Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

Cobalt-catalyzed C-H Activation and Regioselective

Intermolecular Annulation with Allenes

Tianlei Li^{1,2‡}, Chao Zhang^{2‡}, Yonghua Tan², Weidong Pan³ and Yu Rao^{1*}

¹MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China

²Tsinghua-Peking Center for Life Sciences, Haidian Dist., Beijing 100084, China;

³The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China

yrao@mail.tsinghua.edu.cn

Table of Contents	Page
Materials and Methods	2
Optimization	2-5
General procedure	5-6
Date of products	7-40
Spectra	41-147

Materials and Methods

All commercial materials (Alfa Aesar, Aladdin, J&K Chemical LTD.) were used without further purification. All solvents were analytical grade. The potassium persulfate were ground to powder. The ¹H NMR and ¹³C NMR spectra were recorded

on a Bruker AVANCE^{III} 400 MHz spectrometer in CDCl₃ using TMS or solvent peak

as a standard. All ¹³C NMR spectra were recorded with complete proton decoupling. Low-resolution mass spectral analyses were performed with a Waters AQUITY UPLCTM/MS. All reactions were carried out in sealed tube with Teflon cap. Analytical TLC was performed on Yantai Chemical Industry Research Institute silica gel 60 F254 plates and flash column chromatography was performed on Qingdao Haiyang Chemical Co. Ltd silica gel 60 (200-300mesh). The rotavapor was BUCHI's Rotavapor R-3.

1. Optimization of cobalt-catalyzed sp² C-H functionalization

1.1 Catalyst screening:

General procedure:

A sealed tube with a screw cap (PTFE) was charged with 4-bromo-N-(quinolin-8-yl) benzamide (32.6 mg, 0.1 mmol), Mn(OAc)₂ (34.7 mg, 0.2 mmol, 2 equiv.), KOAc (19.8 mg, 0.2 mmol, 2 equiv.), Catalysts (0.02 mmol, 20 mol%), CF₃CH₂OH (1.0 mL), and ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol, 3.0 equiv.) under oxygen atmosphere. Resulting mixture was heated at corresponding temperature for 12 - 18 h, cooled to room temperature and analyzed by TLC (Petroleum ether:Ethyl acetate 4:1, Petroleum ether:Ethyl acetate = 1:1) and 1H-NMR spectroscopy.

entry	catalyst	3a yield ^a (%)	3b yield ^a (%)
1	Pd(acac) ₂	N.O.	N.O.
2	(1,5-Cyclooctadiene)(methoxy)iridium (I)	N.O.	N.O.
3	Fe(acac) ₃	N.O.	N.O.
4	Ni(acac) ₂	N.O.	N.O.
5	[Cp*RhCl ₂] ₂	N.O.	N.O.
6	Without catalyst	N.O.	N.O.

Note: **a)** the reaction conversion was monitored by ¹H-NMR; **b)** N.O. means no observation in this reaction.

1.2 Bases screening:

General procedure:

A sealed tube with a screw cap (PTFE) was charged with 4-bromo-N-(quinolin-8-yl) benzamide (32.6 mg, 0.1 mmol), $Mn(OAc)_2$ (34.7 mg, 0.2 mmol, 2 equiv.), Base (0.2 mmol, 2 equiv.), $Co(acac)_2$ (5.7 mg, 0.02 mmol, 20 mol%), CF_3CH_2OH (1.0 mL), and ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol, 3.0 equiv.) under oxygen atmosphere. Resulting mixture was heated at corresponding temperature for 12 – 18 h, cooled to room temperature and analyzed by TLC (Petroleum ether:Ethyl acetate 4:1, Petroleum ether:Ethyl acetate = 1:1) and 1H-NMR spectroscopy.

Entry	Base	Temperature (^o C)	time (h)	3a yield (%)	3b yield (%)
1	Pyridine	80	15	N.O.	N.O.
2	DMAP	80	15	N.O.	N.O.
3	CsOPiv	40	9	11	47
4	KOTf	30	20	<5	26
5	KOTf	40	9	<5	71
6	KOTf	50	4	<15	25
7	KOTf	60	4	<25	27
8	NaOPiv	80	3	43	<5
9	NaOAc	80	4	51	<5
10	KOAc	80	3	82	<5
11	KOAc	40	9	43	13
12	NaOCOCF ₃	40	12	<30	<15
13	Sodium benzoate	e 40	12	<30	<15
14	K ₂ CO ₃	40	12	<25	<15

Note: **a)** the reaction conversion was monitored by ¹H-NMR; **b)** N.O. means no observation in this reaction.

