Supporting Information

Suzuki coupling for preparation of allenes-ligand

effect and chirality transfer

Hongwen Luo^a, Yihua Yu^b and Shengming Ma^{c,d}*

^a Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of

Chemistry, East China Normal University, 3663 North Zhongshan Lu, Shanghai

200062, P. R. China

^b Department of Physics, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, P. R. China

^c Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China

^d State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China

General information	S2
Experimental details and analytical data	S2-S37
References	S38
¹ H, ¹³ C NMR and HPLC spectra of products	S39-S131

Fax: (+86)21-61647516 E-mail: masm@sioc.ac.cn

General Information. NMR spectra were taken with an Agilent-400 spectrometer (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) in CDCl₃. Chemical shifts were recorded in ppm in relative to the TMS in CDCl₃ and coupling constants were reported in Hz. All reactions were carried out in flame-dried Schlenk tube under argon atmosphere. Pd₂(dba)₃·CHCl₃ and N-methylmaleimide was purchased from Alfa Aesar; o-(diphenylphosphino)benzaldehyde was purchased from Sun Chemical Technology Co., Ltd (Shanghai, China) and recrystallized from ethyl acetate before use. Organoboronic acids were all commercially available: phenylboronic acid was purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and recrystallized from ethyl acetate before use; 1-pentenylboronic acid was purchased from Frontier Scientific; other arylboronic acids (98% purity) were purchased from Shanghai Boka Chemical Technology Co., Ltd (Shanghai, China) and used as received. 1,4-Dioxane were dried over sodium wire with benzophenone as the indicator and distilled freshly before use. DCM were dried over CaH₂ and distilled before use. All the temperatures are referred to the oil baths used. The starting racemic propargylic carbonates were synthesized from commercially or easily available propargylic alcohols¹ according to the reported procedures.² The optically active propargylic carbonates (R)-1p to (R)-1s were synthesized from optically active terminal propargylic alcohols³ via coupling with allyl bromide according to the literature.⁴

Experimental details and analytical data

$Ph + PhB(OH)_2 + PhD(OH)_2 +$

(1) 1,3-Diphenyl-7-chlorohepta-1,2-diene (3aa)(Table 2, entry 1)(lhw-11-109)

Typical procedure A: To a flame-dried Schlenk tube were added Pd₂(dba)₃·CHCl₃ (20.7 mg, 0.02 mmol), o-(diphenylphosphino)benzaldehyde (23.3 mg, 0.08 mmol), and 2a (185.4 mg, 1.5 mmol) under argon atmosphere. After replacing air with argon for three times at rt under vacuum, **1a** (279.6 mg, 1.0 mmol)/dioxane (2.0 mL) was added. The resulting mixture was stirred for 12 h at 30 °C and then passed through a short pad of silica gel with Et₂O (~25 mL) as eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel to afford **3aa** (225.6 mg, 80%) (eluent: hexane) as a liquid: ¹H NMR (400 MHz, CDCl₃) $\delta = 7.44$ (d, J = 8.0 Hz, 2 H, Ar-H), 7.36-7.27 (m, 6 H, Ar-H), 7.25-7.17 (m, 2 H, Ar-H), 6.55 (t, J = 2.8 Hz, 1 H, =CH), 3.52 (t, J = 6.6 Hz, 2 H, ClCH₂), 2.67-2.52 (m, 2 H, =CCH₂), 1.95-1.84 (m, 2 H, CH₂), 1.84-1.66 (m, 2 H, CH₂); ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 206.3, 135.9, 134.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 98.2, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 127.2, 127.1, 126.8, 126.1, 109.4, 128.7, 128.5, 126.1, 128.5, 126.1, 128.5, 126.1, 128.5, 126.1, 128.5, 126.1, 128.5, 126.1, 128.5, 1$ 44.7, 32.3, 29.3, 25.1; IR (neat, cm⁻¹): 2934, 1933, 1596, 1492, 1446, 1329, 1074, 1028; MS (70 eV, EI) m/z (%): 284 (M⁺(³⁷Cl), 4.14), 282 (M⁺(³⁵Cl), 11.57), 206 (100); HRMS Calcd for $C_{19}H_{19}^{35}Cl (M^+)$: 282.1175, Found: 282.1177.

The following compounds 3ab-3ol in Table 2 and Scheme 3 were prepared

according to Typical Procedure A.

(2) 1-Phenyl-3-(4-methylphenyl)-7-chlorohepta-1,2-diene (3ab) (Table 2, entry 2)

(lhw-11-145)

The $Pd_2(dba)_3 \cdot CHCl_3$ (20.6)reaction of 0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.4 mg, 0.08 mmol), 1a (277.9 mg, 0.99 mmol), and 2b (205.0 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3ab (187.6 mg, 64%) (eluent: hexane to hexane/DCM = 50/1) as a solid: M.P. 52-55 °C (hexane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ = 7.36-7.26 (m, 6 H, Ar-H), 7.24-7.17 (m, 1 H, Ar-H), 7.13 (d, J = 8.0 Hz, 2 H, Ar-H), 6.53 (t, J = 2.8 Hz, 1 H, =CH), 3.52 (t, J = 6.8 Hz, 2 H, ClCH₂), 2.66-2.51 (m, 2 H, =CCH₂), 2.33 (s, 3 H, CH₃), 1.94-1.84 (m, 2 H, CH₂), 1.84-1.67 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 206.1, 137.0, 134.6, 132.8, 129.3, 128.7, 127.0, 126.7, 125.9, 109.2, 98.1, 44.8, 32.3, 29.4, 25.1, 21.1; IR (neat, cm⁻¹): 2950, 1931, 1598, 1512, 1493, 1459, 1335, 1288; MS (70 eV, EI) m/z (%): 298 ($M^{+}(^{37}Cl)$, 1.59), 296 ($M^{+}(^{35}Cl)$, 3.89), 205 (100); Anal. Calcd for $C_{20}H_{21}Cl$: C 80.93, H 7.13; Found: C 80.94, H 7.24.

(3) 1-Phenyl-3-(3-methylphenyl)-7-chlorohepta-1,2-diene (3ac) (Table 2, entry 3) (lhw-11-158)

Pd₂(dba)₃·CHCl₃ The reaction of (20.7)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.5 mg, 0.08 mmol), 1a (282.6 mg, 1.0 mmol), and 2c (205.9 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3ac (204.7 mg, 69%) (eluent: hexane to hexane/DCM = 40/1 to hexane/DCM = 20/1) as a liquid: ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta = 7.36-7.27 \text{ (m, 4 H, Ar-H)}, 7.27-7.17 \text{ (m, 4 H, Ar-H)}, 7.04 \text{ (d, } J$ = 6.8 Hz, 1 H, Ar-H), 6.53 (t, J = 2.8 Hz, 1 H, =CH), 3.51 (t, J = 6.6 Hz, 2 H, ClCH₂), 2.66-2.50 (m, 2 H, =CCH₂), 2.33 (s, 3 H, CH₃), 1.93-1.83 (m, 2 H, CH₂), 1.83-1.65 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 206.3, 138.1, 135.7, 134.5, 128.7, 128.4, 128.0, 127.0, 126.7, 123.1, 109.3, 98.1, 44.7, 32.3, 29.4, 25.1, 21.5; IR (neat, cm⁻¹): 2939, 1932, 1599, 1493, 1457, 1310, 1092, 1027; MS (70 eV, EI) *m/z* (%): 298 $(M^{+}(^{37}Cl), 8.16), 296 (M^{+}(^{35}Cl), 22.72), 220 (100); HRMS Calcd for C_{20}H_{21}^{35}Cl (M^{+}):$ 296.1332, Found: 296.1333.

(4) 1-Phenyl-3-(1-naphthyl)-7-chlorohepta-1,2-diene (3ad) (Table 2, entry 4) (lhw-11-163)

The reaction $Pd_2(dba)_3 \cdot CHCl_3$ (20.7)0.02 of mg, mmol), o-(diphenylphosphino)benzaldehyde (23.4 mg, 0.08 mmol), 1a (281.8 mg, 1.0 mmol), and 2d (256.2 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3ad (232.5 mg, 70%) (eluent: hexane to hexane/DCM = 40/1 to hexane/DCM = 20/1) as a liquid: ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta = 8.21-8.15 \text{ (m, 1 H, Ar-H)}, 7.87-7.81 \text{ (m, 1 H, Ar-H)}, 7.76 \text{ (d, } J$ = 7.6 Hz, 1 H, Ar-H), 7.53-7.41 (m, 4 H, Ar-H), 7.39-7.26 (m, 4 H, Ar-H), 7.21-7.15 (m, 1 H, Ar-H), 6.35 (t, J = 3.0 Hz, 1 H, =CH), 3.50 (t, J = 6.6 Hz, 2 H, ClCH₂), 2.71-2.55 (m, 2 H, =CCH₂), 1.93-1.84 (m, 2 H, CH₂), 1.82-1.65 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 204.5, 135.7, 134.7, 133.9, 131.2, 128.6, 128.5, 127.7, 126.9, 126.8, 126.1, 125.8, 125.5, 125.42, 125.36, 107.7, 95.5, 44.7, 34.0, 32.3, 25.4; IR (neat, cm⁻¹): 2939, 1944, 1594, 1495, 1457, 1386, 1334, 1310, 1072, 1015; MS (70 eV, EI) m/z (%): 334 (M⁺(³⁷Cl), 6.06), 332 (M⁺(³⁵Cl), 16.86), 241 (100); HRMS Calcd for $C_{23}H_{21}^{35}Cl$ (M⁺): 332.1332, Found: 332.1330.

