Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

Table of Contents

- 1. General information
- 2. General procedure for the asymmetric 1,3-dipolar addition of azomethine ylides 1 with β-phthaliminoacrylate esters 2
- 3. Tosylation of cycloadduct 3aa for X-ray Determination
- 4. Transformation of cycloadduct 3ad
- 5. The absolute configuration determination of (2S,3S,4S,5R)-6
- 6. Reference
- 7. ¹H NMR and ¹³C NMR spectra
- 8. Chiral HPLC Chromatograms

1. General information

¹H NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ or D₂O. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectrums are interpreted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet. ¹³C NMR (100 MHz) spectra were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ or D₂O. Chemical shifts are reported in ppm with the internal chloroform signal at 77.16 ppm as a standard. Optical rotations were measured on an AUTOPOL V. Diastereomeric ratios were determined from crude ¹H NMR spectroscopy interpretation. Enantiomer ratios were determined by analysis of HPLC traces, obtained by using chiralpak AD-H, IA or IF columns with *n*-hexane and *i*-propanol as solvents. (Chiralpak AD-H, IA and IF columns were purchased from Daicel Chemical Industries, LTD.) Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which are uncorrected. Mass spectrometry was performed on a TOF mass spectrometer.

Commercially available materials purchased from Adamas-beta, TCI or Energy Chemical and were used as received. The β -phthaliminoacrylate esters **2** were synthesised according to reported literature methods.^[1]

2. General procedure for the asymmetric 1,3-dipolar addition of

azomethine ylides 1 with β -phthaliminoacrylate esters 2

Under a nitrogen atmosphere, Cu(CH₃CN)₄BF₄ (3.1 mg, 0.01 mmol) and L5 (5.7 mg, 0.011 mmol) were dissolved in 2 mL THF, and stirred at room temperature for about 1 h. Then, imino ester 1 (0.3 mmol) and K₂CO₃ (0.4 mmol) were added, the mixture was cooled to 0 °C and β -phthaliminoacrylate ester 2 (0.2 mmol) was added. Once starting material was consumed (monitored by TLC), the mixture was filtered through celite and the filtrate was concentrated to dryness. The crude product was analysed by ¹H NMR spectroscopy to determine the diastereomeric ratio, then the residue was purified by column chromatography (petroleum ether/ethyl acetate 6:1 to 2:1) on silica gel to give the corresponding product **3**, which was then directly analysed by chiral HPLC to determine the enantiomeric excess.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4dicarboxylate (3aa): 84.1 mg, 95% yield, >99% ee, white solid, m.p.: 70-72 °C; $[\alpha]_D^{27} = -83.4$ (*c*

1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.3, 3.1 Hz, 2H), 7.77 (dd, J = 5.4, 3.0 Hz, 2H), 7.32 (s, 4H), 5.24 (dd, J = 8.5, 6.1 Hz, 1H), 5.13 (t, J = 8.6 Hz, 1H), 4.34 (t, J = 8.6 Hz, 1H), 3.90 (dd, J = 8.3, 6.3 Hz, 1H), 3.74 (s, 3H), 3.24 (s, 3H), 2.90 (t, J = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.5, 167.7, 136.9, 134.5, 133.7, 131.7, 128.5, 128.5, 123.7, 63.7, 62.0, 55.4, 53.3, 52.7, 51.9; **HRMS** (EI,

m/z): Calcd for $C_{22}H_{19}CIN_2O_6$ [M]⁺: 442.0932, found: 442.0931; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 17.55$ min, 30.27 min.

4-Ethyl 2-methyl (2*S***,3***S***,4***R***,5***R***)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4-dicarboxylate (3ab):** 83.0 mg, 91% yield, 99% ee, white solid, m.p.: 56-58 °C; $[\alpha]_D^{27} = -67.5$

(*c* 1.00, CH₂Cl₂); ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.2, 3.2 Hz, 2H), 7.77 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.36 – 7.29 (m, 4H), 5.24 (dd, *J* = 8.4, 6.1 Hz, 1H), 5.14 (d, *J* = 8.5 Hz, 1H), 4.34 (d, *J* = 8.6 Hz, 1H), 3.87 (dd, *J* = 8.2, 6.2 Hz, 1H), 3.74 (s, 3H), 3.73 – 3.60 (m, 2H), 2.96 (brs, 1H), 0.83 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.5, 171.4, 167.7, 136.9, 134.5, 133.7, 131.7, 128.6, 128.5, 123.7,

63.7, 62.0, 61.1, 55.5, 53.3, 52.7, 13.7; **HRMS** (ESI, m/z): Calcd for $C_{23}H_{21}CIN_2O_6Na$ [M+Na]⁺: 479.0986, found: 479.0981; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 17.18$ min, 28.18 min.