1.3 Oxidant screening:

A sealed tube with a screw cap (PTFE) was charged with 4-bromo-N-(quinolin-8-yl) benzamide (32.6 mg, 0.1 mmol), Oxidant (0.2 mmol, 2 equiv.), KOAc (19.8 mg, 0.2 mmol, 2 equiv.), Co(acac)₂ (5.7 mg, 0.02 mmol, 20 mol%), CF₃CH₂OH (1.0 mL), and ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol, 3.0 equiv.) under oxygen

atmosphere. Resulting mixture was heated at corresponding temperature for 12 - 18 h, cooled to room temperature and analyzed by TLC (Petroleum ether:Ethyl acetate 4:1, Petroleum ether:Ethyl acetate = 1:1) and 1H-NMR spectroscopy.

Br	$\begin{array}{c} & & \\$	Br OF Br OF Br	O N DG O O O O Et
entry	Oxidant	3a yield ^a (%)	3b yield ^a (%)
1	KaSaOa	23	< 5
2	Cu(OAc) ₂	N.O.	N.O.
3	$Cu(OAc)_2 + O_2$	N.O.	N.O.
4	Ph(OAc) ₂	N.O.	N.O.
5	mCPBA	N.O.	N.O.
6	Fe(OAc) ₂ (II)	N.O.	N.U.
7	$Fe(OAc)_2(II) + O_2$	N.O.	N.O.
8	AgOAc	37	< 5
9	Mn(OAc) ₂	13	< 5
10	$Mn(OAc)_2 + O_2$	82	< 5
11	Mn(OAc) ₂ + air	35	< 5
12	O ₂	41	< 5

Note: **a)** the reaction conversion was monitored by 1 H-NMR; **b)** N.O. means no observation in this reaction.

1.4 Solvents screening:

 \wedge

A sealed tube with a screw cap (PTFE) was charged with 4-bromo-N-(quinolin-8-yl) benzamide (32.6 mg, 0.1 mmol), Oxidant (0.2 mmol, 2 equiv.), KOAc (19.8 mg, 0.2 mmol, 2 equiv.) or KOTf (37.8 mg, 0.2 mmol, 2 equiv.), Co(acac)₂ (5.7 mg, 0.02 mmol, 20 mol%), CF₃CH₂OH (1.0 mL), and ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol, 3.0 equiv) under oxygen atmosphere. Resulting mixture was heated at corresponding temperature for 12 - 18 h, cooled to room temperature and analyzed by TLC (Petroleum ether:Ethyl acetate 4:1, Petroleum ether:Ethyl acetate = 1:1) and 1H-NMR spectroscopy.

Br 1 + O OEt 2	Co(acac)₂ Mn(OAc)₂ (2.0 equiv.) KOAc (2.0 equiv.) sovents	Br O OF OF OF OF OF OF OF	Br O DG O OEt 3b
		_	

Entry	Base	Temperature (°C)	time (h)	3a yield (%)	3b yield (%)
1	МеОН	80	4	27 ^a	< 5
2	EtOH	80	4	35 ^a	8
3	TFE	80	3	68 ^a	< 5
4	n-butyl alcohol	80	12	<10 ^b	N.O.
5	Trifluoromethylbenzene	e 80	9	<10 ^b	N.O.
6	Chlorobenzene	80	12	N.O.	N.O.
7	DCE	80	12	< 5 ^b	N.O.
8	Dioxane	80	12	<10 ^b	N.O.
9	HFIP	80	5	<20 ^{b,c}	N.O.

Note: 1) the reaction conversion was monitored by ¹H-NMR; 2) N.O. means no observation in this reaction; a) Isolated yields; b) reaction conversion after 12 h; c) the main product is the dimer.

Entry	Base	Temperature (^o C)	time (h)	3a yield (%)	3b yield (%)
1	МеОН	40	12	< 5	31 ^a
2	EtOH	40	18	14	25 ^a
3	TFE	40	13	15	63 ^a
4	n-butyl alcohol	40	12	<10	<10 ^b
5	Trifluoromethylbenzene	e 40	12	<15	<15 ^b
6	Chlorobenzene	40	12	<15	<15 ^b
7	DCE	40	12	<15	<15 ^b
8	Dioxane	40	12	<10	<20 ^b

Note: **1)** the reaction conversion was monitored by ¹H-NMR; **2)** N.O. means no observation in this reaction;a) Isolated yields; b) reaction conversion.