o-(diphenylphosphino)benzaldehyde (23.4 mg, 0.08 mmol), 1a (279.0 mg, 1.0 mmol),

and **2e** (230.5 mg, 1.5 mmol) in dioxane (2.0 mL) afforded **3ae** (218.0 mg, 71%) (eluent: hexane/DCM = 5/1 to 2/1 to 3/2) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 9.97 (s, 1 H, CHO), 7.82 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.59 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.36-7.29 (m, 4 H, Ar-H), 7.28-7.20 (m, 1 H, Ar-H), 6.64 (t, *J* = 3.0 Hz, 1 H, =CH), 3.53 (t, *J* = 6.6 Hz, 2 H, ClCH₂), 2.70-2.55 (m, 2 H, =CCH₂), 1.95-1.66 (m, 4 H, 2× CH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 207.7, 191.6, 142.4, 135.0, 133.4, 129.9, 128.8, 127.5, 126.8, 126.4, 109.0, 98.9, 44.6, 32.2, 29.1, 25.0; IR (neat, cm⁻¹): 2937, 1930, 1697, 1599, 1568, 1494, 1458, 1307, 1213, 1169; MS (70 eV, EI) *m/z* (%): 312 (M⁺(³⁷Cl), 3.60), 310 (M⁺(³⁵Cl), 10.60), 234 (100); HRMS Calcd for C₂₀H₁₉O³⁵Cl (M⁺): 310.1124, Found: 310.1122.

(6) 1-Phenyl-3-(4-acetylphenyl)-7-chlorohepta-1,2-diene (3af) (Table 2, entry 6) (lhw-13-73)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.7 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.6 mg, 0.08 mmol), **1a** (279.9 mg, 1.0 mmol), and **2f** (250.9 mg, 1.5 mmol) in dioxane (2.0 mL) afforded **3af** (264.6 mg, 82%) (eluent: hexane/DCM = 3/1 to 2/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.93-7.88 (m, 2 H, Ar-H), 7.55-7.49 (m, 2 H, Ar-H), 7.35-7.29 (m, 4 H, Ar-H), 7.27-7.20 (m, 1 H, Ar-H), 6.62 (t, J = 3.0 Hz, 1 H, =CH), 3.53 (t, J = 6.4 Hz, 2 H, ClCH₂), 2.69-2.54 (m, 5 H, =CCH₂ and CH₃), 1.95-1.86 (m, 2 H, CH₂), 1.86-1.68 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) $\delta = 207.4$, 197.5, 140.9, 135.7, 133.6, 128.8, 128.6, 127.4, 126.8, 126.0, 109.0, 98.7, 44.6, 32.2, 29.1, 26.5, 25.1; IR (neat, cm⁻¹): 2939, 1929, 1679, 1599, 1356, 1265, 1186; MS (70 eV, EI) m/z (%): 326 (M⁺(³⁷Cl), 7.69), 324 (M⁺(³⁵Cl), 21.94), 43 (100); HRMS Calcd for C₂₁H₂₁O³⁵Cl (M⁺): 324.1281, Found: 324.1277.

(7) 1-Phenyl-3-(4-bromophenyl)-7-chlorohepta-1,2-diene (3ag) (Table 2, entry 7) (lhw-13-74)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.7 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.5 mg, 0.08 mmol), **1a** (282.2 mg, 1.0 mmol), and **2g** (512.5 mg, 2.5 mmol) in dioxane (2.0 mL) afforded **3ag** (270.5 mg, 74%) (eluent: hexane to hexane/DCM = 50/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.45-7.39 (m, 2 H, Ar-H), 7.35-7.26 (m, 6 H, Ar-H), 7.26-7.18 (m, 1 H, Ar-H), 6.54 (t, *J* = 3.0 Hz, 1 H, =CH), 3.51 (t, *J* = 6.6 Hz, 2 H, ClCH₂), 2.63-2.47 (m, 2 H, =CCH₂), 1.92-1.83 (m, 2 H, CH₂), 1.83-1.64 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 206.3, 134.9, 133.9, 131.6, 128.8, 127.6, 127.3, 126.8, 121.0, 108.6, 98.6, 44.7, 32.2, 29.2, 25.0; IR (neat, cm⁻¹): 2940, 1933, 1597, 1485, 1458, 1073, 1007; MS (70 eV, EI) *m*/*z* (%): 364 (M⁺(³⁷Cl, ⁸¹Br), 1.89), 362 (M⁺(³⁵Cl, ⁸¹Br and ³⁷Cl, ⁷⁹Br), 7.17), 360 (M⁺(³⁵Cl, ⁷⁹Br), 5.77), 204 (100); HRMS Calcd for C₁₉H₁₈³⁵Cl ⁷⁹Br(M⁺): 360.0280, Found: 360.0281.

(8) 1-Phenyl-3-(3-nitrophenyl)-7-chlorohepta-1,2-diene (3ah) (Table 2, entry 8) (lhw-13-76)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.6)mg, 0.02 mmol). o-(diphenylphosphino)benzaldehyde (23.3 mg, 0.08 mmol), 1a (282.0 mg, 1.0 mmol), and 2h (255.5 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3ah (262.3 mg, 80%) (eluent: hexane/DCM = 50/1 to 20/1 to 10/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) $\delta = 8.25$ (t, J = 2.2 Hz, 1 H, Ar-H), 8.09-8.04 (m, 1 H, Ar-H), 7.79-7.74 (m, 1 H, Ar-H), 7.46 (t, J = 8.0 Hz, 1 H, Ar-H), 7.37-7.30 (m, 4 H, Ar-H), 7.29-7.21 (m, 1 H, Ar-H), 6.67 (t, J = 3.2 Hz, 1 H, =CH), 3.54 (t, J = 6.2 Hz, 2 H, ClCH₂), 2.71-2.55 (m, 2 H, =CCH₂), 1.96-1.87 (m, 2 H, CH₂), 1.87-1.69 (m, 2 H, CH₂); ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 206.7, 148.6, 138.2, 133.3, 132.2, 129.3, 128.9, 127.6, 126.9, 121.9, 120.4,$ 108.1, 99.5, 44.6, 32.1, 29.2, 24.9; IR (neat, cm⁻¹): 2938, 2864, 1933, 1524, 1345, 1100, 1074; MS (70 eV, EI) m/z (%): 329 (M⁺(³⁷Cl), 3.03), 327 (M⁺(³⁵Cl), 9.42), 251 (100); HRMS Calcd for $C_{19}H_{18}NO_2^{35}Cl$ (M⁺): 327.1026, Found: 327.1028.

(9) 1-Phenyl-3-(4-ethoxylcarbonylphenyl)nona-1,2-diene (3bi) (Table 2, entry 9)

The reaction $Pd_2(dba)_3 \cdot CHCl_3$ (20.6)mmol), of 0.02 mg, o-(diphenylphosphino)benzaldehyde (23.5 mg, 0.08 mmol), 1b (273.3 mg, 1.0 mmol), and 2i (293.7 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3bi (264.0 mg, 76%) (eluent: hexane/DCM = 10/1 to 5/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 8.01-7.95 (m, 2 H, Ar-H), 7.53-7.47 (m, 2 H, Ar-H), 7.36-7.28 (m, 4 H, Ar-H), 7.26-7.18 (m, 1 H, Ar-H), 6.57 (t, J = 2.8 Hz, 1 H, =CH), 4.36 (q, J = 7.1 Hz, 2 H, OCH₂), 2.65-2.48 (m, 2 H, =CCH₂), 1.69-1.51 (m, 2 H, CH₂), 1.46-1.34 (m, 5 H, CH₂) and CH₃), 1.33-1.20 (m, 4 H, 2×CH₂), 0.85 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 207.4, 166.4, 141.0, 134.0, 129.7, 128.8, 128.7, 127.2, 126.8, 125.9, 109.6, 98.2, 60.8, 31.6, 30.0, 29.2, 27.8, 22.6, 14.3, 14.0; IR (neat, cm⁻¹): 2927, 2856, 1932, 1714, 1605, 1567, 1459, 1390, 1270, 1180, 1101, 1019; MS (70 eV, EI) *m/z* (%): 348 (M^+ , 11.19), 278 (100); HRMS Calcd for $C_{24}H_{28}O_2$ (M^+): 348.2089, Found: 348.2093.

(10) 1-Phenyl-3-(4-methoxylphenyl)nona-1,2-diene (3bj) (Table 2, entry 10) (lhw-13-70)

The reaction $Pd_2(dba)_3 \cdot CHCl_3$ (20.7)0.02 mmol), of mg, o-(diphenylphosphino)benzaldehyde (23.7 mg, 0.08 mmol), 1b (274.4 mg, 1.0 mmol), and 2j (233.2 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3bj⁵ (252.7 mg, 82%) (eluent: hexane/DCM = 50/1 to 20/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.40-7.26 (m, 6 H, Ar-H), 7.22-7.15 (m, 1 H, Ar-H), 6.89-6.82 (m, 2 H, Ar-H), 6.49 (t, J = 3.0 Hz, 1 H, =CH), 3.79 (s, 3 H, OCH₃), 2.60-2.45 (m, 2 H, =CCH₂), 1.68-1.50 (m, 2 H, CH₂), 1.45-1.33 (m, 2 H, CH₂), 1.33-1.20 (m, 4 H, $2 \times CH_2$), 0.85 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 206.1, 158.7, 135.0, 128.6, 128.4, 127.2, 126.8, 126.7, 113.9, 109.5, 97.7, 55.3, 31.7, 30.3, 29.3, 27.9, 22.6, 14.0; IR (neat, cm⁻¹): 2927, 2855, 1932, 1605, 1509, 1459, 1286, 1247, 1176, 1036; MS (70 eV, EI) m/z (%): 306 (M⁺, 48.00), 135 (100).

