Hz, 1H), 2.88 (br, 2H), 2.29 (s, 3H), 2.07 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 168.6, 137.9, 137.6, 136.9, 135.6, 129.6, 126.4, 122.1, 115.4, 33.4, 23.1, 21.1. HRMS (EI-TOF) calcd for C₁₄H₁₇NO (M⁺): 215.1310, found: 215.1311.

(Z)-N-(1-(4-methoxyphenyl)penta-1,4-dien-1-yl)acetamide

Yield: 86 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.29 (*NH*, br,1H), 7.36 (d, J = 8Hz, 2H), 6.86 (d, J = 8Hz, 1H), 5.86-5.96 (m, 1H), 5.68 (t, J = 8Hz, 1H), 5.09 (dd, J = 1.6Hz, 16Hz, 1H), 4.97 (dd, J = 1.6Hz, 8Hz, 1H), 3.78 (s, 3H), 2.89 (t, J = 1.6Hz, 1H), 4.97 (dd, J = 1.6Hz, 8Hz, 1H), 3.78 (s, 3H), 2.89 (t, J = 1.6Hz, 1H), 4.97 (dd, J = 1.6Hz, 8Hz, 1H), 3.78 (s, 3H), 2.89 (t, J = 1.6Hz, 1H), 4.97 (dd, J = 1.6Hz, 8Hz, 1H), 3.78 (s, 3H), 2.89 (t, J = 1.6Hz, 1H), 4.97 (dd, J = 1.6Hz, 8Hz, 1H), 3.78 (s, 3H), 2.89 (t, J = 1.6Hz, 1H), 4.97 (dd, J = 1.6Hz, 8Hz, 1H), 3.78 (s, 3H), 2.89 (t, J = 1.6Hz, 8Hz, 1H), 3.78 (s, 3H), 3.78 (s, 3H)

8Hz, 2H), 2.08 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.6, 159.4, 136.9, 134.4, 131.3, 126.8, 120.2, 114.4, 113.5, 54.7, 32.5, 22.2. HRMS (EI-TOF) calcd for C₁₄H₁₇NO₂ (M⁺): 231.1259, found: 231.1256.

(Z)-N-(1-([1,1'-biphenyl]-4-yl)penta-1,4-dien-1-yl)acetamide

Yield: 65 %; white solid; ¹H NMR (DMSO- d_6 , 400 MHz) δ 9.23 (*NH*, br,1H), 7.62-7.67 (m, 4H), 7.48 (d, J = 4Hz, 4H), 7.37 (d, J = 8Hz, 1H), 5.89 (br, 2H), 5.13 (d, J = 16Hz, 1H), 5.03 (d, J = 8Hz, 1H), 2.89 (br, 2H), 2.04 (s, 3H). ¹³C NMR (DMSO - d_6 , 100 MHz) δ 168.1, 139.6, 139.0, 137.2, 136.4, 134.2, 128.9, 127.4, 126.5, 125.8, 121.8, 115.4, 32.1, 22.7. HRMS (EI-TOF) calcd for C₁₉H₁₉NO (M⁺): 277.1467, found: 277.1469.

(Z)-N-(1-(4-fluorophenyl)penta-1,4-dien-1-yl)acetamide

Yield: 90 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.45 (*NH*, br,1H), 7.45-7.48 (m, 2H), 7.06 (t, J = 8Hz, 2H), 5.85-5.95 (m, 1H), 5.76 (t, J = 8Hz, 1H), 5.10 (dd, J = 1.6Hz, 16Hz, 1H), 4.99 (dd, J = 1.6Hz, 8Hz, 1H), 2.91 (t, J = 8Hz, 2H), 2.08 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.9, 163.5, 161.1 ($J_{C-F} = 242.8$ Hz), 136.5, 135.2, 135.2 ($J_{C-F} = 2.8$ Hz), 134.0, 127.5, 127.4 ($J_{C-F} = 7.9$ Hz), 122.0, 114.9, 114.7, 114.6 ($J_{C-F} = 4.4$ Hz), 32.3, 32.2. HRMS (EI-TOF) calcd for C₁₃H₁₄FNO (M⁺): 219.1059, found: 219.1057.

(Z)-N-(1-(4-chlorophenyl)penta-1,4-dien-1-yl)acetamide

Yield: 85 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.48 (*NH*, br,1H), 7.44 (d, J = 8Hz, 2H), 7.31 (d, J = 8Hz, 1H), 5.85-5.95 (m, 1H), 5.82 (t, J = 8Hz, 1H), 5.11 (dd, J = 1.6Hz, 16Hz, 1H), 4.99 (dd, J = 1.6Hz, 8Hz, 1H), 2.93 (t, J = 8Hz, 2H), 2.08 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.9, 137.7, 136.3, 134.1, 132.5, 128.1, 127.2, 122.8, 114.8, 32.3, 22.2. HRMS (EI-TOF) calcd for C₁₃H₁₄CINO (M⁺): 235.0764, found: 235.0768.