4-(*tert***-Butyl) 2-methyl (2S,3S,4R,5R)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl) pyrrolidine-2,4-dicarboxylate (3ac):** 91.0 mg, 94% yield, >99% ee, white soild, m.p.: 68-70 °C;

 $[\alpha]_D{}^{27} = -53.0 \ (c \ 1.00, CH_2Cl_2); {}^{1}$ **H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.2, 3.2 Hz, 2H), 7.77 (dd, J = 5.2, 3.1 Hz, 2H), 7.38 – 7.31 (m, 4H), 5.15 (dd, J = 8.5, 5.9 Hz, 1H), 5.12 (d, J = 8.4 Hz, 1H), 4.30 (d, J = 8.5 Hz, 1H), 3.77 (dd, J = 8.3, 5.8 Hz, 1H), 3.74 (s, 3H), 1.04 (s, 9H); {}^{13}C NMR (100 MHz, CDCl₃) δ 171.6, 170.5, 167.7, 137.1, 134.5, 133.4, 131.7, 128.8, 128.4, 123.7, 81.9, 63.7, 62.2, 56.2, 53.9, 52.7, 27.5;

HRMS (ESI, m/z): Calcd for $C_{25}H_{26}ClN_2O_6$ [M+H]⁺: 485.1479, found: 485.1477; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 12.17$ min, 14.38 min.

4-Benzyl 2-methyl (2*S***,**3*S***,**4*R***,**5*R***)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl) pyrrolidine-2,4-dicarboxylate (3ad):** 99.4 mg, 96% yield, >99% ee, white soild, m.p.: 57-59 °C; $[\alpha]_D^{27} = -$

77.3 (*c* 1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.1, 3.2 Hz, 2H), 7.76 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.30 – 7.23 (m, 5H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 6.7 Hz, 2H), 5.28 (dd, *J* = 8.4, 5.9 Hz, 1H), 5.12 (d, *J* = 8.4 Hz, 1H), 4.72 (d, *J* = 12.0 Hz, 1H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.33 (d, *J* = 8.5 Hz, 1H), 3.90 (dd, *J* = 8.3, 5.9 Hz, 1H), 3.74 (s, 3H), 2.95 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 171.4, 167.7,

136.6, 134.7, 134.5, 133.7, 131.7, 128.7, 128.5, 128.5, 128.5, 128.4, 123.7, 67.1, 63.8, 62.1, 55.6, 53.3, 52.7; **HRMS** (EI, m/z): Calcd for $C_{28}H_{23}CIN_2O_6$ [M]⁺: 518.1245, found: 518.1248; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 21.43$ min, 31.43 min.

2-Ethyl 4-methyl (2*S***,3***S***,4***R***,5***R***)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4-dicarboxylate (3ba):** 83.0 mg, 91% yield, 96% ee, white soild, m.p.: 58-60 °C; $[\alpha]_D^{27} = -75.8$

(c 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.1, 3.2 Hz, 2H), 7.77 (dd, J = 5.2, 3.2 Hz, 2H), 7.32 (s, 4H), 5.23 (dd, J = 8.5, 6.5 Hz, 1H), 5.12 (d, J = 8.6 Hz, 1H), 4.32 (d, J = 8.7 Hz, 1H), 4.29 – 4.10 (m, 2H), 3.93 (dd, J = 8.2, 6.6 Hz, 1H), 3.24 (s, 3H), 2.95 (brs, 1H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.0, 167.7, 137.0, 134.5, 133.7, 131.7, 128.5, 128.5, 123.7, 63.6,

62.0, 61.7, 55.4, 53.2, 51.9, 14.0; **HRMS** (EI, m/z): Calcd for $C_{23}H_{21}CIN_2O_6$ [M]⁺: 456.1088, found: 456.1089; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 10^{-10}$

20.01 min, 32.80 min.

2-(*tert***-Butyl) 4-methyl (2S,3S,4R,5R)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl) pyrrolidine-2,4-dicarboxylate (3ca):** 89.1 mg, 92% yield, 92% ee, white soild, m.p.: 142-144 °C;