(11) 1-Phenyl-3-(2-methylphenyl)hepta-1,2-diene (3ck) (Table 2, entry 11) (lhw-11-92)

o-(diphenylphosphino)benzaldehyde (23.7 mg, 0.08 mmol), **1c** (243.9 mg, 0.99 mmol), and **2k** (206.0 mg, 1.5 mmol) in dioxane (2.0 mL) at 40 °C afforded **3ck**⁶ (200.0 mg, 77%) (eluent: hexane) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.35-7.25 (m, 5 H, Ar-H), 7.20-7.10 (m, 4 H, Ar-H), 6.24 (t, *J* = 2.8 Hz, 1 H, =CH), 2.53-2.37 (m, 2 H, =CCH₂), 2.36 (s, 3 H, ArCH₃), 1.57-1.47 (m, 2 H, CH₂), 1.46-1.34 (m, 2 H, CH₂), 0.89 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 203.9, 137.4, 135.9, 135.1, 130.5, 128.5, 128.0, 127.0, 126.8, 126.7, 125.8, 108.9, 95.1, 33.9, 30.0, 22.5, 20.6, 13.9; IR (neat, cm⁻¹): 3062, 3028, 2956, 2928, 2858, 1943, 1598, 1488, 1457, 1378, 1194, 1072, 1028; MS (70 eV, EI) *m*/*z* (%): 262 (M⁺, 7.79), 205 (100).

(12) 1-Phenyl-3-(4-methoxylphenyl)hepta-1,2-diene (3cj) (Table 2, entry 12) (lhw-11-75)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.6 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.5 mg, 0.08 mmol), **1c** (248.4 mg, 1.0 mmol), and **2j** (231.8 mg, 1.5 mmol) in dioxane (2.0 mL) afforded **3cj** (224.2 mg, 80%) (eluent: hexane/DCM = 20/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.40-7.26 (m, 6 H, Ar-H), 7.22-7.16 (m, 1 H, Ar-H), 6.88-6.82 (m, 2 H, Ar-H), 6.49 (t, *J* = 2.8 Hz, 1 H, =CH), 3.78 (s, 3 H, OCH₃), 2.60-2.45 (m, 2 H, =CCH₂), 1.66-1.52 (m, 2 H, CH₂), 1.48-1.37 (m, 2 H, CH₂), 0.91 (t, J = 7.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 206.1$, 158.8, 135.0, 128.6, 128.4, 127.2, 126.8, 126.7, 113.9, 109.5, 97.7, 55.3, 30.1, 30.0, 22.6, 13.9; IR (neat, cm⁻¹): 2955, 2929, 1930, 1605, 1509, 1459, 1294, 1246, 1176, 1110, 1035; MS (70 eV, EI) m/z (%): 278 (M⁺, 4.27), 135 (100); HRMS Calcd for C₂₀H₂₂O (M⁺): 278.1671, Found: 278.1673.

(13) 1-Phenyl-3-(3-methoxylphenyl)hepta-1,2-diene (3cl) (Table 2, entry 14) (lhw-11-103)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.7)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.6 mg, 0.08 mmol), 1c (248.6 mg, 1.0 mmol), and 21 (232.0 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3cl (222.8 mg, 79%) (eluent: hexane to hexane/DCM = 50/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.35-7.26 (m, 4 H, Ar-H), 7.26-7.16 (m, 2 H, Ar-H), 7.08-7.03 (m, 1 H, Ar-H), 7.02-6.98 (m, 1 H, Ar-H), 6.79-6.74 (m, 1 H, Ar-H), 6.51 (t, J = 2.8 Hz, 1 H, =CH), 3.77 (s, 3 H, OCH₃), 2.62-2.47 (m, 2 H, =CCH₂), 1.65-1.52 (m, 2 H, CH₂), 1.48-1.37 (m, 2 H, CH₂), 0.91 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 206.5$, 159.8, 137.8, 134.6, 129.3, 128.7, 126.9, 126.7, 118.7, 112.13, 112.08, 109.9, 97.8, 55.2, 30.1, 29.9, 22.6, 13.9; IR (neat, cm⁻¹): 2956, 2930, 1933, 1597, 1580, 1486, 1462, 1432, 1286, 1267, 1166, 1050; MS (70 eV, EI) *m/z* (%): 278 (M⁺, 19.84), 135 (100); HRMS Calcd for $C_{20}H_{22}O(M^+)$: 278.1671, Found: 278.1672.

(14) 1-Phenyl-3-(2-methoxylphenyl)hepta-1,2-diene (3cm) (Table 2, entry 15)

(lhw-11-156)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.7)0.02 mg, mmol), o-(diphenylphosphino)benzaldehyde (23.4 mg, 0.08 mmol), 1c (243.9 mg, 0.99 mmol), and **2m** (381.2 mg, 2.5 mmol) in dioxane (2.0 mL) afforded 3cm⁷ (199.6 mg, 72%) (eluent: hexane/DCM = 30/1 to 15/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.42-7.37 (m, 2 H, Ar-H), 7.34-7.25 (m, 3 H, Ar-H), 7.25-7.15 (m, 2 H, Ar-H), 6.94-6.86 (m, 2 H, Ar-H), 6.25 (t, J = 3.0 Hz, 1 H, =CH), 3.78 (s, 3 H, OCH₃), 2.53 (td, J₁ = 7.6 Hz, J₂ = 2.8 Hz, 2 H, =CCH₂), 1.58-1.45 (m, 2 H, CH₂), 1.45-1.32 (m, 2 H, CH₂), 0.88 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 205.7$, 156.9, 135.5, 129.4, 128.4, 128.3, 126.85, 126.78, 126.5, 120.5, 111.2, 107.3, 94.5, 55.5, 32.5, 30.2, 22.5, 13.9; IR (neat, cm⁻¹): 2955, 2930, 1940, 1596, 1579, 1491, 1459, 1434, 1280, 1247, 1028; MS (70 eV, EI) *m/z* (%): 278 (M⁺, 22.02), 236 (100).

(15) 1,3,5-Triphenylpenta-1,2-diene (3da) (Table 2, entry 16)(lhw-11-113)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.7)0.02 mg, mmol), o-(diphenylphosphino)benzaldehyde (23.5 mg, 0.08 mmol), 1d (294.4 mg, 1.0 mmol), and 2a (181.9 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3da (191.3 mg, 65%) (eluent: hexane) as a liquid: ¹H NMR (400 MHz, CDCl₃) $\delta = 7.48-7.42$ (m, 2 H, Ar-H), 7.36-7.16 (m, 13 H, Ar-H), 6.52 (t, J = 2.2 Hz, 1 H, =CH), 3.00-2.80 (m, 4 H, $2 \times CH_2$; ¹³C NMR (100 MHz, CDCl₃) $\delta = 206.5$, 141.8, 136.0, 134.4, 128.7, 128.6, 128.5, 128.4, 127.1, 127.0, 126.8, 126.1, 125.9, 109.3, 98.3, 34.1, 32.0; IR (neat, cm⁻¹): 3026, 2921, 1934, 1597, 1493, 1447, 1074, 1028; MS (70 eV, EI) *m/z* (%): 296 $(M^+, 49.83)$, 205 (100); HRMS Calcd for $C_{23}H_{20}$ (M^+): 296.1565, Found: 296.1566.

(16) 1-Phenyl-3-(4-methoxylphenyl)-4-methylpenta-1,2-diene (3ej) (Table 2, entry17) (lhw-11-118)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.7 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.7 mg, 0.08 mmol), **1e** (231.9 mg, 1.0 mmol), and **2j** (231.2 mg, 1.5 mmol) in dioxane (2.0 mL) afforded **3ej** (206.0 mg, 78%) (eluent: hexane to hexane/DCM = 20/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.40-7.26 (m, 6 H, Ar-H), 7.22-7.15 (m, 1 H, Ar-H), 6.89-6.82 (m, 2 H, Ar-H), 6.53 (d, J = 2.0 Hz, 1 H, =CH), 3.79 (s, 3 H, OCH₃), 2.99-2.86 (m, 1 H, CH), 1.21 (d, J = 6.8 Hz, 3 H, CH₃), 1.18 (d, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 205.0, 158.7, 135.0, 128.7, 128.2, 127.7, 126.8, 126.5, 116.7, 113.9, 98.7, 55.3, 28.8, 22.6, 22.2; IR (neat, cm⁻¹): 2960, 1937, 1605, 1509, 1458, 1294, 1249, 1177, 1036; MS (70 eV, EI) m/z (%): 264 (M⁺, 33.13), 221 (100); HRMS Calcd for C₁₉H₂₀O (M⁺): 264.1514, Found: 264.1516.

