SUPPLEMENTARY INFORMATION

A Practical Protocol for the Synthesis of Bibenzyls *via* C(SP³)-H Activation of Methyl Arenes under Metal-free Conditions

Promod Kumar, Tirumaleswararao Guntreddi, Rahul Singh and Krishna Nand Singh*a

Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi 221005, India **E mail: <u>knsinghbhu@yahoo.co.in</u>*

TABLE OF CONTENTS

1. GENERAL INFORMATION	2
2. GENERAL EXPERIMENTAL PROCEDURE	2
3. CHARACTERIZATION DATA OF THE PRODUC	ZTS 2-5
4. REFERENCES	5
5. COPIES OF ¹ H-& ¹³ C-NMR SPECTRA OF THE PF	CODUCTS 6-22

1. General information

All the reagents and solvents were purchased from Sigma-Aldrich or Merck chemical Co. and were used directly without any further purification. The reactions were monitored by thin layer chromatography (TLC) using Merck Kieselgel 60 GF₂₅₄ plates (thickness 0.25 mm). Visualization of TLC was performed using UV light; products purification was done using Merck silica gel (100-200 mess) column chromatography. ¹H NMR spectra were recorded at 500 MHz using JEOL AL-500 spectrometer and are reported in parts per million (ppm) on the δ scale relative to TMS as an internal standard. Coupling constants (*J*) reported in Hz. ¹³C NMR spectra were recorded at 125 MHz.

2. General procedure for the synthesis of Bisbenzyles

Methylarene (1.0 mmol), $K_2S_2O_8$ (2.0 mmol), CH_3CN/H_2O (1:1) (2ml) were placed in a vial (10 mL) containing a magnetic stirring bar. The vial was capped and the mixture was stirred at 80 °C for 10 h. After the reaction was completed (TLC), the mixture was cooled to room temperature. The work up of the reaction mixture was performed using the ethyl acetate (30 mL) and water (50 mL x 3). The organic phase was dried over anhyd Na₂SO₄, filtered, evaporated under reduced pressure and purified by column chromatography.

3. Characterization Data of the Products

(2a) 1,2-diphenylethane¹

Physical state: Colourless solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.20-7.14 (m, 4H), 7.10-7.06 (m, 6H), 2.83 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 141.8, 128.4, 128.3, 125.9, 37.9.

(2b) 1,2-di-p-tolylethane¹

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.05-6.96 (m, 8H), 2.77 (s, 4H), 2.23 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 138.8, 135.2, 129.0, 128.3, 37.6, 21.0.

(2c) 1,2-di-m-tolylethane⁶

Physical state: Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.12-7.09 (m, 2H), 6.95-6.91 (m, 6H), 2.78 (s, 4H), 2.25 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 141.9, 137.9, 129.2, 128.2, 126.6, 125.4, 38.0, 21.4.

(2d) 1,2-di-o-tolylethane¹

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.15-7.12 (m, 8H), 2.85 (s, 4H), 2.31 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 140.2, 135.9, 130.2, 128.8, 126.1, 126.0, 34.1, 19.3.

(2f) 1,2-bis(4-methoxyphenyl)ethane²

Physical state: colourless solid; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$: 7.28 (d, *J* = 8.5 Hz, 4H), 6.87 (d, *J* = 5.0 Hz, 4H), 3.84 (s, 6H), 2.90 (s, 4H), ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm c}$: 157.8, 134.0, 129.4, 113.7, 55.3, 37.3.

(2g) 1,2-bis(4-chlorophenyl)ethane⁵

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.75 (d, *J* = 8.5 Hz, 4H), 6.96 (d, *J* = 7.5 Hz, 4H), 2.76 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 139.6, 131.8, 129.8, 128.4, 36.9.

(2h) 1,2-bis(3-chlorophenyl)ethane⁶

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.25-7.20 (m, 6H), 7.06 (d, J = 8.5 Hz, 2H), 2.91 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 143.2, 134.2, 129.6, 128.5, 126.6, 126.3, 37.2.

(2i) 1,2-bis(2-chlorophenyl)ethane⁵

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.43-7.40 (m, 2H), 7.23-7.18 (m, 6H), 3.13 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 138.9, 134.0, 130.6, 129.4, 127.5, 126.7, 33.8.

(2j) 1,2-bis(4-bromophenyl)ethane¹

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$: 7.29 (d, J = 8.5 Hz, 4H), 6.90 (d, J = 8.5 Hz, 4H), 2.75(s, 4H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm c}$: 140.2, 131.5, 130.1, 120.0, 37.1.

(2k) 1,2-bis(4-iodophenyl)ethane⁷

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.58 (d, J = 8.5 Hz, 4H), 6.88 (d, J = 8.5 Hz, 4H), 2.82 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 140.7, 137.4, 130.6, 91.2, 37.0.