 $[\alpha]_D{}^{27} = -83.0 (c \ 1.00, CH_2Cl_2); {}^{1}H \ NMR (400 \ MHz, CDCl_3) \delta 7.89 (dd,$ $J = 5.3, 3.1 \ Hz, 2H), 7.76 (dd, J = 5.3, 3.1 \ Hz, 2H), 7.32 (s, 4H), 5.16 (dd, J = 8.7, 6.5 \ Hz, 1H), 5.10 (d, J = 8.6 \ Hz, 1H), 4.22 (d, J = 8.8 \ Hz, 1H), 3.94 (dd, J = 8.4, 6.6 \ Hz, 1H), 3.24 (s, 3H), 1.37 (s, 9H); {}^{13}C \ NMR (100 \ MHz, CDCl_3) \delta 171.9, 170.1, 167.7, 137.1, 134.5, 133.6, 131.7, 128.5, 128.4, 123.6, 82.6, 63.5, 62.4, 55.5, 53.3, 51.8, 27.8; HRMS (EI, 120.5, 128.4, 123.6, 120.5, 120.4, 120.5, 120.5, 120.4, 120.5, 120.5, 120.4, 120.5, 120$

m/z): Calcd for $C_{25}H_{25}ClN_2O_6$ [M]⁺: 484.1401, found: 484.1405; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 14.02$ min, 29.80 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-5-(2-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4dicarboxylate (3da): 85.0 mg, 96% yield, >99% ee, white soild, m.p.: 71-72 °C; $[\alpha]_D^{27} = -70.8$ (*c*

1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 5.2, 3.1 Hz, 2H), 7.77 (dd, J = 5.2, 3.1 Hz, 2H), 7.47 (d, J = 7.5 Hz, 1H), 7.38 (d, J = 7.7 Hz, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 5.52 (d, J = 8.0 Hz, 1H), 5.30 (dd, J = 8.2, 4.5 Hz, 1H), 4.35 (d, J = 8.2 Hz, 1H), 3.97 (dd, J = 8.0, 4.5 Hz, 1H), 3.76 (s, 3H), 3.14 (s, 3H), 3.00 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.3, 167.7, 135.4, 134.5, 133.8, 131.8, 129.3, 129.0, 127.2, 126.8, 123.7, 62.3, 61.7, 55.5, 52.7, 52.0, 51.8; **HRMS**

(EI, m/z): Calcd for $C_{22}H_{19}ClN_2O_6$ [M]⁺: 442.0932, found: 442.0930; **HPLC** (Chiralpak IF, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 220 nm) $t_R = 51.53$ min, 59.16 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-5-(3-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4dicarboxylate (3ea): 81.4 mg, 92% yield, 95% ee, white soild, m.p.: $126-129 \degree$ C; $[\alpha]_D^{27} = -61.7$ (*c*

1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.2, 3.2 Hz, 2H), 7.77 (dd, J = 5.3, 3.1 Hz, 2H), 7.39 (s, 1H), 7.27 (d, J = 5.6 Hz, 3H), 5.25 (dd, J = 8.5, 6.0 Hz, 1H), 5.13 (d, J = 8.5 Hz, 1H), 4.34 (d, J = 8.6 Hz, 1H), 3.89 (dd, J = 8.3, 6.0 Hz, 1H), 3.75 (s, 3H), 3.26 (s, 3H), 2.96 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.4, 167.7, 140.4, 134.5, 134.3, 131.7, 129.7, 128.1, 127.3, 125.2, 123.7, 63.8, 62.0, 55.3, 53.3, 52.7, 51.9; HRMS (EI, m/z): Calcd for C₂₂H₁₉ClN₂O₆ [M]⁺: 442.0932, found:

442.0929; **HPLC** (Chiralpak IF, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) $t_R = 27.83$ min, 42.50 min.

Dimethyl (2S,3S,4R,5R)-5-(4-bromophenyl)-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4dicarboxylate (3fa): 95.3 mg, 98% yield, 99% ee, white soild, m.p.: 69-70 °C; $[\alpha]_D^{27} = -67.3$ (*c*

1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.0, 3.2 Hz, 2H), 7.77 (dd, J = 5.1, 3.1 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 3H), 5.24 (dd, J = 8.4, 6.1 Hz, 1H), 5.11 (d, J = 8.5 Hz, 1H), 4.34 (d, J = 8.6 Hz, 1H), 3.90 (dd, J = 8.2, 6.3 Hz, 1H), 3.74 (s, 3H), 3.25 (s, 3H), 2.96 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.5, 167.7, 137.4, 134.5, 131.7, 131.5, 128.8, 123.7, 121.9, 63.7, 62.0, 55.4,

53.2, 52.7, 51.9; **HRMS** (EI, m/z): Calcd for $C_{22}H_{19}BrN_2O_6$ [M]⁺: 486.0426, found: 486.0430; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) t_R = 19.91 min, 33.08 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-5-(4-cyanophenyl)-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4dicarboxylate (3ga): 84.2 mg, 97% yield, >99% ee, white soild, m.p.: 82-85 °C; $[\alpha]_D^{27} = -80.3$ (*c*