(17) 1-(Methoxylcarbonylphenyl)-3-phenylhepta-1,2-diene (3fa) (Table 2, entry 18) (lhw-11-180)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.8 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.8 mg, 0.08 mmol), **1f** (304.8 mg, 1.0 mmol), and **2a** (305.5 mg, 2.5 mmol) in dioxane (2.0 mL) afforded **3fa** (231.4 mg, 75%) (eluent: hexane/DCM = 5/1 to 3/1) as a solid: M.P. 66-67 °C (hexane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ = 8.00-7.94 (m, 2 H, Ar-H), 7.45-7.41 (m, 2 H, Ar-H), 7.41-7.36 (m, 2 H, Ar-H), 7.36-7.29 (m, 2 H, Ar-H), 7.26-7.20 (m, 1 H, Ar-H), 6.55 (t, *J* = 3.4 Hz, 1 H, =CH), 3.90 (s, 3 H, OCH₃), 2.66-2.51 (m, 2 H, =CCH₂), 1.66-1.50 (m, 2 H, CH₂), 1.50-1.37 (m, 2 H, CH₂), 0.91 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 207.8$, 166.9, 139.7, 135.6, 130.0, 128.5, 128.4, 127.3, 126.5, 126.1, 110.5, 97.4, 52.0, 30.0, 29.8, 22.6, 13.9; IR (neat, cm⁻¹): 2951, 2923, 1931, 1718, 1605, 1491, 1452, 1431, 1297, 1270, 1174, 1098; MS (70 eV, EI) m/z (%): 306 (M⁺, 9.77), 205 (100); Anal. Calcd for C₂₁H₂₂O₂: C 82.32, H 7.24; Found: C 82.32, H 7.18.

(18) 1-(4-Cyanophenyl)-3-phenylhepta-1,2-diene (3ga) (Table 2, entry 19) (lhw-11-105)

The reaction $Pd_2(dba)_3 \cdot CHCl_3$ mmol), of (20.6)mg, 0.02 o-(diphenylphosphino)benzaldehyde (23.3 mg, 0.08 mmol), 1g (272.8 mg, 1.0 mmol), and 2a (181.5 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3ga (215.4 mg, 78%) (eluent: hexane/DCM = 5/1 to 4/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.59-7.54 (m, 2 H, Ar-H), 7.44-7.37 (m, 4 H, Ar-H), 7.36-7.30 (m, 2 H, Ar-H), 7.27-7.21 (m, 1 H, Ar-H), 6.53 (t, J = 3.0 Hz, 1 H, =CH), 2.66-2.51 (m, 2 H, =CCH₂), $1.66-1.50 (m, 2 H, CH_2), 1.50-1.36 (m, 2 H, CH_2), 0.92 (t, J = 7.2 Hz, 3 H, CH_3); {}^{13}C$ NMR (100 MHz, CDCl₃) δ = 208.1, 139.9, 135.1, 132.4, 128.6, 127.5, 127.1, 126.1, 119.0, 111.1, 110.1, 97.0, 30.0, 29.7, 22.5, 13.9; IR (neat, cm⁻¹): 2956, 2928, 2225, 1932, 1603, 1493, 1451, 1380, 1202, 1174, 1106, 1074; MS (70 eV, EI) m/z (%): 273 $(M^+, 6.93), 231 (100);$ HRMS Calcd for $C_{20}H_{19}N (M^+)$: 273.1517, Found: 273.1515.

(19) 1-(1-Napthyl)-3-phenylhepta-1,2-diene (3ha) (Table 2, entry 20)(lhw-11-104)

The $Pd_2(dba)_3 \cdot CHCl_3$ reaction of (20.7)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.3 mg, 0.08 mmol), 1h (296.9 mg, 1.0 mmol), and 2a (181.5 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3ha (208.4 mg, 70%) (eluent: hexane) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 8.29 (d, J = 8.0 Hz, 1 H, Ar-H), 7.88-7.82 (m, 1 H, Ar-H), 7.73 (d, J = 8.0 Hz, 1 H, Ar-H), 7.60 (d, J = 7.6 Hz, 1 H, Ar-H), 7.55-7.45 (m, 4 H, Ar-H), 7.41 (t, J = 7.8 Hz, 1 H, Ar-H), 7.33 (t, J = 7.6 Hz, 2 H, Ar-H), 7.26-7.18 (m, 2 H, Ar-H and =CH), 2.69-2.53 (m, 2 H, =CCH₂), 1.73-1.55 (m, 2 H, CH₂), 1.51-1.38 (m, 2 H, CH₂), 0.91 (t, J = 7.4 Hz, 3 H, CH₃); ${}^{13}C$ NMR (100 MHz, CDCl₃) δ = 207.8, 136.3, 134.0, 130.9, 130.7, 128.7, 128.5, 127.5, 126.9, 126.13, 126.07, 125.7, 125.2, 123.6, 108.9, 94.4, 30.1, 29.9, 22.7, 14.0; IR (neat, cm⁻¹): 2954, 1927, 1931, 1592, 1493, 1452; MS (70 eV, EI) m/z (%): 298 (M⁺, 51.95), 241 (100); HRMS Calcd for C₂₃H₂₂ (M⁺): 298.1722, Found: 298.1725.

(20) 1-(4-Chlorophenyl)-3-(4-methoxylphenyl)hepta-1,2-diene (3ij) (Table 2, entry 21) (lhw-11-116)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.6)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.2 mg, 0.08 mmol), 1i (283.0 mg, 1.0 mmol), and 2j (231.1 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3ij (266.1 mg, 84%) (eluent: hexane to hexane/DCM = 20/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.38-7.32 (m, 2 H, Ar-H), 7.29-7.22 (m, 4 H, Ar-H), 6.89-6.83 (m, 2 H, Ar-H), 6.45 (t, J = 3.2 Hz, 1 H, =CH), 3.80 (s, 3 H, OCH₃), 2.60-2.45 (m, 2 H, =CCH₂), 1.65-1.48 (m, 2 H, CH₂), 1.48-1.36 (m, 2 H, CH₂), 0.91 (t, J = 7.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 206.2, 158.9, 133.5, 132.4, 128.8, 128.0, 127.8, 127.2, 114.0, 109.9, 96.8, 55.3, 30.1, 30.0, 22.6, 13.9; IR (neat, cm⁻¹): 2955, 2928, 1930, 1606, 1576, 1509, 1488, 1462, 1441, 1379, 1291, 1246, 1176, 1089, 1036, 1012; MS (70 eV, EI) *m/z* (%): 314 (M⁺(³⁷Cl), 17.52), 312 (M⁺(³⁵Cl), 49.00), 235 (100); HRMS Calcd for C₂₀H₂₁³⁵Cl (M⁺): 312.1281, Found: 312.1283.

(21) 1-(4-Bromophenyl)-3-(4-methoxylphenyl)hepta-1,2-diene (3jj) (Table 2, entry 22) (lhw-13-71)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.6)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.3 mg, 0.08 mmol), 1j (327.6 mg, 1.0 mmol), and 2j (232.4 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3jj (313.5 mg, 87%) (eluent: hexane/DCM = 50/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.44-7.38 (m, 2 H, Ar-H), 7.38-7.31 (m, 2 H, Ar-H), 7.22-7.15 (m, 2 H, Ar-H), 6.89-6.83 (m, 2 H, Ar-H), 6.44 (t, J = 3.2 Hz, 1 H, =CH), 3.79 (s, 3 H, OMe), 2.60-2.45 (m, 2 H, =CCH₂), 1.65-1.47 (m, 2 H, CH₂), 1.47-1.35 (m, 2 H, CH₂), 0.91 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 206.2, 158.9, 134.0, 131.7, 128.2, 128.0, 127.2, 120.4, 114.0, 110.0, 96.9, 55.3, 30.1, 29.9, 22.6, 13.9; IR (neat, cm⁻¹): 2955, 2929, 1930, 1606, 1576, 1509, 1486, 1462, 1291, 1246, 1176, 1110, 1070, 1036, 1008; MS (70 eV, EI) m/z (%): 358 (M⁺(⁸¹Br), 16.61), 356 (M⁺(⁷⁹Br), 16.25), 135 (100); HRMS Calcd for C₂₀H₂₁O ⁷⁹Br(M⁺): 356.0776, Found: 356.0773.

(22) 1-(2,4-Dichlorophenyl)-3-(3-methoxylphenyl)hepta-1,2-diene (3kl)(Table 2, entry 23) (lhw-11-151)

The reaction of Pd₂(dba)₃·CHCl₃ (20.6)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.8 mg, 0.08 mmol), 1k (314.8 mg, 1.0 mmol), and 21 (233.3 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3kl (236.0 mg, 68%) (eluent: hexane to hexane/DCM = 20/1) as a solid: M.P. 62-64 °C (hexane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ = 7.38-7.34 (m, 2 H, Ar-H), 7.26-7.22 (m, 1 H, Ar-H), 7.13 (dd, J₁ = 8.4 Hz, J₂ = 2.0 Hz, 1 H, Ar-H), 7.05-7.00 (m, 1 H, Ar-H), 6.97 (t, J = 2.0 Hz, 1 H, Ar-H), 6.89 (t, J = 3.4 Hz, 1 H, =CH), 6.79 (dd, $J_1 = 7.8$ Hz, $J_2 =$ 2.2 Hz, 1 H, Ar-H), 3.79 (s, 3 H, OMe), 2.62-2.47 (m, 2 H, =CCH₂), 1.65-1.49 (m, 2 H, CH₂), 1.47-1.35 (m, 2 H, CH₂), 0.92 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 207.6, 159.8, 137.0, 132.8, 132.5, 131.0, 129.53, 129.48, 128.8, 127.3, 129.48, 128.8, 127.3, 129.48, 128.8, 127.3, 129.48, 128.8, 129.48, 128.8, 128.8, 129.48, 128.8, 128.8, 129.48, 128.8, 128.8, 129.48, 128.8, 128$ 118.7, 112.4, 112.2, 110.6, 93.5, 55.2, 30.1, 29.8, 22.6, 13.9; IR (neat, cm⁻¹): 2954, 2927, 1928, 1604, 1581, 1556, 1472, 1449, 1435, 1366, 1334, 1292, 1244, 1205, 1167, 1099, 1048; MS (70 eV, EI) m/z (%): 350 (M⁺(³⁷Cl, ³⁷Cl), 3.50), 348 (M⁺(³⁵Cl, ³⁷Cl), 18.58), 346 (M^+ (³⁵Cl, ³⁵Cl), 27.18), 269 (100); Anal. Calcd for C₂₀H₂₀Cl₂O₂: C 69.17, H 5.80; Found: C 69.11, H 5.76.