1.5 Deuteration experiments and KIE study:

A sealed tube with a screw cap (PTFE) was charged with *N*-(quinolin-8-yl)benzamide-2-d (24.9 mg, 0.1 mmol), Mn(OAc)₂ (0.2 mmol, 2 equiv.), KOTf (37 mg, 0.2 mmol, 2 equiv.), Co(acac)₂ (5.7 mg, 0.02 mmol, 20 mol%), CF₃CH₂OH (1.0 mL), and ethyl 2methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol, 3.0 equiv) under oxygen atmosphere. Resulting mixture was heated at 40 °C for 45 min, cooled to room temperature and analyzed by TLC (Petroleum ether:Ethyl acetate 10:1, Petroleum ether:Ethyl acetate = 4:1) and 1H-NMR spectroscopy.

A sealed tube with a screw cap (PTFE) was charged with *N*-(quinolin-8-yl)benzamide (12.4 mg, 0.05 mmol) and *N*-(quinolin-8-yl)benzamide-2,3,4,5,6-d5 (12.7 mg, 0.05 mmol), Mn(OAc)₂ (0.2 mmol, 2 equiv.), KOTf (37.8 mg, 0.2 mmol, 2 equiv.), Co(acac)₂ (5.7 mg, 0.02 mmol, 20 mol%), CF₃CH₂OH (1.0 mL), and ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol, 3.0 equiv) under oxygen atmosphere. Resulting mixture was heated at corresponding temperature for 45 min, cooled to room temperature and analyzed by TLC (Petroleum ether:Ethyl acetate 10:1, Petroleum ether:Ethyl acetate = 4:1) and 1H-NMR spectroscopy.

A sealed tube with a screw cap (PTFE) was charged with ethyl (*E*)-2-(1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2*H*)-ylidene)propanoate (37 mg, 0.1 mmol), $Mn(OAc)_2$ (0.2 mmol, 2 equiv.), KOAc (20 mg, 0.2 mmol, 2 equiv.), Co(acac)_2 (5.7 mg, 0.02 mmol, 20 mol%), and CF₃CH₂OH (1.0 mL) under oxygen atmosphere, then

the reaction mixture was stirred at 80 °C until the complete consumption as monitored by TLC analysis. The reaction mixture was then diluted with EtOAc (10 mL) and washed with saturated bine. The aqueous phase was extracted with EtOAc again. The organic layer was combined, washed with brine and dried over Na₂SO₄. The mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the desired product.

A sealed tube with a screw cap (PTFE) was charged with ethyl ethyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (37 mg, 0.1 mmol), $Mn(OAc)_2$ (0.2 mmol, 2 equiv.), KOAc (20 mg, 0.2 mmol, 2 equiv.), Co(acac)₂ (5.7 mg, 0.02 mmol, 20 mol%), and CF₃CH₂OH (1.0 mL) under oxygen atmosphere, then the reaction mixture was stirred at 80 °C until the complete consumption as monitored by TLC analysis. The reaction mixture was then diluted with EtOAc (10 mL) and washed with saturated bine. The aqueous phase was extracted with EtOAc again. The organic layer was combined, washed with brine and dried over Na₂SO₄. The mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the starting material.

	F N N		Br N N N	NC NC NC
1	la	1b	1c	1d
		F ₃ C		
1e	1f	1g	1h	1i
CF ₃ O H N		Br N N	F H N	
1j	1k	11	1m	ln
10				

Synthesis of Allenes

O_OEt	OCEt	O_OEt	0, OEt	OOEt
2	2a	2b	2c	2d
	OBn	OBn	O Ph	
2e	2f	2g	2h	

I. General Procedure for the exo- Synthesis:

The Co(acac)₂ (20 mol%), Mn(OAc)₂ (2.0 equiv.), KOTf (2.0 equiv.) and benzamide substrate 1 (1.0 equiv.) was dissolved in 2,2,2-trifluoroethanol (1.0 mL) in a sealed tube. Allene (3.0 equiv.) was subsequently slowly added at room temperature. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 40 °C until the complete consumption of 2 as monitored by TLC analysis. The reaction mixture was then diluted with EtOAc (10 mL) and washed with saturated bine. The aqueous phase was extracted with EtOAc again. The organic layer was combined, washed with brine and dried over Na_2SO_4 . The mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product.