(Z)-N-(1-(4-bromophenyl)penta-1,4-dien-1-yl)acetamide

Yield: 93 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.48 (*NH*, br,1H), 7.47 (d, J = 8Hz, 2H), 7.38 (d, J = 8Hz, 1H), 5.85-5.95 (m, 1H), 5.83 (t, J = 8Hz, 1H), 5.10 (dd, J = 1.6Hz, 16Hz, 1H), 4.99 (dd, J = 1.6Hz, 8Hz, 1H), 2.92 (t, J = 8Hz, 2H), 2.08 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.9, 138.1, 136.2, 134.1, 131.1, 127.5, 122.9, 120.7, 114.8, 32.3, 22.2. HRMS (EI-TOF) calcd for C₁₃H₁₄BrNO (M⁺): 279.0259, found: 279.0264.

(Z)-N-(1-(o-tolyl)penta-1,4-dien-1-yl)acetamide

Yield: 60 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.29 (*NH*, br,1H), 7.10-7.20 (m, 4H), 5.89-5.99 (m, 1H), 5.19 (t, *J* = 8Hz, 1H), 5.11 (dd, J = 1.6Hz, 16Hz, 1H), 4.99 (dd, *J* = 1.6Hz, 8Hz, 1H), 2.91 (t, *J* = 8Hz, 2H), 2.28 (s, 3H), 2.00 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.7, 140.5, 137.8, 136.8, 136.0, 130.9, 130.3, 128.3, 126.3, 123.3, 115.3, 33.2, 23.1, 20.2. HRMS (EI-TOF) calcd for C₁₄H₁₇NO (M⁺): 215.1310, found: 215.1312.

(Z)-N-(1-(m-tolyl)penta-1,4-dien-1-yl)acetamide

Yield: 70 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.33 (*NH*, br,1H), 7.26 (s, 1H), 7.16-7.23 (m, 2H), 7.06 (d, J = 8Hz, 1H), 5.86-5.96 (m, 1H), 5.78 (t, J = 8Hz, 1H), 5.10 (dd, J = 2Hz, 16Hz, 1H), 4.98 (dd, J = 1.6Hz, 8Hz, 1H), 2.91 (t, J = 8Hz, 2H), 2.31 (s, 3H), 2.08 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.6, 138.8, 137.5, 136.7, 134.9, 128.1, 128.0, 126.2, 122.8, 121.9, 114.6, 32.5, 22.2, 20.6. HRMS (EI-TOF) calcd for C₁₄H₁₇NO (M⁺): 215.1310, found: 215.1314.

(Z)-N-(1-(2,4-dimethylphenyl)penta-1,4-dien-1-yl)acetamide Yield: 52 %; white solid; ¹H NMR (DMSO- d_6 , 400 MHz) δ 9.11 (*NH*, br, 1H), 7.04 (d, J = 8Hz, 1H), 6.93 (d, J = 4Hz, 2H), 5.84-5.94 (m, 1H), 5.07-5.12 (m, 2H), 5.00 (dd, J = 1.6Hz, 12Hz, 1H), 2.81 (t, J = 8Hz, 1H),2.24 (s, 3H), 2.19 (s, 3H), 1.91 (s, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz) δ 167.0, 136.8, 136.4, 136.4, 135.1, 134.8, 130.7, 129.1, 126.0, 121.7, 115.1, 32.0, 22.7, 20.6, 19.7. HRMS (EI-TOF) calcd for C₁₅H₁₉NO (M⁺): 229.1467, found: 229.1470.

(Z)-N-(1-(naphthalen-2-yl)penta-1,4-dien-1-yl)acetamide

Yield: 87 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.52 (*NH*, br,1H), 7.81-7.92 (m, 4H), 7.63 (dd, J = 4Hz, 8Hz, 1H), 7.44-7.49 (m, 2H), 5.90-6.00 (m, 2H), 5.14 (dd, J = 1.6Hz, 16Hz, 1H), 5.01 (dd, J = 1.2Hz, 8Hz, 1H), 2.98 (t, J = 8Hz, 2H), 2.14 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.9, 136.6, 136.2, 134.8, 133.5, 10 133.0, 128.1, 127.7, 127.5, 126.1, 125.8, 124.3, 124.0, 122.9, 114.7, 32.6, 22.3. HRMS (EI-TOF) calcd for $C_{17}H_{17}NO(M^+)$: 251.1310, found: 251.1307.

(Z)-N-(1-(thiophen-2-yl)penta-1,4-dien-1-yl)acetamide

Yield: 50 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.46 (*NH*, br,1H), 7.28 (d, J = 4Hz, 1H), 7.08 (d, J = 4Hz, 1H), 6.96 (t, J = 4Hz, 1H), 5.83-5.93 (m, 2H), 5.09 (d, J = 12Hz, 1H), 4.99 (d, J = 8Hz, 1H), 2.86 (br, 2H), 2.08 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 167.6, 143.4, 136.3, 129.4, 127.3, 124.3, 123.4, 121.9, 114.8, 32.3, 22.1. HRMS (EI-TOF) calcd for C₁₁H₁₃NOS (M⁺): 207.0718, found: 207.0713.