1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.0, 2.9 Hz, 2H), 7.78 (dd, J = 4.9, 2.9 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 5.26 (dd, J = 8.2, 6.2 Hz, 1H), 5.20 (d, J = 7.5 Hz, 1H), 4.37 (d, J = 7.7 Hz, 1H), 3.94 (dd, J = 8.1, 6.2 Hz, 1H), 3.75 (s, 3H), 3.22 (s, 3H), 2.93 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 171.3, 167.7, 144.0, 134.6, 132.2, 131.7, 128.0, 123.8, 118.7, 111.8,

63.7, 61.9, 55.1, 53.1, 52.8, 52.0; **HRMS** (ESI, m/z): Calcd for $C_{23}H_{20}N_3O_6$ [M+H]⁺: 434.1352, found: 434.1350; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) t_R = 36.90 min, 77.02 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-3-(1,3-dioxoisoindolin-2-yl)-5-phenylpyrrolidine-2,4-dicarboxylate (3ha): 78.1 mg, 96% yield, >99% ee, white soild, m.p.: 58-61 °C; $[\alpha]_D^{27} = -67.0$ (*c* 1.00, CH₂Cl₂);

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.2, 3.2 Hz, 2H), 7.77 (dd, J = 5.2, 3.1 Hz, 2H), 7.40 – 7.27 (m, 5H), 5.25 (dd, J = 8.5, 6.2 Hz, 1H), 5.16 (d, J = 8.5 Hz, 1H), 4.35 (d, J = 8.7 Hz, 1H), 3.93 (dd, J = 8.3, 6.3 Hz, 1H), 3.74 (s, 3H), 3.18 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 171.6, 167.7, 138.1, 134.5, 131.8, 128.4, 128.0, 127.0, 123.7, 64.5, 62.2, 55.6, 53.6, 52.7, 51.8; **HRMS** (ESI, m/z): Calcd for C₂₂H₂₁N₂O₆ [M+H]⁺:

409.1400, found: 409.1401; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 13.25 \text{ min}$, 22.63 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-3-(1,3-dioxoisoindolin-2-yl)-5-(*o*-tolyl)pyrrolidine-2,4-dicarboxylate (3ia): 80.1 mg, 95% yield, >99% ee, white soild, m.p.: 164-167 °C; $[\alpha]_D^{27} = -81.6$ (*c* 1.00,

CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.3, 3.1 Hz, 2H), 7.77 (dd, J = 5.3, 3.1 Hz, 2H), 7.38 – 7.31 (m, 1H), 7.23 – 7.14 (m, 3H), 5.34 (d, J = 7.9 Hz, 1H), 5.28 (dd, J = 8.3, 4.6 Hz, 1H), 4.28 (d, J = 8.2 Hz, 1H), 3.82 (dd, J = 8.0, 4.6 Hz, 1H), 3.76 (s, 3H), 3.11 (s, 3H), 3.06 (brs, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.4, 167.8, 136.2, 135.5, 134.5, 131.8, 130.1, 127.7, 126.0, 125.0, 123.7, 62.7, 61.9,

55.9, 52.7, 52.3, 51.7, 19.6; **HRMS** (ESI, m/z): Calcd for $C_{23}H_{23}N_2O_6$ [M+H]⁺: 423.1556, found: 423.1555; **HPLC** (Chiralpak IF, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 41.13 min, 45.03 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-3-(1,3-dioxoisoindolin-2-yl)-5-(*m*-tolyl)pyrrolidine-2,4-dicarboxylate (**3ja**): 78.5 mg, 93% yield, 94% ee, white soild, m.p.: 51-54 °C; $[\alpha]_D^{27} = -71.9$ (*c* 1.00, CH₂Cl₂);

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.4, 3.1 Hz, 2H), 7.77 (dd, J = 5.4, 3.1 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.17 (s, 1H), 7.15 (d, J = 7.7 Hz, 1H), 7.09 (d, J = 7.4 Hz, 1H), 5.24 (dd, J = 8.6, 5.9 Hz, 1H), 5.14 (d, J = 8.4 Hz, 1H), 4.34 (d, J = 8.6 Hz, 1H), 3.90 (dd, J = 8.4, 5.9 Hz, 1H), 3.75 (s, 3H), 3.21 (s, 3H), 2.36 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 171.5, 167.7, 138.0, 137.8, 134.5, 131.8, 128.7, 128.3, 127.6, 124.0, 123.7,

64.6, 62.2, 55.7, 53.62, 52.7, 51.8, 21.5; **HRMS** (ESI, m/z): Calcd for $C_{23}H_{23}N_2O_6$ [M+H]⁺: 423.1556, found: 423.1557; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 15.05$ min, 18.04 min.