(2l) 1,2-bis(4-fluorophenyl)ethane¹

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$: 7.06-7.05 (m, 4H), 7.03-6.90 (m, 4H), 2.84 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm c}$: 163.0, 161.1, 137.6, 130.5, 130.4, 115.8,115.7, 37.8.

(2m) diethyl 4,4'-(ethane-1,2-diyl)dibenzoate³

Physical state: Colourless solid; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$: 7.95 (d, J = 8.5 Hz, 4H), 7.20 (d, J = 7.5 Hz, 4H), 4.38 (q, J = 6.5 Hz, 4H), 2.99 (s, 4H), 1.40 (t, J = 7.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm c}$: 166.7, 146.5, 129.9, 129.8, 128.5, 60.9, 37.5, 14.4.

(2n) diethyl 3,3'-(ethane-1,2-diyl)dibenzoate⁸

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$: 7.91-7.86 (m, 4H), 7.36-7.33 (m, 4H), 4.39 (q, *J* = 7.5 Hz, 4H), 2.99 (s, 4H), 1.42(t, *J* = 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm c}$: 166.8, 141.6, 133.1, 130.7, 129.6, 128.5, 127.4, 122.4, 61.0, 37.6, 14.4.

(20) diethyl 2,2'-(ethane-1,2-diyl)dibenzoate⁹

Physical state: Colourless solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.91 (d, J = 9.0 Hz, 2H), 7.43 (t, = 9.0 Hz, 2H), 7.23-7.25 (m, 4H), 4.42 (q, J = 7.0 Hz, 4H), 3.30 (s, 4H), 1.43 (t, J = 7.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 167.9, 143.8, 132.0,131.5, 130.7, 130.1, 126.1, 61.0, 36.4, 14.6.

(2p) 1,2-di(naphthalen-1-yl)ethane²

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.04 (d, J = 7.5 Hz, 2H), 7.80 (d, J = 6.8 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.44-7.39 (m, 4H), 7.32 (d, J = 7.5 Hz, 2H), 7.29 (t, J = 16.0 Hz, 2H), 3.43 (s, 4H);

 ^{13}C NMR (125 MHz, CDCl₃) δ_{c} : 138.0, 133.9, 131.8, 128.8, 126.8, 125.9, 125.7, 125.6, 125.5, 123.6, 34.1.

(2q) 1,2-di(naphthalen-2-yl)ethane²

(3a) 1-phenethylnaphthalene⁴

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 8.11 (d, *J* = 7.5 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 1H), 7.74(d, *J* = 8.5 Hz 1H), 7.53-7.49 (m, 2H), 7.39 (d, *J* = 9.0 Hz, 1H), 7.32 (d, *J* = 3.5 Hz, 2H), 7.30-7.23 (m, 4H), 3.40 (t, *J* = 8.5 Hz, 2H), 3.08 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 142.1, 137.9, 134.0, 131.8, 128.9, 128.5, 127.4, 126.8, 126.1, 125.9, 125.6, 125.5, 124.3, 123.7, 37.2, 35.2.

132.2, 128.0, 127.7, 127.6, 127.4, 126.6, 126.0, 125.3, 38.1.

Physical state: White solid; ¹H NMR (500 MHz, CDCl₃) δ_{H} : 7.84-7.78 (m, 6H), 7.68 (s, 2H), 7.49-7.43 (m, 4H), 7.40 (d, *J* = 8.5 Hz , 2H), 3.21 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ_{c} : 139.4, 133.7,

References:

- (1) K. Sato, Y. Inoue, T. Mori, A. Sakaue, A. Tarui, M. Omote, I. Kumadaki and A. Ando, Org. Lett., 2014, 16, 3756.
- (2) D. W. Manley and J. C. Walton, Org. Lett., 2014, 16, 5394.
- (3) H. Christensen, C. Schjøth-Eskesen, Marie Jensen, Steffen Sinning, and Henrik H. Jensen Chem. Eur. J. 2011, 17, 10618 10627
- (4) S. K. Ghorai, M. Jin, T. Hatakeyama, and M. Nakamura, Org. Lett., 2012, 14, 1066.
- (5) A. Lei and X. Zhang, Org. Lett., , 2002, 4, 2285.
- (6) D. D. Tanner, S. Koppula, and P. Kandanarachch, J. Org. Chem., 1997, 62, 4210.
- (7) E. Galán, M. L. Perrin, M. Lutz, H. S. J. van der Zant, F. C. Grozema and R. Eelkem. Org. Biomol. Chem., 2016, 14, 2439.
- (8) S. Goswami, A. K. Mahapatra and R. Mukherjee, J. Chem. Soc., Perkin Trans. 1, 2001, 2717.
- (9) K. Hannemann, J. Wirz and A. Riesen, Helv. Chim. Acta., 1988, 71, 1841.

5. COPIES OF ¹H-&¹³C-NMR SPECTRA OF THE PRODUCTS