(Z)-N-(1-(benzofuran-2-yl)penta-1,4-dien-1-yl)acetamide Yield: 47 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.51 (*NH*, br,1H), 7.55 (d, J = 8Hz, 1H), 7.47 (d, J = 8Hz, 1H), 7.28 (t, J = 8Hz, 1H), 7.20 (t, J = 8Hz, 1H), 6.77 (s, 1H), 6.28 (t, J = 8Hz, 1H), 5.86-5.98 (m, 1H), 5.13 (dd, J = 1.6Hz, 12Hz, 1H), 5.03 (dd, J = 1.6Hz, 8Hz, 1H), 2.97 (t, J = 8Hz, 2H), 2.13 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 168.1, 154.8, 154.3, 135.9, 128.9, 126.0, 124.7, 124.5, 122.9, 121.0, 115.2, 110.7, 102.5, 31.9, 22.2. HRMS (EI-TOF) calcd for C₁₅H₁₅NO₂ (M⁺): 241.1103, found: 241.1107.

(Z)-methyl 2-acetamidohexa-2,5-dienoate

Yield: 80 %; transparent oil; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.45 (br, *NH*, 1H), 6.46 (t, *J* = 8Hz, 1H), 5.81-5.91 (m, 1H), 5.09 (d, *J* = 16Hz, 1H), 5.02 (d, *J* = 12Hz, 1H), 3.70 (s, 3H), 2.91 (t, *J* = 8Hz, 2H), 2.02 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) ¹¹

δ 169.1, 165.6, 135.7, 134.2, 128.4, 116.6, 52.3, 32.9, 22.7. HRMS (EI-TOF) calcd for C₉H₁₃NO₃ (M⁺): 183.0895, found: 183.0894.

N-((1Z,4E)-1,5-diphenylpenta-1,4-dien-1-yl)acetamide

Yield: 40 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.44 (br, *NH*, 1H), 7.47 (d, *J* = 8Hz, 2H), 7.41 (d, *J* = 8Hz, 2H), 7.25-7.32 (m, 5H), 7.20 (t, *J* = 8Hz, 1H), 6.51 (d, *J* = 15.6Hz, 1H), 6.35-6.42 (m, 1H), 5.90 (t, *J* = 8Hz, 1H), 3.09 (t, *J* = 8Hz, 2H), 2.12 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 168.6, 139.7, 138.7, 135.9, 131.4, 129.4, 129.1, 129.0, 128.3, 127.8, 126.9, 126.5, 123.1, 32.6, 23.2. HRMS (EI-TOF) calcd for C₁₉H₁₉NO (M⁺): 277.1467, found: 277.1467.

N-((1Z)-6-hydroxy-1-phenylhexa-1,4-dien-1-yl)acetamide

Yield: 80 %; orange oil; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.53, 8.46 (*NH*, br, 0.6H), 7.42 (t, J = 8Hz, 2H), 7.29 (t, J = 8Hz, 2H), 7.23 (t, J = 8Hz, 1H), 5.51-5.82 (m, 3H), 4.15 (d, J = 8Hz, 1.3H), 4.01 (d, J = 4Hz, 0.7H), 3.05 (*OH*, br, 1H), 2.95 (t, J = 8Hz, 1.3H), 2.89 (t, J = 8Hz, 0.7H), 2.10, 2.09 (d, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 169.0, 168.8, 139.7, 139.6, 135.4, 135.2, 132.1, 131.4, 129.8, 129.2, 129.2, 129.1, 129.1, 129.0, 128.3, 126.4, 123.7, 123.6, 63.1, 58.1, 31.8, 27.5, 23.1. MS(EI): m/z (%) 232 (M+H⁺, 6.0), 213 (32.0), 171 (72.0), 154 (99.0), 119 (47.0), 104 (58.0), 43 (100.0)

dimethyl 2-((5Z)-6-acetamido-6-phenylhexa-2,5-dien-1-yl)malonate

Yield: 43 %; white solid; ¹H NMR (acetone- d_6 , 400 MHz) δ 8.41, 8.35 (br, *NH*, 1H), 12

7.42 (d, J = 8Hz, 2H), 7.30 (t, J = 8Hz, 2H), 7.23 (t, J = 8Hz, 1H), 5.73 (t, J = 8Hz, 1H), 5.47-5.66 (m, 2H), 3.69, 3.68 (s, 6H), 3.50 (t, J = 8Hz, 1H), 2.95 (t, J = 8Hz, 0.78H), 2.84 (t, J = 8Hz, 1.74H), 2.68 (t, J = 8Hz, 0.51H), 2.55 (t, J = 8Hz, 1.74H), 2.11, 2.08 (s, 3H). ¹³C NMR (acetone- d_6 , 100 MHz) δ 170.0, 169.9, 168.6, 139.7, 135.6, 131.9, 131.1, 129.0, 128.3, 127.5, 126.5, 126.4, 123.7, 123.4, 52.7, 52.6, 52.4, 52.2, 32.6, 32.1, 27.5, 27.3, 23.1. MS(EI): m/z (%) 346 (M+H⁺, 18.0), 213 (45.0), 170 (100.0), 160 (80.0), 105 (99.0), 43 (64.0). HRMS (EI-TOF) calcd for C₁₉H₂₃NO₅ (M⁺): 345.1576, found: 345.1586.