II. General Procedure for the endo- Synthesis:

The Co(acac)₂ (20 mol%), Mn(OAc)₂ (2.0 equiv.), KOAc (2.0 equiv.) and benzamide substrate 1 (1.0 equiv.) was dissolved in 2,2,2-trifluoroethanol (1.0 mL) in a sealed tube. Allene (3.0 equiv.) was subsequently slowly added at room temperature. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C until the complete consumption of 1 as monitored by TLC analysis. The reaction mixture was then diluted with EtOAc (10 mL) and washed with saturated brine. The aqueous phase was extracted with EtOAc again. The organic layer was combined, washed with brine and dried over Na₂SO₄. The mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product.

III. Data of Products

Ethyl (*E*)-2-(6-bromo-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2*H*)ylidene)propanoate (3a)

Following the general procedure I, 4-bromo-N-(quinolin-8-yl)benzamide (33 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (38 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 2.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 3 (32 mg) in 71% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.87 (d, *J* = 2.0 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.94 (m, 2H), 7.81 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.51 (m, 2H), 7.41 (m, 1H), 4.83 (d, J = 7.6 Hz, 1H), 7.51 (m, 2H), 7.41 (m, 1H), 4.83 (d, J = 7.6 Hz, 1H), 7.51 (m, 2H), 7.41 (m, 1H), 4.83 (d, J = 7.6 Hz, 1H), 7.51 (m, 2H), 7.41 (m, 1H), 4.83 (d, J = 7.6 Hz, 1H), 7.51 (m, 2H), 7.41 (m, 1H), 4.83 (d, J = 7.6 Hz, 1H), 7.51 (m, 2H), 7.41 (m, 1H), 7.51 (m, 2H), 7.51 (m, 2H),13.6 Hz, 1H), 4.45 (d, J = 13.6 Hz, 1H), 4.14 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H), 1.24 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.0, 163.8, 150.1, 147.7, 143.4, 139.6, 138.1, 136.3, 131.1, 130.5, 130.4, 129.8, 129.2, 127.7, 127.6, 127.5, 125.8, 121.6, 116.9, 60.7, 34.5, 15.8, 14.3; MS (ESI) calcd for C₂₃H₁₉BrN₂O₃ [M+H]⁺: 451.06, found: 451.02.

Ethyl 2-(6-bromo-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (3b)

Following the general procedure II, 4-bromo-*N*-(quinolin-8-yl)benzamide (32.6 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOAc (19.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum

ether:Ethyl acetate = 1:1) to **3b** (including two fraction 1F and 2F) (37 mg) in 82% yield. **3b-1F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (m, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 8.00 (dd, J = 1.6 Hz, J = 8.0 Hz, 1H), 7.78 (s, 1H), 7.68-7.66 (m, 2H), 7.56 (dd, J = 1.6 Hz, J = 8.8 Hz, 1H), 7.47 (q, J = 4.0 Hz, 1H), 6.57 (s, 1H), 3.97 (m, 2H), 3.12 (q, J = 7.2 Hz, 1H), 1.37 (d, J = 7.2 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 172.9, 163.2, 151.6, 144.6, 144.2, 138.7, 136.6, 135.5, 131.6, 130.2, 130.0, 129.8, 129.5, 128.7, 127.8, 126.4, 124.2, 122.2, 103.6, 61.4, 42.7, 17.2, 14.1; MS (ESI) calcd for C₂₃H₁₉BrN₂O₃ [M+H]⁺: 451.06, found: 450.92. **3b-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (d, J = 2.8 Hz, 1H), 8.23 (m 2H), 8.00 (d, J = 4.8 Hz, 1H), 7.75 (s, 1H), 7.70 (m, 2H), 7.54 (d, J = 8.8 Hz, 1H), 7.44 (q, J = 4.0 Hz, 1H), 6.64 (s, 1H), 3.84-3.76 (m, 1H), 3.68-3.61 (m, 1H), 3.22 (q, J = 7.2 Hz, 1H), 1.36 (d, J = 7.2 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 172.1, 163.2, 151.3, 144.7, 144.5, 138.7, 136.2, 136.0, 130.2, 130.0, 129.9, 129.6, 128.7, 127.8, 126.4, 124.1, 122.1, 103.7, 61.1, 42.6, 18.7, 13.8; MS (ESI) calcd for C₂₃H₁₉BrN₂O₃ [M+H]⁺: 451.06, found: 450.92.