(2S,3S,4R,5R)-3-(1,3-dioxoisoindolin-2-yl)-5-(p-

tolyl)pyrrolidine-2,4-dicarboxylate (3ka): 80.3 mg, 95% yield, 99% ee, white soild, m.p.: 64-66 °C; $[\alpha]_D^{27} = -66.7$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 5.24 (dd, *J* = 8.6, 6.2 Hz, 1H), 5.12 (d, *J* = 8.5 Hz, 1H), 4.34 (d, *J* = 8.7 Hz, 1H), 3.92 (dd, *J* = 8.4, 6.2 Hz, 1H), 3.74 (s, 3H), 3.22 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.6, 167.7, 137.6, 135.0, 134.5, 131.8, 129.1, 126.9, 123.7, 64.3, 62.1, 55.6, 53.5, 52.7, 51.8, 21.2; HRMS (ESI, m/z): Calcd for C₂₃H₂₃N₂O₆ [M+H]⁺: 423.1556, found: 423.1555; HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) t_R = 18.13 min, 30.73 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-3-(1,3-dioxoisoindolin-2-yl)-5-(4-methoxyphenyl)pyrrolidine-2,4dicarboxylate (3la): 85.0 mg, 97% yield, >99% ee, white soild, m.p.: 160-162 °C; $[\alpha]_D^{27} = -66.2$

(*c* 1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.29 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 5.25 (dd, *J* = 8.7, 6.4 Hz, 1H), 5.10 (d, *J* = 8.6 Hz, 1H), 4.34 (d, *J* = 8.8 Hz, 1H), 3.92 (dd, *J* = 8.5, 6.4 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.23 (s, 3H), 2.89 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.6, 167.7, 159.2, 134.5, 131.8, 130.3, 128.2, 123.7, 113.7, 63.9, 62.0, 55.5, 55.4, 53.4, 52.7, 51.9; **HRMS** (ESI,

m/z): Calcd for $C_{23}H_{23}N_2O_7$ [M+H]⁺: 439.1505, found: 439.1507; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 24.28 \text{ min}$, 47.93 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-3-(1,3-dioxoisoindolin-2-yl)-5-(naphthalen-2-yl)pyrrolidine-2,4dicarboxylate (3ma): 86.0 mg, 94% yield, 98% ee, white soild, m.p.: 88-90 °C; $[\alpha]_D^{27} = -94.9$ (*c*

1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 5.4, 3.0 Hz, 2H), 7.85 (d, J = 5.7 Hz, 2H), 7.82 (d, J = 8.6 Hz, 2H), 7.77 (dd, J = 5.4, 3.1 Hz, 2H), 7.51 – 7.43 (m, 3H), 5.37 – 5.29 (m, 2H), 4.41 (d, J = 8.6 Hz, 1H), 3.99 (dd, J = 8.4, 5.8 Hz, 1H), 3.77 (s, 3H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.6, 167.8, 135.6, 134.5, 133.3, 133.0, 131.8, 128.2, 128.0, 127.7, 126.3, 126.2, 125.7, 125.2, 123.7, 64.7, 62.4, 55.8, 53.7, 52.7, 51.8; **HRMS** (ESI, m/z): Calcd for C₂₆H₂₃N₂O₆ [M+H]⁺:

459.1556, found: 459.1559; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 31.09 \text{ min}$, 40.44 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-3-(1,3-dioxoisoindolin-2-yl)-5-(thiophen-2-yl)pyrrolidine-2,4dicarboxylate (3na): 81.4 mg, 93% yield, >99% ee, yellow soild, m.p.: 60-62 °C; $[\alpha]_D^{27} = -62.7$

(*c* 1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.24 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.05 (d, *J* = 3.5 Hz, 1H), 6.98 (dd, *J* = 5.0, 3.6 Hz, 1H), 5.33 (d, *J* = 8.2 Hz, 1H), 5.28 (dd, *J* = 8.7, 6.9 Hz, 1H), 4.33 (d, *J* = 8.7 Hz, 1H), 4.01 (dd, *J* = 8.2, 6.9 Hz, 1H), 3.73 (s, 3H), 3.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 171.4, 167.7, 141.9, 134.5, 131.8, 127.0, 125.2, 125.0, 123.7, 61.6, 60.1, 55.0, 53.2,

52.8, 52.1; **HRMS** (ESI, m/z): Calcd for $C_{20}H_{18}N_2O_6SNa$ [M+Na]⁺: 437.0783, found: 437.0783; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) t_R = 18.99 min, 23.31 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-3-(1,3-dioxoisoindolin-2-yl)-5-(furan-2-yl)pyrrolidine-2,4dicarboxylate (3oa): 64.5 mg, 81% yield, 98% ee, yellow soild, m.p.: 59-62 °C; $[\alpha]_D^{27} = -20.5$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.5, 3.0 Hz, 2H),