Yield: 78%; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.41 (*NH*, s, 1H), 7.31-7.37 (m, 5H), 5.43 (d, *J* = 8Hz, 1H), 3.86-3.91 (m, 1H), 3.08 (dd, *J* = 8Hz, 20Hz, 1H), 3.00 (s, 3H), 2.64 (dd, *J* = 4Hz, 20 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.3, 176.2, 168.9, 140.0, 136.6, 128.8, 128.5, 126.1, 117.7, 39.9, 35.5, 25.2, 23.6. HRMS (EI-TOF) calcd for C₁₅H₁₆N₂O₃ (M⁺): 272.1161, found: 272.1160.

Yield: 74 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (*NH*, s,1H), 7.28 (d, *J* = 8Hz, 2H), 7.13 (d, *J* = 8Hz, 2H), 5.38 (d, *J* = 8Hz, 1H), 3.87-3.92 (m, 1H), 3.09 (dd, *J* = 8 Hz, 20Hz, 1H), 3.01 (s, 3H), 2.64 (dd, *J* = 4 Hz, 20Hz, 1H), 2.34 (s, 3H), 2.17 (s, 3Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 179.5, 176.2, 168.7, 140.1, 138.8, 133.7, 129.2, 126.0, 116.7, 39.9, 35.6, 25.2, 23.7, 21.2. HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O₃ (M⁺): 286.1317, found: 286.1316.

(Z)-N-(1-(4-methoxyphenyl)-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)vinyl)acetamide Yield: 42 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.34 (*NH*, br,1H), 7.31 (d, *J* = 8Hz, 2H), 6.84 (d, *J* = 8Hz, 2H), 5.34 (d, *J* = 4Hz, 1H), 3.85-3.88 (m, 1H), 3.79 (s, 3H), 3.07 (dd, *J* = 8Hz, 16Hz, 1H), 3.00 (s, 3H), 2.63 (dd, *J* = 4Hz, 20Hz, 1H), 2.15 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.5, 176.3, 168.9, 160.1, 139.5, 129.1, 127.4, 116.0, 113.9, 55.3, 39.9, 35.5, 25.1, 23.6. HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O₄ (M⁺): 302.1267, found: 302.1270.

(Z)-N-(1-([1,1'-biphenyl]-4-yl)-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)vinyl)acetamide Yield: 78 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.47 (*NH*, br,1H), 7.56 (t, *J* = 8Hz, 4Hz), 7.41-7.48 (m, 4Hz), 7.34 (t, *J* = 8Hz, 1H), 6.46 (d, *J* = 8Hz, 1H), 3.90-3.96 (m, 1H), 3.11 (dd, *J* = 8Hz, 20Hz, 1H), 3.02 (s, 3H), 2.68 (dd, *J* = 4Hz, 16Hz, 1H), 2.19 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.4, 176.1, 168.9, 141.6, 140.4, 140.0, 135.4, 128.8, 127.5, 127.2, 127.1, 126.5, 117.5, 39.9, 35.6, 25.2, 23.7. HRMS (EI-TOF) calcd for C₂₁H₂₀N₂O₃ (M⁺): 348.1474, found: 348.1469.

Yield: 76 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.55 (*NH*, s,1H), 7.35-7.38 (m, 2H), 7.02 (t, *J* = 8Hz, 2H), 5.32 (d, *J* = 8Hz, 1H), 3.88-3.93 (m, 1H), 3.10 (dd, *J* = 8 Hz, 20Hz, 1H), 3.02 (s, 3H), 2.66 (dd, *J* = 4 Hz, 20Hz, 1H), 2.17 (s, 3Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 179.5, 176.0, 168.8, 163.0 (*J*_{C-F} = 246Hz), 139.7, 132.7 (*J*_{C-F} =

4Hz), 127.9 ($J_{C-F} = 9$ Hz), 117.2, 115.48 ($J_{C-F} = 21$ Hz), 39.7, 35.6, 25.2, 23.7. HRMS (EI-TOF) calcd for C₁₅H₁₅FN₂O₃ (M⁺): 290.1067, found: 290.1068.

(Z)-N-(1-(4-chlorophenyl)-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)vinyl)acetamide Yield: 82 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.60 (*NH*, s,1H), 7.30 (s, 4H), 5.35 (d, *J* = 8Hz, 1H), 3.90-3.91 (m, 1H), 3.10 (dd, *J* = 8 Hz, 20Hz, 1H), 3.02 (s, 3H), 2.50 (dd, *J* = 4 Hz, 20Hz, 1H), 2.17 (s, 3Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 179.4, 175.9, 168.8, 139.7, 135.1, 134.6, 128.7, 127.4, 117.7, 39.7, 35.6, 25.2, 23.6. HRMS (EI-TOF) calcd for C₁₅H₁₅ClN₂O₃ (M⁺): 306.0771, found: 306.0761.