(23) 1-(4-Methylphenyl)-3-(3-methoxylphenyl)hepta-1,2-diene (3ll) (Table 2, entry 24) (lhw-11-119)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.8)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.5 mg, 0.08 mmol), 11 (261.4 mg, 1.0 mmol), and 21 (234.4 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 311 (214.6 mg, 73%) (eluent: hexane to hexane/DCM = 20/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.26-7.19 (m, 3 H, Ar-H), 7.11 (d, J = 8.4 Hz, 2 H, Ar-H), 7.05 (d, J = 8.4 Hz, 1 H, Ar-H), 7.00 (t, J = 2.0 Hz, 1 H, Ar-H), 6.76 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1 H, Ar-H), 6.49 (t, J = 3.0 Hz, 1 H, =CH), 3.78 (s, 3 H, OMe), 2.61-2.46 (m, 2 H, =CCH₂), 2.33 (s, 3 H, ArCH₃), 1.65-1.49 (m, 2 H, CH₂), 1.48-1.35 (m, 2 H, CH₂), 0.91 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 206.3, 159.7, 138.0, 136.7, 131.6, 129.4, 129.3, 126.6, 118.7, 112.1, 112.0, 109.7, 97.6, 55.2, 30.1, 29.9, 22.6, 21.2, 13.9; IR (neat, cm⁻¹): 2955, 2927, 1932, 1597, 1579, 1512, 1485, 1463, 1454, 1432, 1287, 1266, 1197, 1165, 1106, 1049; MS (70 eV, EI) *m/z* (%): 292 (M⁺, 37.88), 235 (100); HRMS Calcd for C₂₁H₂₄O (M⁺): 292.1827, Found: 292.1830.

(24) 1-(4-Ethoxycarbonylphenyl)-3-ethylpenta-1,2-diene (3mi) (Scheme 3a) (lhw-13-82)

The reaction of Pd₂(dba)₃·CHCl₃ (20.6)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.2 mg, 0.08 mmol), 1m (171.4 mg, 1.0 mmol), and 2i (291.1 mg, 1.5 mmol) in dioxane (2.0 mL) afforded 3mi (161.1 mg, 65%) (eluent: Hexane/DCM = 40:1 to 20:1 to 10:1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.99-7.92 (m, 2 H, Ar-H), 7.35-7.29 (m, 2 H, Ar-H), 6.25-6.19 (m, 1 H, =CH), 4.36 (q, J = 7.2 Hz, 2 H, OCH₂), 2.21-2.04 (m, 4 H, 2×CH₂), 1.38 (t, J = 7.2 Hz, 3 H, CH₃), 1.06 (t, J = 7.2 Hz, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 203.1$, 166.5, 141.3, 129.8, 128.2, 126.0, 112.9, 96.1, 60.7, 25.7, 14.3, 12.3; IR (neat, cm⁻¹): 2966, 2933, 1946, 1714, 1606, 1456, 1367, 1268, 1172, 1098, 1019; MS (70 eV, EI) m/z (%): 244 (M⁺, 45.86), 143 (100); HRMS Calcd for C₁₆H₂₀O₂ (M⁺): 244.1463, Found: 244.1465.

(25) 1-(3-Methoxylphenyl)-3-ethylpenta-1,2-diene (3ml) (Scheme 3b) (lhw-13-83)

o-(diphenylphosphino)benzaldehyde (23.8 mg, 0.08 mmol), 1m (171.2 mg, 1.0 mmol),

and **21** (232.5 mg, 1.5 mmol) in dioxane (2.0 mL) afforded **3ml** (142.2 mg, 70%) (eluent: Hexane/DCM = 50:1 to 20:1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.19 (t, *J* = 8.0 Hz, 1 H, Ar-H), 6.90-6.82 (m, 2 H, Ar-H), 6.74-6.69 (m, 1 H, Ar-H), 6.18-6.12 (m, 1 H, =CH), 3.79 (s, 3 H, OCH₃), 2.18-2.01 (m, 4 H, 2×CH₂), 1.06 (t, *J* = 7.2 Hz, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 201.8, 159.8, 137.9, 129.4, 119.0, 112.4, 111.9, 111.7, 96.4, 55.1, 25.8, 12.4; IR (neat, cm⁻¹): 2964, 2932, 2835, 1947, 1596, 1580, 1490, 1455, 1316, 1287, 1259, 1145, 1045; MS (70 eV, EI)*m/z* (%): 202 (M⁺, 100); HRMS Calcd for C₁₄H₁₈O (M⁺): 202.1358, Found: 202.1359.

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.8)mg, 0.02 mmol), o-(diphenylphosphino)benzaldehyde (23.3 mg, 0.08 mmol), 1n (227.1 mg, 1.0 mmol), and 21 (388.9 mg, 2.5 mmol) in dioxane (2.0 mL) at 70 °C afforded 3nl (190.3 mg, 90% purity, 66%) (eluent: Hexane/DCM = 50:1 to 20:1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.25-7.17 (m, 1 H, Ar-H), 6.99-6.94 (m, 1 H, Ar-H), 6.94-6.91 (m, 1 H, Ar-H), 6.74-6.69 (m, 1 H, Ar-H), 3.80 (s, 3 H, OCH₃), 2.36 (t, J = 7.0 Hz, 2 H, =CCH₂), 1.79 (s, 6 H, 2×=CCH₃), 1.55-1.45 (m, 2 H, CH₂), 1.42-1.22 (m, 6 H, 3× CH₂), 0.89 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 201.9$, 159.6, 140.2, 129.0, 118.6, 112.2, 111.0, 103.3, 98.1, 55.1, 31.8, 30.2, 29.1, 27.9, 22.7, 20.4,

14.1; IR (neat, cm⁻¹): 2954, 2926, 2855, 1953, 1598, 1580, 1486, 1463, 1452, 1433, 1377, 1361, 1317, 1284, 1264, 1199, 1164, 1112, 1046; MS (70 eV, EI) *m/z* (%): 258 (M⁺, 15.03), 173 (100); HRMS Calcd for C₁₈H₂₆O (M⁺): 258.1984, Found: 258.1983.

(27) 4-Methyl-6-(3-methoxylphenyl)undeca-4,5-diene (30l) (Scheme 3d)

The reaction of Pd₂(dba)₃·CHCl₃ (20.7)0.02 mmol), mg, o-(diphenylphosphino)benzaldehyde (23.6 mg, 0.08 mmol), 10 (240.3 mg, 1.0 mmol), and 21 (386.4 mg, 2.5 mmol) in dioxane (2.0 mL) at 70 °C afforded 3ol (223.2 mg, 82%) (eluent: Hexane/DCM = 50:1 to 20:1) as a liquid: ¹H NMR (400 MHz, CDCl₃) $\delta = 7.21$ (t, J = 7.8 Hz, 1 H, Ar-H), 7.01-6.96 (m, 1 H, Ar-H), 6.96-6.92 (m, 1 H, Ar-H), 6.74-6.68 (m, 1 H, Ar-H), 3.80 (s, 3 H, OCH₃), 2.36 (t, J = 7.4 Hz, 2 H, $=CCH_2$, 2.05 (t, J = 7.8 Hz, 2 H, $=CCH_2$), 1.77 (s, 3 H, $=CCH_3$), 1.54-1.42 (m, 4 H, 2 \times CH₂), 1.41-1.28 (m, 4 H, 2 \times CH₂), 0.96-0.82 (m, 6 H, 2 \times CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 201.5, 159.6, 140.2, 129.0, 118.5, 111.9, 111.1, 104.4, 102.6, 55.1, 36.5, 31.7, 30.3, 27.8, 22.6, 21.0, 18.8, 14.1, 14.0; IR (neat, cm⁻¹): 2955, 2928, 2871, 2858, 1949, 1598, 1580, 1486, 1463, 1433, 1284, 1262, 1199, 1165, 1051; MS (70 eV,

EI) *m/z* (%): 272 (M⁺, 24.86), 187 (100); HRMS Calcd for C₁₉H₂₈O (M⁺): 272.2140, Found: 272.2137.

(28) (Z)-4-benzylidene-5-(4-chlorobutyl)-2-methyl-7-propyl-3a,4,7,7a-tetrahyd-

ro-1*H*-isoindole-1,3(2*H*)-dione (6) (Scheme 3e) (lhw-13-121)

The reaction of $Pd_2(dba)_3 \cdot CHCl_3$ (20.6 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.3 mg, 0.08 mmol), **1a** (278.7 mg, 1.0 mmol), and **4** (290.4 mg, 2.5 mmol) in dioxane (2.0 mL) afforded **5** according the **Typical Procedure A**. After removal of the solvent, the crude product was submitted to next step directly without further purification.