7.76 (dd, J = 5.5, 3.0 Hz, 2H), 7.38 (dd, J = 1.7, 0.8 Hz, 1H), 6.35 (d, J = 3.1 Hz, 1H), 6.33 (dd, J = 3.2, 1.8 Hz, 1H), 5.34 (dd, J = 8.4, 7.6 Hz, 1H), 5.08 (d, J = 8.2 Hz, 1H), 4.27 (d, J = 8.6 Hz, 1H), 4.07 – 3.99 (m, 1H), 3.72 (s, 3H), 3.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.2, 167.7, 152.0, 142.5, 134.4, 131.8, 123.7, 110.5, 107.9, 61.6, 58.3, 54.9, 52.8, 52.3, 51.6; HRMS (ESI, m/z): Calcd for C₂₀H₁₉N₂O₇ [M+H]⁺: 399.1192, found: 399.1194; HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) t_R = 14.64 min, 18.65 min.

Dimethyl (2*S*,3*S*,4*R*,5*S*)-5-cyclohexyl-3-(1,3-dioxoisoindolin-2-yl)pyrrolidine-2,4dicarboxylate (3pa): 72.0 mg, 87% yield, 98% ee, white soild, m.p.: 65-67 °C; $[\alpha]_D^{27} = -79.6$ (*c*

72.0 mg, 87% yield, 98% ee, white soild, m.p.: 65-67 °C; $[\alpha]_D^{27} = -79.6$ (*c* 1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 5.3, 3.1 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 4.96 (dd, J = 7.7, 3.3 Hz, 1H), 4.07 (d, J = 7.7 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 3.33 (dd, J = 6.7, 3.3 Hz, 1H), 2.60 (s, 1H), 2.06 (d, J = 10.9 Hz, 1H), 1.88 – 1.57 (m, 5H), 1.35 – 1.19 (m, 4H), 1.18 – 1.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 171.5, 167.6, 134.5, 131.8, 123.7, 68.7, 63.7, 57.7, 52.6, 52.2, 52.1, 39.5, 31.1,

31.1, 26.4, 26.0, 25.9; **HRMS** (ESI, m/z): Calcd for $C_{22}H_{27}N_2O_6$ [M+H]⁺: 415.1869, found: 415.1868; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) t_R = 7.27 min, 12.99 min.

Dimethyl (2*S*,3*S*,4*R*,5*R*)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl)-2-methylpyrrolidine-2,4-dicarboxylate (5a): 75.5 mg, 83% yield, >99% ee, white soild, m.p.: 167-169 °C; $[\alpha]_D^{27} = -$

44.1 (*c* 1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.75 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.39 – 7.30 (m, 4H), 5.28 (d, *J* = 8.9 Hz, 1H), 5.04 (d, *J* = 9.3 Hz, 1H), 4.74 (t, *J* = 9.1 Hz, 1H), 3.81 (s, 3H), 3.20 (s, 3H), 3.17 (brs, 1H), 1.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 171.5, 168.3, 138.0, 134.5, 133.9, 131.6, 128.8, 128.6, 123.7, 68.1, 61.4, 59.0, 53.2, 51.8, 49.8, 20.8; **HRMS** (ESI, m/z): Calcd for C₂₃H₂₂ClN₂O₆ [M+H]⁺: 457.1166, found: 457.1167; **HPLC**

(Chiralpak IA, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 220 nm) $t_R = 11.56 \text{ min}$, 15.14 min.

3. Tosylation of cycloadduct 3aa for X-ray Determination

To a solution of compound **3aa** (177 mg, 0.4 mmol) in 3 mL CH_2Cl_2 was added TsCl (229 mg, 1.2 mmol), Et₃N (223 μ L, 1.6 mmol), DMAP (10 mg, 0.08 mmol) sequentially, the mixture was

refluxed for 84 h. Then, the solvent was evaporated and the residue was purified by column chromatography (petroleum ether/ethyl acetate 6:1 to 2:1) to give the corresponding tosylated product **6** in 79% yield (189 mg). Recrystallisation in a mixture of Et_2O and *n*-hexane afforded crystal suitable for X-ray analysis.