Yield: 80 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.61 (*NH*, s,1H), 7.45 (d, *J* = 8Hz, 2H), 7.26 (d, *J* = 8Hz, 2H), 5.36 (d, *J* = 8Hz, 1H), 3.88-3.93 (m, 1H), 3.11 (dd, *J* = 8 Hz, 20Hz, 1H), 3.02 (s, 3H), 2.67 (dd, *J* = 8 Hz, 20Hz, 1H), 2.17 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.4, 175.9, 168.9, 139.8, 135.5, 131.6, 127.7, 122.8, 117.7, 39.7, 35.5, 25.2, 23.6. HRMS (EI-TOF) calcd for C₁₅H₁₅BrN₂O₃ (M⁺): 350.0266, found: 350.0258.

(Z)-N-(2-(1-methyl-2,5-dioxopyrrolidin-3-yl)-1-(o-tolyl)vinyl)acetamide Yield: 70 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.38 (*NH*, br,1H), 7.19-7.24 (m, 2H), 7.14 (t, *J* = 8Hz, 2H), 5.02 (d, *J* = 8Hz, 1H), 3.87-3.92 (m, 1H), 3.10 (dd, *J* = 8Hz, 16Hz, 1H), 3.00 (s, 3H), 2.59 (dd, *J* = 4Hz, 20Hz, 1H), 2.29 (s, 3H), 2.03 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.6, 176.4, 168.1, 139.9, 137.3, 135.8, 130.3, 129.4, 128.4, 125.7, 118.2, 39.8, 35.4, 25.1, 23.4, 20.0. HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O₃ (M⁺): 286.1317, found: 286.1320.

(Z)-N-(2-(1-methyl-2,5-dioxopyrrolidin-3-yl)-1-(m-tolyl)vinyl)acetamide Yield: 91 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (*NH*, br,1H), 7.16-7.23 (m, 3H), 7.12 (d, *J* = 8Hz, 1H), 5.42 (d, *J* = 8Hz, 1H), 3.85-3.96 (m, 1H), 3.08 (dd, *J* = 8Hz, 16Hz, 1H), 3.00 (s, 3H), 2.64 (dd, *J* = 4Hz, 20Hz, 1H), 2.34 (s, 3H), 2.15 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.4, 176.2, 168.8, 140.0, 138.1, 136.6, 129.6, 128.4, 126.7, 123.2, 117.6, 40.0, 35.5, 25.2, 23.6, 21.5. HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O₃ (M⁺): 286.1317, found: 286.1317.

(Z)-N-(1-(2,4-dimethylphenyl)-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)vinyl)acetamide Yield: 85 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (*NH*, br,1H), 7.12 (d, *J* = 8Hz, 1H), 6.95 (s, 2H), 5.00 (d, *J* = 4Hz, 1H), 3.89 (br, 1H), 3.09 (dd, *J* = 8Hz, 16Hz, 1H), 3.00 (s, 3H), 2.59 (dd, *J* = 4Hz, 20Hz, 1H), 2.29 (s, 3H), 2.26 (s, 3H), 2.04 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.6, 176.4, 168.0, 139.9, 138.3, 135.6, 134.4, 131.2, 129.4, 126.4, 117.9, 39.8, 35.4, 25.1, 23.5, 21.1, 20.0. HRMS (EI-TOF) calcd for C₁₇H₂₀N₂O₃ (M⁺): 300.1474, found: 300.1474.

(Z)-N-(2-(1-methyl-2,5-dioxopyrrolidin-3-yl)-1-(naphthalen-2-yl)vinyl)acetamide Yield: 84 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.49 (*NH*, s,1H), 7.76-7.82 (m, 4H), 7.47-7.49 (m, 3H), 5.54 (d, *J* = 8Hz, 1H), 3.91 (br, 1H), 3.08 (dd, *J* = 8 Hz, 20Hz, 1H), 3.01 (s, 3H), 2.65 (d, *J* = 20Hz, 1H), 2.17 (s, 3Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 179.4, 176.2, 168.9, 140.0, 134.0, 133.4, 133.2, 128.3, 128.2, 127.7, 126.4, 125.3, 123.9, 118.2, 40.0, 35.5, 25.2, 23.6. HRMS (EI-TOF) calcd for C₁₉H₁₈N₂O₃ (M⁺): 322.1317, found: 322.1314.

(Z)-N-(2-(1-methyl-2,5-dioxopyrrolidin-3-yl)-1-(naphthalen-1-yl)vinyl)acetamide Yield: 85 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.29 (*NH*, br,1H), 8.02 (d, *J* = 8Hz, 1H), 7.82 (t, *J* = 8Hz, 2H), 7.42-7.48 (m, 4H), 5.25 (d, *J* = 4Hz, 1H), 4.00 (br, 1H), 3.16 (dd, *J* = 8 Hz, 16Hz, 1H), 3.01 (s, 3H), 2.65 (d, *J* = 20Hz, 1H), 2.00 (s, 3Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 179.0, 175.8, 167.6, 138.2, 135.0, 133.0, 130.7, 128.6, 128.0, 126.7, 126.1, 125.5, 124.6, 124.2, 118.8, 39.6, 34.9, 24.7, 23.2. HRMS (EI-TOF) calcd for C₁₉H₁₈N₂O₃ (M⁺): 322.1317, found: 322.1322.