To a flame-dried Schlenk tube were added *N*-methylmaleimide (113.4 mg, 1.0 mmol) and **5** / DCM (4.0 mL) under argon atmosphere. The resulting mixture was stirred for 5 h at room temperature and then removal of the solvent under vacuum. The residue was purified by flash chromatography on silica gel to afford **6** (269.0 mg, 70%) (eluent: petroleum ether/ethyl acetate = 10/1) as an oil: ¹H NMR (400 MHz,

CDCl₃) δ = 7.32-7.17 (m, 5 H, Ar-H), 6.64 (s, 1 H, =CH), 5.61 (d, *J* = 3.2 Hz, 1 H, =CH), 3.71 (d, *J* = 8.4 Hz, 1 H, CH), 3.29 (t, *J* = 6.8 Hz, 2 H, CICH₂), 3.24-3.18 (m, 1 H, CH), 2.92 (s, 3 H, NCH₃), 2.40-2.30 (m, 1 H, CH), 2.01-1.76 (m, 4 H, 2×CH₂), 1.61-1.47 (m, 2 H, CH₂), 1.46-1.36 (m, 2 H, CH₂), 1.31-1.17 (m, 1 H, one proton of CH₂), 1.15-0.97 (m, 4 H, CH₃ and one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 177.6, 177.1, 140.7, 136.7, 132.0, 131.9, 130.4, 128.5, 128.0, 127.4, 51.7, 44.4, 43.5, 36.9, 33.4, 32.0, 31.9, 25.6, 24.8, 21.2, 14.1; IR (neat, cm⁻¹): 2954, 2931, 2861, 1772, 1697, 1430, 1379, 1283, 1152, 1108; MS (70 eV, EI) *m*/*z* (%): 387 (M⁺(³⁷Cl), 29.10), 385 (M⁺(³⁵Cl), 86.75), 84 (100); HRMS Calcd for C₂₃H₂₈³⁵CINO₂ (M⁺): 385.1809, Found: 385.1806.

We identified the peaks in the ¹H NMR spectrum according to the chemical shift, COSY, and HSQC spectrum (Figure S1). The NOESY spectrum showed that H⁴ and H¹¹, H¹¹ and H¹⁰ are close to each other. In addition, after checking the literature, we found that this is a known reaction, and similar compounds have reported.^[8,9] Thus, we assigned the relative configuration based on the literature and our NMR analysis.

Figure S1

Gram-scale reaction

1-Phenyl-3-(4-methoxylphenyl)hepta-1,2-diene (3cj) (Table 2, entry 13)

To a 100 mL flame-dried three-neck round-bottom flask equipped with a magnetic stirring bar were added Pd₂(dba)₃·CHCl₃ (207.0 mg, 0.20 mmol), *o*-(diphenylphosphino)benzaldehyde (233.3 mg, 0.80 mmol), and **2j** (2.3235 g, 15.0 mmol) under argon atmosphere. After replacing air with argon for three times at rt under vacuum, **1c** (2.4705 g, 1.0 mmol) / dioxane (20 mL) was added. The resulting mixture was stirred for 12 h at 30 °C and then passed through a short pad of silica gel with Et₂O (25 mL) as eluent. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel to afford **3cj** (2.4560 g, 88%) (eluent: hexane/DCM = 100/1 to 50/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.40-7.25 (m, 6 H, Ar-H), 7.21-7.15 (m, 1 H, Ar-H), 6.87-6.82 (m, 2 H, Ar-H), 6.49 (t, *J* = 2.8 Hz, 1 H, =CH), 3.77 (s, 3 H, OCH₃), 2.60-2.45 (m, 2 H, =CCH₂), 1.66-1.51 (m, 2 H, CH₂), 1.48-1.36 (m, 2 H, CH₂), 0.91 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 206.0, 158.7, 135.0, 128.6, 128.4, 127.2, 126.8, 126.7, 113.9, 109.4, 97.7, 55.2, 30.1, 30.0, 22.6, 13.9.

Chirality transfer

1. (S)-1-Phenyl-3-(4-methoxylphenyl)hexa-1,2,5-triene ((S)-3pj) (Scheme 5)

Typical Procedure B: To a flame-dried Schlenk tube were added Pd₂(dba)₃·CHCl₃ (26.0 mg, 0.025 mmol) and o-(diphenylphosphino)benzaldehyde (29.5 mg, 0.10 mmol) under argon atmosphere. After replacing air with argon for three times under vacuum, dioxane (2.0 mL) was added. The resulting mixture was stirred for 30 min at room temperature, which followed by addition of 2j (380.8 mg, 2.5 mmol), (R)-1p (229.5 mg, 1.0 mmol, 99:1 e.r.)/dioxane (1.0 mL), and H₂O (36 µL, 2.0 mmol) sequentially. The resulting mixture was stirred for 30 min at 30 °C, and then passed through a short pad of silica gel with Et₂O (20 mL) as eluent. After removal of the solvent under vacuum, 6% of (R)-1p was detected by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as the internal standard. The residue was purified by flash chromatography on silica gel to afford (S)-3pj (206.2 mg, 79%) (eluent: petroleum ether (b.p. 30-60 °C) to petroleum ether (b.p. 30-60 °C)/ethyl ether = 200/1) as a liquid: 99:1 e.r. (HPLC conditions: OJ-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 214 \text{ nm}, t_{\rm R} \text{ (minor)} = 8.0 \text{ min}, t_{\rm R} \text{ (major)} = 11.3 \text{ min}; [\alpha]^{20}{}_{\rm D} = +460.0^{\circ} (c = 1.01, 1.0)$ CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.40-7.27 (m, 6 H, Ar-H), 7.23-7.18 (m, 1 H, Ar-H), 6.89-6.83 (m, 2 H, Ar-H), 6.53 (t, J = 2.8 Hz, 1 H, C=C=CH), 6.04-5.92 (m, 1 H, =CH), 5.24-5.21 (m, 1 H, one proton from =CH₂), 5.10-5.05 (m, 1 H, one proton

(lhw-14-163)

from =CH₂), 3.79 (s, 3 H, CH₃), 3.39-3.25 (m, 2 H, =CCH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 206.4, 158.8, 135.6, 134.6, 128.7, 127.7, 127.3, 127.0, 126.8, 116.5, 113.9, 107.7, 97.9, 55.3, 35.0; IR (neat, cm⁻¹): 1932, 1604, 1509, 1460, 1288, 1246, 1176, 1035; MS (70 eV, EI) *m*/*z* (%): 262 (M⁺, 66.06), 221 (100); HRMS Calcd for C₁₉H₁₈O (M⁺): 262.1358, Found: 262.1356.

2. (S)-1-(4-Chlorophenyl)-3-(4-methoxylphenyl)hexa-1,2,5-triene ((S)-3qj)

(Scheme 5) (lhw-14-176)

Following **Typical Procedure B**, the reaction of Pd₂(dba)₃·CHCl₃ (20.8 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.9 mg, 0.08 mmol), (*R*)-**1q** (265.6 mg, 1.0 mmol, 99:1 e.r.), **2j** (380.1 mg, 2.5 mmol), and H₂O (36 µL, 2.0 mmol) in dioxane (3.0 mL) afforded (*S*)-**3qj** (273.1 mg, 92%) (eluent: petroleum ether (b.p. 30-60 °C) to petroleum ether (b.p. 30-60 °C)/ethyl ether = 150/1) as a solid: M.P. 73-74 °C (petroleum ether/DCM); 97:3 e.r. (HPLC conditions: OJ-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R (minor) = 10.2 min, t_R (major) =17.0 min); [α]²⁰_D = +457.0° (*c* = 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.38-7.32 (m, 2 H, Ar-H), 7.29-7.22 (m, 4 H, Ar-H), 6.89-6.84 (m, 2 H, Ar-H), 6.48 (t, *J* = 3.0 Hz, 1 H, C=C=CH), 6.02-5.90 (m, 1 H, =CH), 5.23-5.16 (m, 1 H, one proton from =CH₂), 5.10-5.05 (m, 1 H, one proton from =CH₂), 3.80 (s, 3 H, CH₃), 3.38-3.24 (m, 2 H,

=CCH₂); ¹³C NMR (100 MHz, CDCl₃) δ = 206.5, 158.9, 135.4, 133.1, 132.5, 128.8, 127.9, 127.4, 127.3, 116.6, 114.0, 108.2, 97.1, 55.3, 34.9; IR (neat, cm⁻¹): 1934, 1642, ,1604, 1511, 1488, 1291, 1249, 1200, 1084, 1031; MS (70 eV, EI) *m/z* (%): 298 (M⁺(³⁷Cl), 20.91), 296 (M⁺(³⁵Cl), 63.23), 255 (100); Anal. Calcd for C₁₉H₁₇ClO: C 76.89, H 5.77; Found: C 76.88, H 5.74.

3. (S)-1-Phenyl-3-(4-methoxylphenyl)-5-methylhexa-1,2,5-triene ((S)-3rj)

(Scheme 5) (lhw-14-151)

Following **Typical Procedure B**, the reaction of Pd₂(dba)₃·CHCl₃ (20.8 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.8 mg, 0.08 mmol), (*R*)-**1r** (245.9 mg, 1.0 mmol, 95:5 e.r.), **2j** (379.3 mg, 2.5 mmol), and H₂O (36 µL, 2.0 mmol) in dioxane (3.0 mL) afforded (*S*)-**3rj** (238.4 mg, 86%) (eluent: petroleum ether (b.p. 30-60 °C) to petroleum ether (b.p. 30-60 °C)/ethyl ether = 100/1) as a liquid: 95:5 e.r. (HPLC conditions: OJ-H column, hexane/*i*-PrOH = 100/1, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 11.8 min, *t*_R (major) =13.3 min); [α]²⁰_D = +410.2° (*c* = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.41-7.27 (m, 6 H, Ar-H), 7.23-7.17 (m, 1 H, Ar-H), 6.87-6.82 (m, 2 H, Ar-H), 6.50 (t, *J* = 2.0 Hz, 1 H, C=C=CH), 4.90 (s, 1 H, one proton from =CH₂), 4.86 (s, 1 H, one proton from =CH₂), 3.78 (s, 3 H, OCH₃), 3.34-3.22 (m, 2 H,

=CCH₂), 1.80 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 207.0, 158.7, 143.0, 134.6, 128.7, 127.8, 127.4, 126.9, 126.8, 113.8, 112.6, 106.8, 96.9, 55.2, 39.7, 22.5; IR (neat, cm⁻¹): 1932, 1650, 1603, 1577, 1509, 1245, 1176, 1033; MS (70 eV, EI) *m/z* (%): 276 (M⁺, 7.30), 135 (100); HRMS Calcd for C₂₀H₂₀O (M⁺): 276.1514, Found: 276.1512.