Ethyl(*E*)-2-(1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2*H*) ylidene)propan –oate (4a)

Following the general procedure I, N-(quinolin-8-yl)benzamide (24.8 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 4:1) to 4a (24 mg) in 65% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.88 (d, J = 2.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 7.2 Hz)Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.41-7.36 (m, 2H), 7.33 (d, J = 7.6 Hz, 1H), 4.85 (d, J = 15.6 Hz, 1H), 4.67 (d, J = 15.6Hz, 1H), 4.17-4.12 (m, 2H), 1.28-1.22 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.3, 164.5, 150.2, 148.7, 143.6, 148.5, 137.7, 136.3, 132.7, 131.2, 129.2, 128.8, 128.7, 127.7, 127.1, 126.8, 126.0, 121.6, 60.7, 34.9, 15.9, 14.0; MS (ESI) calcd for MS (ESI) calcd for $C_{23}H_{20}N_2O_3$ [M+H]⁺: 373.15, found: 373.19.

Ethyl (E) -2-(6-fluoro-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3 (2H)ylidene) propanoate (4b)

Following the general procedure I, 4-fluoro-N-(quinolin-8-yl)benzamide (26.6 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 4b (23 mg) in 59% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.87 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H), 8.17 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H), 8.11 (dd, J = 8.4 Hz, J = 6.0 Hz, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.08-7.02 (m, 2H), 4.87 (d, J = 15.6 Hz, 10.00 Hz)1H), 4.66 (d, J = 16.0 Hz, 1H), 4.17-4.10 (m, 2H), 1.26 (t, J = 7.2 Hz, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 166.7, 163.7, 150.2, 148.0, 143.5, 140.8, 140.7, 138.2, 136.3, 131.7, 131.6, 131.3, 129.2, 127.7, 125.8, 125.0, 121.6, 116.7, 114.6, 114.4, 113.8, 113.6, 60.8, 34.8, 15.9, 14.3; MS (ESI) calcd for C₂₃H₁₉FN₂O₃ [M+H]⁺: 391.14, found 391.06.

Ethyl(*E*)-2-(6-chloro-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(*2H*)-ylidene)propanoate (4c)

Following the general procedure I, 4-chloro-N-(quinolin-8-yl)benzamide (29 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (39 mg, 0.3 mmol), $Co(acac)_2$ (2.7 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOTf(37 mg, 0.2 mmol), and TFE 1.5 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 13 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography

(Petroleum ether:Ethyl acetate = 4:1) to **4c** (24.4 mg) in 61% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.89-8.87 (m, 1H), 8.18 (dd, J = 8.4 Hz, J = 1.2 Hz, 2H), 8.03 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.42-7.39 (m, 1H), 7.36-7.34 (m, 2H), 4.87-4.83 (m, 1H), 4.66-4.62 (m, 1H), 4.17-4.11 (m, 2H), 1.28-1.23 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 163.7, 150.2, 147.8, 143.4, 139.5, 138.8, 138.1, 136.3, 131.1, 130.3, 129.2, 127.8, 127.5, 127.2, 126.9, 125.8, 121.6, 116.9, 60.8, 34.5, 15.9, 14.3; MS (ESI) calcd for C₂₃H₁₉ClN₂O₃ [M+H]⁺: 406.11, found 407.05.

Ethyl(*E*)-2-(6-cyano-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(*2H*)-ylidene)propanoate (4d)

Following the general procedure I, 4-cyano-*N*-(quinolin-8-yl)benzamide (14 mg, 0.05 mmol), ethyl 2-methylbuta-2,3-dienoate (19 mg, 0.15 mmol), Co(acac)₂ (2.7 mg, 0.01 mmol), Mn(OAc)₂ (18 mg, 0.1 mmol), KOTf (19 mg, 0.1 mmol), and TFE 1.5 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 30 °C for 13 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 4:1) to **4d** (15 mg) in 70% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.88 (d, *J* = 2.0 Hz, 1H), 8.19 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 7.2 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.68-7.63 (m, 3H), 7.44-7.41 (m, 1H), 4.90 (d, *J* = 14.8 Hz, 1H), 4.16-4.11 (m, 2H), 1.27-1.23 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 168.9, 163.0, 150.3, 146.6, 143.3, 138.9, 137.8, 136.4, 132.5, 131.0, 130.7, 130.5, 129.5, 129.3, 128.0, 125.9, 121.8, 118.3, 117.8, 116.0, 61.0, 34.4, 15.9, 14.3; MS (ESI) calcd for C₂₄H₁₉N₃O₃ [M+H]⁺:398.14, found: 398.37.