(Z)-N-(2-(1-methyl-2,5-dioxopyrrolidin-3-yl)-1-(thiophen-2-yl)vinyl)acetamide Yield: 62 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.09 (*NH*, br,1H), 7.22(d, *J* = 4Hz, 1Hz), 7.08 (d, *J* = 4Hz, 1Hz), 6.96 (t, *J* = 4Hz, 1H), 5.63 (d, *J* = 8Hz, 1H), 3.82-3.87 (m, 1H), 3.07 (dd, *J* = 8Hz, 16Hz, 1H), 3.01 (s, 3H), 2.65 (dd, *J* = 4Hz, 16Hz, 1H), 2.16 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 178.9, 176.1, 168.9, 140.8, 133.6, 127.6, 125.8, 125.0, 117.6, 39.9, 35.2, 25.2, 23.5. HRMS (EI-TOF) calcd for C₁₃H₁₄N₂O₃S (M⁺): 278.0725, found: 278.0723.

(Z)-N-(2-(1-methyl-2,5-dioxopyrrolidin-3-yl)vinyl)acetamide Yield: 18 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 9.11 (*NH*, br,1H), 6.93 (m, 1H), 4.46 (dd, *J* = 4Hz, 8Hz, 1H), 3.68-3.73 (m, 1H), 3.09 (dd, *J* = 8Hz, 20Hz, 1H), 3.02 (s, 1H), 2.58 (dd, *J* = 4 Hz, 16Hz, 1H), 2.13 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.6, 175.7, 168.2, 127.1, 105.2, 38.2, 36.5, 25.2, 23.4. HRMS (EI-TOF) calcd for C₉H₁₂N₂O₃ (M⁺): 196.0848, found: 196.0850.

Yield: 55 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 7.84 (s, *NH*, 0.49), 6.84 (*NH*, d, *J* = 8Hz, 1H), 6.50 (d, *J* = 8Hz, 0.39H), 6.46 (d, *J* = 8Hz, 0.46H), 5.18 (t, *J* = 8Hz, 0.38H), 3.95 (q, *J* = 8Hz, 0.54H), 3.80 (m, 3H), 3.53 (dd, *J* = 20 Hz, 92Hz, 0.8H), 3.11 (d, *J* = 0.32Hz, 3H), 3.07 (s, 1.55H), 3.01 (s, 1.72H), 2.94 (d, *J* = 8Hz, 0.32H), 2.65 (dd, *J* = 4Hz, 20Hz, 0.53H), 2.16 (s, 1.52H), 2.05 (s, 1.30H). ¹³C NMR (CDCl₃, 100 MHz) δ 177.5, 175.8, 173.6, 169.8, 169.5, 168.9, 164.3, 130.6, 129.7, 129.6, 128.0, 53.4, 52.9, 52.0, 40.5, 34.5, 32.1, 25.2, 25.2, 24.9, 23.5, 22.9. HRMS (EI-TOF) calcd for C₁₁H₁₄N₂O₅ (M⁺): 254.0903, found: 254.0912.

(Z)-N-(2-(2,5-dioxopyrrolidin-3-yl)-1-phenylvinyl)acetamide

Yield: 78 %; white solid; ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.21 (*NH*, s,1H), 9.30 (*NH*, s,1H), 7.29-7.40 (m, 5H), 5.90 (d, J = 8Hz, 1H), 3.79-3.85 (m, 1H), 2.88 (dd, J = 8 Hz, 20Hz, 1H), 2.50 (dd, J = 8 Hz, 20Hz, 1H) (this signal was overlapped by DMSO- d_6), 2.02 (s, 3Hz). ¹³C NMR (DMSO- d_6 , 100 MHz) δ 179.8, 178.0, 168.4,

137.6, 137.0, 128.2, 127.9, 125.5, 120.4, 41.1, 36.2, 22.8. HRMS (EI-TOF) calcd for C₁₄H₁₄N₂O₃ (M⁺): 258.1004, found: 258.1005.

Ph NHAc 5ac

(Z)-N-(2-(1-ethyl-2,5-dioxopyrrolidin-3-yl)-1-phenylvinyl)acetamide Yield: 84 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.45 (*NH*, br,1H), 7.32-7.41 (m, 5H), 5.41 (d, *J* = 8Hz, 1H), 3.86-3.91 (m, 1H), 3.57 (q, *J* = 8Hz, 2H), 3.08 (dd, *J* = 8Hz, 16Hz, 1H), 2.64 (dd, *J* = 4Hz, 16Hz, 1H), 2.17 (s, 3H), 1.18 (t, *J* = 8Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.2, 175.9, 168.8, 140.3, 136.6, 128.8, 128.5, 126.1, 117.7, 39.8, 35.6, 34.2, 23.7, 13.0. HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O₃ (M⁺): 286.1317, found: 286.1320.