4. (S)-1-(4-Chlorophenyl)-3-(4-methoxylphenyl)-5-methylhexa-1,2,5-triene

((*S*)-3sj) (Scheme 5) (lhw-14-149)

Following **Typical Procedure B**, the reaction of Pd₂(dba)₃·CHCl₃ (20.8 mg, 0.02 mmol), *o*-(diphenylphosphino)benzaldehyde (23.4 mg, 0.08 mmol), (*R*)-**1s** (278.6 mg, 1.0 mmol, 98:2 e.r.), **2j** (379.0 mg, 2.5 mmol), and H₂O (36 µL, 2.0 mmol) in dioxane (3.0 mL) afforded (*S*)-**3sj** (280.3 mg, 90%) (eluent: petroleum ether (b.p. 30-60 °C) to petroleum ether (b.p. 30-60 °C)/ethyl ether = 100/1) as a liquid: 98:2 e.r. (HPLC conditions: OJ-H column, hexane/*i*-PrOH = 100/1, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 14.3 min, *t*_R (major) =16.7 min); [α]²⁰_D = +451.8° (*c* = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.38-7.33 (m, 2 H, Ar-H), 7.29-7.23 (m, 4 H, Ar-H), 6.88-6.82 (m, 2 H, Ar-H), 6.46 (t, *J* = 2.6 Hz, 1 H, C=C=CH), 4.89 (s, 1 H, one proton from =CH₂), 4.86 (s, 1 H, one proton from =CH₂), 3.79 (s, 3 H, OCH₃), 3.33-3.21 (m, 2 H, =CCH₂) , 1.78 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 207.1, 158.8, 142.8,

133.1, 132.5, 128.8, 128.0, 127.5, 127.4, 113.9, 112.7, 107.3, 96.1, 55.2, 39.6, 22.5; IR (neat, cm⁻¹): 1931, 1650, 1605, 1509, 1489, 1246, 1176, 1089, 1034, 1012; MS (70 eV, EI) m/z (%): 312 (M⁺(³⁷Cl), 6.82), 310 (M⁺(³⁵Cl), 19.91), 135 (100); HRMS Calcd for C₂₀H₁₉³⁵ClO (M⁺): 310.1124, Found: 310.1118.

Coupling with heteroaryl boronic acids

1. 1-(4-Cyanophenyl)-3-(thiophen-3-yl)hepta-1,2-diene (3gn) (Table 3, entry 1) (lhw-14-123)

According to **Typical Procedure A**, the reaction of $Pd_2(dba)_3$ ·CHCl₃ (31.3 mg, 0.03 mmol), *o*-(diphenylphosphino)benzaldehyde (35.3 mg, 0.12 mmol), **1g** (271.5 mg, 1.0 mmol), and **2n** (326.0 mg, 2.5 mmol) in dioxane (2.0 mL) afforded **3gn** (146.9 mg, 52%) (eluent: petroleum ether (b.p. 30-60 °C)/ethyl ether = 100/1) as a solid: M.P. 89-91 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.39 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.29-7.24 (m, 1 H, Ar-H), 7.22-7.18 (m, 1 H, Ar-H), 7.07 (dd, *J*₁ = 5.0 Hz, *J*₂ = 1.0 Hz, 1 H, Ar-H), 6.50 (t, *J* = 3.0 Hz, 1 H, =CH), 2.62-2.47 (m, 2 H, =CCH₂), 1.67-1.48 (m, 2 H, CH₂), 1.48-1.36 (m, 2 H, CH₂), 0.92 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 208.3, 139.9, 136.6, 132.5, 127.2, 126.5, 125.8, 120.1, 119.1, 110.1, 107.1, 96.7, 30.4, 29.9, 22.6, 13.9; IR (neat, cm⁻¹): 2221, 1931, 1603, 1500, 1465, 1414, 1382,

1234, 1204, 1173, 1108, 1083; MS (70 eV, EI) *m*/*z* (%): 279 (M⁺, 31.40), 237 (100); Anal. Calcd for C₁₈H₁₇NS: C 77.38, H 6.13, N 5.01; Found: C 77.40, H 6.11, N 4.79.

2. 1-(3,5-Dichlorophenyl)-3-(thiophen-3-yl)hepta-1,2-diene (3tn) (Table 3, entry

According to **Typical Procedure A**, the reaction of Pd₂(dba)₃·CHCl₃ (31.0 mg, 0.03 mmol), *o*-(diphenylphosphino)benzaldehyde (35.0 mg, 0.12 mmol), **1t** (318.0 mg, 1.0 mmol), and **2n** (327.1 mg, 2.5 mmol) in dioxane (2.0 mL) afforded **3tn** (208.5 mg, 96% purity, 61%) (first round: petroleum ether (b.p. 30-60 °C), second round: petroleum ether (b.p. 30-60 °C)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.29-7.25 (m, 1 H, Ar-H), 7.21-7.15 (m, 4 H, Ar-H), 7.09 (dd, J_1 = 5.0 Hz, J_2 = 1.0 Hz, 1 H, Ar-H), 6.37 (t, J = 2.8 Hz, 1 H, =CH), 2.61-2.46 (m, 2 H, =CCH₂), 1.66-1.49 (m, 2 H, CH₂), 1.48-1.37 (m, 2 H, CH₂), 0.93 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 207.3, 138.2, 136.9, 135.2, 126.8, 126.7, 125.7, 125.0, 120.1, 107.2, 95.8, 30.4, 29.9, 22.6, 13.9; IR (neat, cm⁻¹): 2956, 2927, 1933, 1582, 1562, 1430, 1377, 1232, 1199, 1112, 1101; MS (70 eV, EI) *m*/*z* (%): 326 (M⁺(³⁷Cl, ³⁷Cl), 3.34), 324 (M⁺(³⁵Cl, ³⁷Cl), 15.64), 322 (M⁺(³⁵Cl, ³⁵Cl), 22.94), 245 (100); HRMS Calcd for C₁₇H₁₆³⁵Cl₂S (M⁺): 322.0350, Found: 322.0354.

3. 1-(4-Bromophenyl)-3-(thiophen-3-yl)hepta-1,2-diene (3jn) (Table 3, entry 3)

According to **Typical Procedure A**, the reaction of Pd₂(dba)₃·CHCl₃ (31.2 mg, 0.03 mmol), *o*-(diphenylphosphino)benzaldehyde (35.1 mg, 0.12 mmol), **1j** (325.5 mg, 1.0 mmol), and **2n** (326.0 mg, 2.5 mmol) in dioxane (2.0 mL) afforded **3jn** (245.5 mg, 98% purity, 72%) (first round: petroleum ether (b.p. 30-60 °C), second round: petroleum ether (b.p. 30-60 °C)) as a solid: M.P. 50-52 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ = 7.45-7.39 (m, 2 H, Ar-H), 7.27-7.22 (m, 1 H, Ar-H), 7.21-7.15 (m, 3 H, Ar-H), 7.07 (dd, J_1 = 5.0 Hz, J_2 = 1.0 Hz, 1 H, Ar-H), 6.43 (t, J = 2.8 Hz, 1 H, =CH), 2.59-2.44 (m, 2 H, =CCH₂), 1.66-1.49 (m, 2 H, CH₂), 1.47-1.36 (m, 2 H, CH₂), 0.91 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 206.7, 137.5, 133.7, 131.7, 128.3, 126.8, 125.5, 120.6, 119.6, 106.6, 96.7, 30.5, 30.0, 22.6, 13.9; IR (neat, cm⁻¹): 2957, 2923, 1931, 1485, 1464, 1228, 1200, 1068, 1011; MS (70 eV, EI) m/z (%): 334 (M⁺(⁸¹Br), 2.05), 332 (M⁺(⁷⁹Br), 2.05), 237 (100); Anal. Calcd for C₁₇H₁₇BrS: C 61.26, H 5.14; Found: C 61.21, H 5.15.