Ethyl (*E*)-2-(6-acetyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(*2H*)-ylidene)propanoate (4e)

Following the general procedure I, 4-acetyl-N-(quinolin-8-yl)benzamide (29 mg, 0.1

mmol), ethyl 2-methylbuta-2,3-dienoate (38 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (25 mg, 0.13 mmol), KOAc (10 mg, 0.1 mmol), and TFE 1.5 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 6.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 4:1) to **4e** (25 mg) in 61% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.90-8.88 (m, 1H), 8.19 (d, *J* = 8.0 Hz, 2H), 7.95-7.92 (m, 3H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.43-7.40 (m, 1H), 4.93-4.89 (m, 1H), 4.73-4.69 (m, 1H), 4.18-4.10 (m, 2H), 2.66 (s, 3H), 1.28-1.24 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 197.8, 169.1, 163.4, 150.3, 147.6, 143.4, 140.0, 138.11, 138.08, 136.4, 132.4, 130.9, 129.2, 129.1, 127.9, 126.9, 126.7, 125.9, 121.6, 117.1, 60.9, 34.8, 27.1, 15.9, 14.3; MS (ESI) calcd for C₂₅H₂₂N₂O₄ [M+H]⁺: 414.16, found 415.09.

Ethyl (*E*)-2-(8-fluoro-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(*2H*)-ylidene)propanoate (4f)

Following the general procedure I, 2-fluoro-N-(quinolin-8-yl)benzamide (27 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (38 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (19 mg, 0.1 mmol), KOAc (10 mg, 0.1 mmol), and TFE 1.5 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 10 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 4f (21 mg) in 54% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.87 (d, J = 2.0 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.41 (m, 2H), 7.12 (d, J = 7.6 Hz, 1H), 7.06 (t, J = 9.6 Hz, 1H), 4.88 (d, J = 15.2 Hz, 1H), 4.13 (d, J = 15.2 Hz, 1H), 4.12 (m, 2H), 1.29 (m, 3H), 1.24 (t, J = 7.2 Hz, 6H). ¹³C-NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ (ppm) 169.1, 162.4 (d, J = 221.0 Hz, 1C), 160.9, 150.2, 148.0, 143.5, 140.3, 137.9, 136.3, 133.8 (d, *J* = 9.0 Hz, 1C), 131.3, 129.3, 127.7, 125.9, 122.5 (d, J = 3.0 Hz, 1C), 121.6, 117.2, 116.6, 115.5 (d, J = 22.0 Hz, 1C), 60.7, 35.3, 15.8, 14.3; MS (ESI) calcd for C₂₃H₁₉FN₂O₃ [M+H]⁺: 391.14, found: 391.06.

Ethyl (*E*)-2-(1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2*H*)-ylidene)butanoate (4g)

Following the general procedure I, N-(quinolin-8-yl)benzamide (24.8 mg, 0.1 mmol), ethyl 2-ethylbuta-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na_2SO_4 and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to 4g (24 mg) in 62% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.91 (d, J = 2.4 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 7.2 Hz)Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.41-7.36 (m, 2H), 7.30 (d, J = 7.6 Hz, 1H), 4.84 (d, J = 15.6 Hz, 1H), 4.47 (d, J = 16.0Hz, 1H), 4.18 (dd, J = 14.0 Hz, J = 6.8 Hz, 2H), 2.14-1.90 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), -0.12 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.2, 164.5, 150.3, 146.9, 143.7, 139.1, 138.0, 136.1, 132.7, 131.1, 129.3, 128.8, 127.7, 127.1, 126.7, 126.0, 123.5, 121.5, 60.6, 35.3, 22.6, 14.3, 10.5; MS (ESI) calcd for C₂₄H₂₂N₂O₃ [M+H]⁺: 387.16, found: 387.11.