(Z)-N-(2-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-1-phenylvinyl)acetamide

Yield: 90 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.35 (*NH*, s,1H), 7.28-7.38 (m, 10H), 5.40 (d, *J* = 8Hz, 1H), 4.65 (q, *J* = 12Hz, 2H), 3.86-3.91 (m, 1H), 3.09 (dd, *J* = 8 Hz, 20Hz, 1H), 2.64 (dd, *J* = 4 Hz, 20Hz, 1H), 2.13 (s, 3Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 179.0, 175.7, 168.8, 140.2, 136.6, 135.4, 129.0, 128.9, 128.8, 128.5, 128.2, 126.1, 117.6, 42.8, 39.8, 35.5, 23.6. HRMS (EI-TOF) calcd for C₂₁H₂₀N₂O₃ (M⁺): 348.1474, found: 348.1468.

(Z)-N-(2-(1-(tert-butyl)-2,5-dioxopyrrolidin-3-yl)-1-phenylvinyl)acetamide Yield: 80 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.57 (*NH*, br,1H), 7.31-7.46 (m, 5H), 5.36 (d, *J* = 8Hz, 1H), 3.75-3.76 (m, 1H), 2.94 (dd, *J* = 8Hz, 20Hz, 1H), 2.52 ¹⁹ (dd, J = 4Hz, 16Hz, 1H), 2.15 (s, 3H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz) δ 180.4, 177.1, 168.8, 140.3, 136.6, 129.0, 128.6, 128.4, 126.3, 126.0, 118.2, 59.0, 39.8, 36.0, 28.4, 23.7. HRMS (EI-TOF) calcd for C₁₈H₂₂N₂O₃ (M⁺): 314.1630, found: 314.1631.

(Z)-N-(2-(1-cyclohexyl-2,5-dioxopyrrolidin-3-yl)-1-phenylvinyl)acetamide Yield: 78 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.57 (*NH*, br,1H), 7.31-7.40 (m, 5H), 5.36 (d, *J* = 8Hz, 1H), 3.98 (tt, J = 4Hz, 12Hz, 1H), 3.82-3.83 (m, 1H), 3.02 (dd, *J* = 8Hz, 16Hz, 1H), 2.58 (dd, *J* = 4Hz, 16Hz, 1H), 2.16 (s, 3H), 2.09-2.12 (m, 1H), 1.83 (d, *J* = 8Hz, 2H), 1.66 (d, *J* = 8Hz, 2H), 1.58-1.60 (m, 3H), 1.22-1.32 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 179.6, 176.1, 168.8, 140.5, 136.6, 128.7, 128.5, 126.1, 117.8, 52.2, 39.4, 35.5, 28.8, 28.8, 25.8, 25.0, 23.7. HRMS (EI-TOF) calcd for C₂₀H₂₄N₂O₃ (M⁺): 340.1787, found: 340.1787.

(Z)-N-(2-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-1-phenylvinyl)acetamide

Yield: 50 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 8.39 (*NH*, br,1H), 7.48(t, *J* = 8Hz, 2Hz), 7.33-7.43 (m, 6Hz), 7.28 (d, *J* = 8Hz, 2H), 6.52 (d, *J* = 8Hz, 1H), 4.05-4.11 (m, 1H), 3.26 (dd, *J* = 8Hz, 20Hz, 1H), 2.82 (dd, *J* = 4Hz, 16Hz, 1H), 2.14 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 178.4, 175.0, 168.9, 140.5, 136.6, 131.6, 129.3, 128.9, 128.9, 128.5, 126.4, 126.1, 117.5, 40.0, 35.7, 23.6. HRMS (EI-TOF) calcd for C₂₀H₁₈N₂O₃ (M⁺): 334.1317, found: 334.1320.

(2E,4Z)-butyl 5-acetamido-5-phenylpenta-2,4-dienoate Yield: 25 %; white solid; ¹H NMR (DMSO- d_6 , 400 MHz) δ 9.81 (*NH*, s, 1H), 7.37-7.48 (m, 6H), 6.59 (d, *J* = 8Hz, 1H), 6.11 (d, *J* = 15.2Hz, 1H), 4.11 (t, *J* = 8Hz, 2H), 2.09 (s, 3H), 1.60 (t, *J* = 8Hz, 2H), 1.36 (q, *J* = 8Hz, 2H), 0.91 (t, *J* = 8Hz, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz) δ 168.7, 166.4, 141.8, 140.3, 136.9, 129.0, 128.4, 126.2, 120.6, 118.9, 63.5, 30.3, 22.9, 18.7, 13.6. HRMS (EI-TOF) calcd for C₁₇H₂₁NO₃ (M⁺): 287.1521, found: 287.1524.