Dimethyl (2*S*,3*S*,4*S*,5*R*)-5-(4-chlorophenyl)-3-(1,3-dioxoisoindolin-2-yl)-1-tosylpyrrolidine-2,4-dicarboxylate (6): 189 mg, 79% yield, white soild, m.p.: 154-156 °C; ¹H NMR (400 MHz,

CDCl₃) δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.1 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.21 (t, J = 8.6 Hz, 4H), 5.33 (dd, J = 11.9, 10.1 Hz, 1H), 5.27 (d, J = 9.6 Hz, 1H), 4.86 (d, J = 10.0 Hz, 1H), 4.49 (dd, J = 11.9, 9.7 Hz, 1H), 3.77 (s, 3H), 3.29 (s, 3H), 2.42 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.6, 167.5, 167.3, 144.6, 135.7, 134.7, 134.4, 134.3, 131.4, 129.7, 129.2, 128.6, 128.2,

123.9, 62.0, 60.8, 53.3, 52.3, 52.2, 49.2, 21.7; **HRMS** (ESI, m/z): Calcd for $C_{29}H_{26}ClN_2O_8S$ [M+H]⁺: 597.1093, found: 597.1092 ; **HPLC** (Chiralpak IA, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 220 nm) $t_R = 54.13$ min, 64.00 min.

4. Transformation of cycloadduct 3ad

To a solution of compound **3ad** (207.6 mg, 0.4 mmol) in in a 1:1 mixture of CH₂Cl₂/MeOH (3 mL total) was added ethylenediamine (133 μ L, 2.0 mmol). The reaction mixture was heated to 40 °C for 2 h. and then cooled to room temperature. After removing the solvent *in vacuo*, the residue was purified by column chromatography (CH₂Cl₂/MeOH = 60:1 to 20:1) to give the corresponding product **7** as a white solid in 83% yield (128.6 mg).

4-Benzyl 2-methyl (2*S***,3***S***,4***S***,5***R***)-3-amino-5-(4-chlorophenyl)pyrrolidine-2,4-dicarboxylate H_2N CO₂Bn (7): 128.6 mg, 83% yield, white soild, m.p.: 104-106 °C; [\alpha]_D^{27} = -36.9 (***c* **1.00, CH₂Cl₂); ¹H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 3H), 7.21 – 7.15 (m, 4H), 7.03 (dt, *J* = 4.5, 2.9 Hz, 2H), 4.77 (d, *J* = 12.0 Hz, 1H), 4.67 (t, *J* = 9.8 Hz, 2H), 3.97 (t, *J* = 7.6 Hz, 1H), 3.84 (s, 3H), 3.64

(d, J = 7.9 Hz, 1H), 3.17 (dd, J = 8.7, 7.3 Hz, 1H), 1.91 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 171.1, 138.5, 135.1, 133.6, 128.8, 128.7, 128.6, 128.6, 128.5, 67.9, 66.8, 62.6, 59.0, 58.2, 52.7; HRMS (ESI, m/z): Calcd for C₂₀H₂₂ClN₂O₄ [M+H]⁺: 389.1268, found: 389.1269; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 16.08 min, 22.49 min.

A Schlenk tube was charged with $Pd(OH)_2/C$ (7.0 mg, 20 wt%, 10 mol%) under vacuum and then refilled with hydrogen. Compound 7 (38.8 mg, 0.1 mmol) in MeOH was added, followed by vigorous stirring for 4 h at room temperature. The reaction mixture was pushed through a celite pad to remove $Pd(OH)_2/C$ and the filtrate was concentrated under reduced pressure to afford pyrrolidine β -amino acid **8** as a white solid in 96% yield (28.8 mg).

(2R,3S,4S,5S)-4-amino-2-(4-chlorophenyl)-5-(methoxycarbonyl)pyrrolidine-3-carboxylic

MeO₂C¹¹, N

acid (8): 28.8 mg, 96% yield, white soild, m.p.: 180-182 °C; $[\alpha]_D^{27} = +16.9$ (*c* 1.00, H₂O); ¹**H NMR** (400 MHz, D₂O) δ 7.36 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 4.70 (d, *J* = 8.2 Hz, 1H), 4.26 (t, *J* = 6.9 Hz, 1H), 4.10 (d, *J* = 7.5 Hz, 1H), 3.84 (s, 3H), 3.34 – 3.25 (m, 1H); ¹³C

NMR (100 MHz, D₂O) δ 175.4, 171.9, 136.8, 133.0, 128.4, 128.3, 62.7, 62.0, 56.6, 55.9, 53.2; **HRMS** (ESI, m/z): Calcd for C₁₃H₁₆ClN₂O₄ [M+H]⁺: 299.0799, found: 299.0798.

5. The absolute configuration determination of (2S,3S,4S,5R)-6

(CCDC 1495843 (6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.)

Figure S1. X-Ray crystal structure of (2*S*,3*S*,4*S*,5*R*)-**6** drawn at 30% probability for thermal ellipsoids.