4. 1-(4-Bromophenyl)-3-(furan-3-yl)hepta-1,2-diene (3jo) (Table 3, entry 4) (lhw-14-170)

(lhw-14-120)

Typical Procedure C: To a flame-dried Schlenk tube were added Pd₂(dba)₃·CHCl₃ (31.1 mg, 0.03 mmol), o-(diphenylphosphino)benzaldehyde (35.1 mg, 0.12 mmol), and **20** (291.4 mg, 2.5 mmol) under argon atmosphere. After replacing air with argon for three times at rt under vacuum, 1j (325.7 mg, 1.0 mmol)/dioxane (2.0 mL) and H₂O (36 µL, 2.0 mmol) was added sequentially. The resulting mixture was stirred for 24 h at 30 °C and then passed through a short pad of silica gel with Et₂O (20 mL) as eluent. After removal of the solvent under vacuum, 23% of 1j was detected by ${}^{1}H$ NMR analysis of the crude reaction mixture using CH₂Br₂ as the internal standard. The residue was purified by flash chromatography on silica gel to afford **3jo** (176.3 mg, 95% purity, 53%) (eluent: petroleum ether (b.p. 30-60 °C) to petroleum ether (b.p. 30-60 °C)/ethyl ether = 200/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.39 (m, 3 H, Ar-H), 7.35 (t, J = 1.8 Hz, 1 H, Ar-H), 7.20-7.14 (m, 2 H, Ar-H), 6.39 (t, J = 2.8 Hz, 1 H, =CH), 6.36-6.34 (m, 1 H, Ar-H), 2.46-2.32 (m, 2 H, =CCH₂), 1.65-1.48 (m, 2 H, CH₂), 1.46-1.34 (m, 2 H, CH₂), 0.90 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta = 205.4, 143.3, 138.5, 133.8, 131.7, 128.3, 122.4, 120.6, 109.2,$ 103.3, 96.6, 30.3, 29.9, 22.5, 13.9; IR (neat, cm⁻¹): 2956, 2927, 2859, 1934, 1486, 1154, 1070, 1036, 1009; MS (70 eV, EI) m/z (%): 318 (M⁺(⁸¹Br), 13.18), 316 $(M^{+}(^{79}Br), 13.18), 165 (100);$ HRMS Calcd for $C_{17}H_{17}^{79}BrO (M^{+})$: 316.0463, Found: 316.0461.
1-Phenyl-3-(furan-3-yl)-7-chlorohepta-1,2-diene (3jo) (Table 3, entry 5)

(lhw-14-169)

According to **Typical Procedure C**, the reaction of Pd₂(dba)₃·CHCl₃ (31.0 mg, 0.03 mmol), *o*-(diphenylphosphino)benzaldehyde (35.2 mg, 0.12 mmol), **1a** (279.6 mg, 1.0 mmol), **2o** (291.0 mg, 2.5 mmol), and H₂O (36 µL, 2.0 mmol) in dioxane (2.0 mL) afforded **3ao** (149.0 mg, 97% purity, 53%) (eluent: petroleum ether (b.p. 30-60 °C) to petroleum ether (b.p. 30-60 °C)/ethyl ether = 200/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.43 (m, 1 H, Ar-H), 7.38-7.35 (m, 1 H, Ar-H), 7.34-7.28 (m, 4 H, Ar-H), 7.26-7.19 (m, 1 H, Ar-H), 6.48 (t, *J* = 2.6 Hz, 1 H, =CH), 6.40-6.37 (m, 1 H, Ar-H), 3.53 (t, *J* = 6.4 Hz, 2 H, ClCH₂), 2.51-2.36 (m, 2 H, =CCH₂), 1.96-1.65 (m, 4 H, CH₂×2); ¹³C NMR (100 MHz, CDCl₃) δ = 205.0, 143.3, 138.4, 134.4, 128.7, 127.1, 126.8, 122.5, 109.2, 102.2, 97.8, 44.8, 32.2, 29.8, 24.9; IR (neat, cm⁻¹): 1936, 1597, 1494, 1457, 1155, 1068, 1027; MS (70 eV, EI)*m*/*z* (%): 274 (M⁺(³⁷Cl), 10.28), 272 (M⁺(³⁵Cl), 25.31), 152 (100); HRMS Calcd for C₁₇H₁₇³⁵ClO (M⁺): 272.0968, Found: 272.0971.

References:

- M. N. Pennell, R. W. Foster, P. G. Turner, H. C. Hailes, C. J. Tame, T. D. Sheppard, *Chem. Commun.* 2014, *50*, 1302-1304.
- 2. R. Shen, J. Yang, S. Zhu, C. Chen, L. Wu, Adv. Synth. Catal. 2015, 357, 1259-1269.
- 3. D. Xu, Z. Li, S. Ma, Tetrahedron Lett. 2003, 44, 6343-6346.
- Y. W, Enantioselective Synthesis of Optically Active 2,3-Allenoates from Propargyl Alcohols, Ph.D. Thesis, East China Normal University, September, 2013.
- 5. J.-Z. Ma, Y. Liu, S. Ma, Org. Lett. 2008, 10, 1521-1523.
- 6. M. Yoshida, T. Gotou, M. Ihara, Tetrahedron Lett. 2004, 45, 5573-5575.
- 7. R. Riveiros, J. P. Sestelo, L. A. Sarandeses, Synthesis 2007, 3595-3598.
- 8. H. J. Reich, E. K. Eisenhart, W. L. Whipple, M. J. Kelly, J. Am. Chem. Soc. 1988, 110, 6432-6442.
- 9. M. Yang, N. Yokokawa, H. Ohmiya, M. Sawamura, Org. Lett. 2012, 14, 816-819.

3aa

3ab

3ac

3ad

3ae

3af

3ag

3ah

3bi

3ck

3cj

3cl

3cm

MddD 000.0- -5 4.04 -0 Р Р $\left| \right|$ Я 4 Ihw-11-113-H Apr 9 2015 NA = 8 Solvent = cdcl3 F1 = 399.750336 MHz F2 = 100.526230 MHz 29 -0 1.00 13.54 1-1-80 -∞ 1 ြရ

3da

3fa

3ga

3jj

3kl

311

Eq.a-3mi

1.100.000.000

NOESY

HSQC

(S)-**3pj**

1hw-14-163-oj-h-95-5-1-214

实验时间: 2016-06-01, 20:36:11 报告时间: 2016-06-01, 20:37:11 谱图文件:F:\zhuguangjiong\lhw\20160601\lhw-14-163-oj-h-95-5-1-214..org

实验内容简介:

· · · · · · · · · · · · · · · · · · ·	啤冶	休留的问(Ret.Time)	唯尚(Height)	唯囬枳(Area)	含重(Red.Area)
1		7.955	2950. 373	38983. 629	0.7682
2		11. 348	259498. 234	5035580.000	99. 2318
总计 (Total)			262448. 607	5074563. 629	100.0000

1hw-14-163-rac-oj-h-95-5-1-214

实验时间: 2016-06-01,20:07:04 报告时间: 2016-06-01,20:33:56 请图文件:F:\zhuguangjiong\lhw\20160601\lhw-14-163-rac-oj-h-95-5-1-214.org

实验内容简介:

分析结果表

峰号	峰名	保留时间(Ret. Time)	峰高 (Height)	峰面积 (Area)	含量 (Rel. Area)
1		7.967	116236. 242	1404270. 375	50.0722
2		11.353	72036.891	1400220.750	49.9278
总计(Total)			188273.133	2804491. 125	100.0000

(S)-**3qj**

,

中国科学院上海有机化学研究所

Project Name: Reported by User. defaults for copy Breeze user (Breeze)

Report Method: Individual Report ASC Page: 1 (共计 1) Printed: 2016/6/8 17:44:49 PRC
中国科学院上海有机化学研究所 Project Name defaults for copy

Report Method: Individual Report ASC Page: 1 (共计1)

Printed: 2016/6/8 17:43:59 PRC

(S)-**3rj**

lhw-14-151-oj-h-100-1-1-214

实验时间: 2016/5/27,16:52:11 谱图文件:D:\zhuguangjiong\lhw\20160527\lhw-14-151-oj-h-100-1-1-214.org 报告时间:2016/5/27,18:15:24

实验内容简介:

1	11. 822	峰尚 (Height)	峰面积 (Area)	含量 (Par A.)
	13. 253	32291.016 531038.750	887061.375	4. 6015
((ota))		563329. 766	19277673. 375	95. 3985

lhw-14-151-rac-oj-h-100-1-1-214

実验时间: 2016/5/27,17:12:42 请習文件:D:\zhuguangjiong\lhw\20160527\lhw-14-151-rac-oj-h-100-1-1-214.org 报告时间: 2016/5/27,17:33:14

实验内容简介:

总计 (Total)

(S)-**3sj**

,

lhw-14-149-oj-h-100-1-1-214

实验时间: 2016/5/27,15:15:09 谱图文件:D:\zhuguangjiong\lhw\20160527\lhw-14-149-oj-h-100-l-1-214.org 报告时间:2016/5/27,18:14:47

实验内容简介:

lhw-14-149-rac-oj-h-100-1-1-214

.

实验时间: 2016/5/27,14:52:58 报告时间: 2016/5/27,18:14:01 请图文件:D:\zhuguangjiong\lhw\20160527\lhw-14-149-rac-oj-h-100-1-1-214.org

实验内容简介:

峰号	峰名	保留时间 (Ret. Time)	峰高 (Height)	峰面积 (Area)	含量 (Rel. Are	2)
1		14.043	81625.938	3392280. 750	50.0757	
2		16.672	56268. 191	3382025.750	49.9243	
总计 (Tota	al)		137894. 129	6774306. 500	100. 0000	

.

Table 3-3gn

Table 3-3tn

Table 3-3jn

S124

Table 3-3jo

		. *
13 824		
55'236		
29.866		
		e d'e
069'92		
702.77		
995.96	m FO	
782.E01	E C	
£31.901	3j0	

РРМ

0

50

100

150

200

- 120.566 - 120.566 - 138.526 - 133.767 - 131.716 - 128.289 - 128.289 - 143.290

lhw-14-170-C Jun 8 2016 NA = 1000 Solvent = cdcl3 F1 = 100.527557 MHz F2 = 399.749146 MHz

Ъ

S128

Table 3-3ao

S130