benzyl 2,4-dimethyl-6-(p-tolyl)nicotinate

Yield: 35 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 7.87 (d, *J* = 8Hz, 2H), 7.36-7.47 (m, 6H), 7.24 (d, *J* = 1.6Hz, 1H), 5.39 (s, 2H), 2.58 (s, 3H), 2.39 (s, 3H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 168.9, 157.3, 155.4, 145.7, 139.3, 136.1, 135.4, 129.5, 128.8, 128.7, 128.6, 127.1, 127.0, 119.2, 67.3, 23.5, 21.3, 19.9. HRMS (EI-TOF) calcd for C₂₂H₂₁NO₂ (M⁺): 331.1572, found: 331.1574.

benzyl 2-(1-acetyl-5-(p-tolyl)-1H-pyrrol-2-yl)acetate

Yield: 10 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 7.31-7.36 (m, 5H), 7.18-7.23 (m, 4H), 6.16 (d, *J* = 3.2Hz, 1H), 6.11 (d, *J* = 3.6Hz, 1H), 5.15 (s, 2H), 3.98 (s, 3H), 2.38 (s, 3H), 1.97 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 173.7, 171.0, 137.7, 135.9, 135.2, 131.4, 129.4, 128.7, 128.5, 128.4, 128.3, 128.2, 112.9, 66.7, 34.9, 27.9, 21.3. HRMS (EI-TOF) calcd for C₂₂H₂₁NO₃ (M⁺): 347.1521, found: 347.1521.

N-(2-(1-methyl-2,5-dioxopyrrolidin-3-yl)-1-phenylethyl)acetamide Yield: 80 %; white solid; ¹H NMR (CDCl₃, 400 MHz) δ 7.29-7.37 (m, 5H), 6.17 (*NH*, d, *J* = 8Hz, 1H), 5.09-5.15 (m, 1H), 2.86-3.02 (m, 5H), 2.40-2.52 (m, 2H), 1.98-2.01 (d, 3H), 1.80-1.87 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 180.2, 176.5, 170.0, 141.4, 128.9, 127.9, 126.5, 51.4, 38.1, 37.9, 35.1, 24.9, 23.3. HRMS (EI-TOF) calcd for $C_{15}H_{18}N_2O_3$ (M⁺): 274.1317, found: 274.1317.

References:

- (a) Reeves, J. T.; Tan, Z.; Han, Z.; Li, G.; Zhang, Y.; Xu, Y.; Reeves, D. C.; Gonnella, D. C.; Ma, S. L.; Lee, H. W.; Lu, B. Z.; Senanayake, C. H. *Angew. Chem. Int. Ed.* 2012, *51*, 1400. (b) Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. *Chem. Commun.* 2012, *48*, 8105.
- 2. Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.

X-Ray Crystallographic Data

Datablock: 160616_ywl8_032_1

Bond precision:	C-C = 0.0038 A	Wavelength=0.71073		
Cell:	a=9.3103(8)	b=4.8793(5)	c=30.741(3)	
Temperature:	alpna=90 293 K	beta=96.596(8)	gamma=90	
	Calculated	Reported		
Volume	1387.3(2)	1387.2(2)		
Space group	P 21/n	P 1 21/n 1		
Hall group	-P 2yn	-P 2yn		
Moiety formula	C15 H16 N2 O3	C15 H16 N2	03	
Sum formula	C15 H16 N2 O3	C15 H16 N2	03	
Mr	272.30	272.30		
Dx,g cm-3	1.304	1.304		
Z	4	4		
Mu (mm-1)	0.092	0.092		
F000	576.0	576.0		
F000'	576.27			
h,k,lmax	11,5,37	11,5,37		
Nref	2537	2530		
Tmin, Tmax	0.970,0.976	0.948,1.00	0	
Tmin'	0.956			
Correction method= # Reported T Limits: Tmin=0.948 Tmax=1.000				
AbsCorr = MULTI-SCAN				
Data completeness= 0.997 Theta(max)= 25.350				
R(reflections) = 0.0562(1739) wR2(reflections) = 0.1436(2530)				

S = 1.043 Npar= 183

7 (CCDC 1492223)

Datablock: 160314_ywl7_073_4_1

Bond precision:	C-C = 0.0050	A Wavelength=0.71073		
Cell:	a=7.3480(9) alpha=90	b=22.781(3 beta=101.0) 92(13)	c=11.2360(15) gamma=90
Temperature:	293 K			-
	Calculated		Reported	
Volume	1845.7(4)		1845.7(4)	
Space group	P 21/n		P 1 21/n	1
Hall group	-P 2yn		-P 2yn	
Moiety formula	C22 H21 N O2		C22 H21 N	02
Sum formula	C22 H21 N O2		C22 H21 N	02
Mr	331.40		331.40	
Dx,g cm-3	1.193		1.193	
Z	4		4	
Mu (mm-1)	0.076		0.076	
F000	704.0		704.0	
F000'	704.30			
h,k,lmax	8,27,13		8,27,13	
Nref	3386		3366	
Tmin, Tmax	0.964,0.970		0.992,1.0	00
Tmin'	0.964			
Correction method= # Reported T Limits: Tmin=0.992 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completeness= 0.994 Theta(max)= 25.350				

R(reflections) = 0.0677(1750) wR2(reflections) = 0.2255(3366)

S = 1.024 Npar= 257