Table S1.	Crystal data	and structure	refinement	for	(2S, 3S, 4S, 5R)-6
-----------	--------------	---------------	------------	-----	--------------------

Identification code	cd16374			
Empirical formula	C29 H25 Cl N2 O8 S			
Formula weight	597.02			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 11.4186(19) Å	a= 90°.		
	b = 9.7011(17) Å	b= 92.473(4)°.		
	c = 13.152(2) Å	g = 90°.		
Volume	1455.6(4) Å ³			
Ζ	2			

Density (calculated)	1.362 Mg/m ³
Absorption coefficient	0.255 mm ⁻¹
F(000)	620
Crystal size	0.220 x 0.150 x 0.100 mm ³
Theta range for data collection	1.785 to 25.494°.
Index ranges	-13<=h<=10, -11<=k<=11, -15<=l<=15
Reflections collected	8415
Independent reflections	5122 [R(int) = 0.0294]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6221
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5122 / 1 / 373
Goodness-of-fit on F ²	1.000
Final R indices [I>2sigma(I)]	R1 = 0.0461, $wR2 = 0.1112$
R indices (all data)	R1 = 0.0552, wR2 = 0.1179
Absolute structure parameter	0.00(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.208 and -0.145 e.Å ⁻³

6. Reference

1. (a) M.-J. Fan, G.-Q. Li and Y.-M. Liang, *Tetrahedron* 2006, **62**, 6782; (b) T. Nishimura, J. Wang, M. Nagaosa, K. Okamoto, R. Shintani, F. Kwong, W. Yu, A. S. C. Chan and T. Hayashi, *J. Am. Chem. Soc.* 2010, **132**, 464; (c) L. Mola, J. Font, L. Bosch, J. Caner, A. M. Costa, G. Etxebarría-Jardí, O. Pineda, D. Vicente and J. Vilarrasa, *J. Org. Chem.* 2013, **78**, 5832.

7. ¹H NMR and ¹³C NMR spectra

¹H NMR spectrum of compound **3aa**

¹³C NMR spectrum of compound **3aa**

f1 (ppm)

¹H NMR spectrum of compound **3ab**

¹³C NMR spectrum of compound **3ab**

¹H NMR spectrum of compound **3ac**

¹³C NMR spectrum of compound **3ac**

¹H NMR spectrum of compound **3ad**

¹³C NMR spectrum of compound **3ad**

¹H NMR spectrum of compound **3ba**

¹³C NMR spectrum of compound **3ba**

¹H NMR spectrum of compound **3ca**

¹³C NMR spectrum of compound **3ca**

¹H NMR spectrum of compound **3da**

¹³C NMR spectrum of compound **3da**

¹H NMR spectrum of compound **3ea**

¹³C NMR spectrum of compound **3ea**

¹H NMR spectrum of compound **3fa**

¹³C NMR spectrum of compound **3fa**

¹H NMR spectrum of compound **3ga**

¹³C NMR spectrum of compound **3ga**

¹H NMR spectrum of compound **3ha**

¹³C NMR spectrum of compound **3ha**

¹H NMR spectrum of compound **3ia**

¹³C NMR spectrum of compound **3ia**

¹H NMR spectrum of compound **3ja**

¹³C NMR spectrum of compound **3ja**

¹H NMR spectrum of compound **3ka**

¹³C NMR spectrum of compound **3ka**

¹H NMR spectrum of compound **3la**

¹³C NMR spectrum of compound **3la**

¹H NMR spectrum of compound **3ma**

¹³C NMR spectrum of compound **3ma**

¹H NMR spectrum of compound **3na**

¹³C NMR spectrum of compound **3na**

¹H NMR spectrum of compound **30a**

¹³C NMR spectrum of compound **30a**

¹H NMR spectrum of compound **3pa**

¹³C NMR spectrum of compound **3pa**

¹H NMR spectrum of compound **5a**

¹³C NMR spectrum of compound **5a**

¹H NMR spectrum of compound **6**

¹³C NMR spectrum of compound **6**

^{1}H NMR spectrum of compound 7

¹³C NMR spectrum of compound **7**

~172.97 ~171.07	138.50 138.60 135.08 133.60 133.60 138.61 128.61 128.51	~67.88 66.84 ~65.63 ~58.99 58.16
17		12772

¹H NMR spectrum of compound 8

¹³C NMR spectrum of compound **8**

100 90 f1 (ppm)

8. Chiral HPLC Chromatograms

14.31917

2

2.80

200.61

0.4484

		[Minutes]				
#	Ret Time(min)	Height(mV)	Area(mV.sec)	Area(%)		
1	21.27750	797.87	55083.17	99.5624		
2	31.78250	3.75	242.12	0.4376		

116.27

0.3175

2

22.03083

2.63

9.48