Ethyl (*E*)-2-(6-chloro-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(*2H*)-ylidene)butanoate (4h)

Following the general procedure I, 4-chloro-N-(quinolin-8-yl)benzamide (29 mg, 0.1 mmol), ethyl 2-ethylbuta-2,3-dienoate (42 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOTf(37 mg, 0.2 mmol), and TFE 2.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 13 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography

(Petroleum ether:Ethyl acetate = 4:1) to **4h** (28 mg) in 60% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.91-8.90 (m, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 8.02 (t, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.42-7.39 (m, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.31 (s, 1H), 4.85-4.81 (m, 1H), 4.48-4.44 (m, 1H), 4.20-4.15 (m, 2H), 2.13-2.02 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), -0.11 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.0, 163.7, 150.3, 146.0, 143.6, 139.8, 138.82, 138.80, 136.2, 131.1, 130.4, 129.4, 127.8, 127.5, 127.2, 126.8, 126.0, 124.2, 121.6, 60.7, 35.1, 22.6, 14.3, 10.5; MS (ESI) calcd for C₂₄H₂₁ClN₂O₃ [M+H]⁺: 420.12, found 421.04.

Ethyl (*E*)-2-(6-bromo-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2*H*)-ylidene)butanoate (4i)

Following the general procedure I, 4-bromo-N-(quinolin-8-yl)benzamide (32.6 mg, 0.1 mmol), ethyl 2-ethylbuta-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 4:1) to 4i (41 mg) in 88% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.90 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 8.16 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H), 8.00 $(d, J = 7.2 \text{ Hz}, 1\text{H}), 7.95 (d, J = 8.0 \text{ Hz}, 1\text{H}), 7.83 (d, J = 8.0 \text{ Hz}, 1\text{H}), 7.64 (t, J = 7.6 \text{Hz}, 1\text{Hz}), 7.64 (t, J = 7.6 \text{Hz}), 7.64 (t, J = 7.6 \text{H$ Hz, 1H), 7.50 (t, J = 8.4 Hz, 1H), 7.48 (s, 1H), 7.40 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 4.83 (d, J = 16.4 Hz, 1H), 4.45 (d, J = 16.4 Hz, 1H), 4.17 (dd, J = 14.0 Hz, J = 6.8 Hz, 2H), 2.20-1.90 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H), -0.12 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 168.9, 163.8, 150.3, 145.9, 143.5, 139.9, 138.7, 136.2, 131.0, 130.5, 130.4, 129.7, 129.3, 127.8, 127.6, 127.4, 125.9, 124.2, 121.6, 60.7, 35.0, 22.6, 14.3, 10.5; MS (ESI) calcd for C₂₄H₂₁BrN₂O₃ [M+H]⁺: 465.07, found: 464.96.

Ethyl (E)-2-(6-cyano-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(2H)-ylide-

ne)butanoate (4j)

Following the general procedure I, 4-cyano-N-(quinolin-8-yl)benzamide (27 mg, 0.1 mmol), ethyl 2-ethylbuta-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 4j (26 mg) in 63% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.90 (m, 1H), 8.20-8.17 (m, 2H), 8.00 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.70-7.62 (m, 3H), 7.41 (q, J = 4.0 Hz, 1H), 4.88 (d, J = 15.6 Hz, 1H), 4.53 (d, J= 15.6 Hz, 1H), 4.16 (m, 2H), 2.11 (m, 1H), 2.01 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H), -0.10 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 168.7, 163.0, 150.4, 144.8, 143.3, 139.1, 138.4, 136.3, 132.5, 130.8, 130.7, 130.4, 129.5, 129.4, 128.0, 125.9, 125.0, 121.7, 118.2, 115.9, 60.9, 34.8, 22.6, 14.3, 10.4. MS (ESI) calcd for C₂₅H₂₁N₃O₃ [M+H]⁺: 412.16, found: 412.46.

Ethyl (*E*)-2-(6-acetyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(*2H*)-ylidene)butanoate (4k)

Following the general procedure I, 4-acetyl-N-(quinolin-8-yl)benzamide (29 mg, 0.1 mmol), ethyl 2-ethylbuta-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 2.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 13 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 4k (27 mg) in 63% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.92-8.91 (m, 1H), 8.18 (d, J = 7.2 Hz, 2H), 8.01 (d, J = 7.2 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.89 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.43-7.40 (m, 1H), 4.90-4.86 (m, 1H), 4.55-4.51 (m, 1H), 4.22-4.16 (m, 2H), 2.66 (s, 3H), 2.13-2.04 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), -0.11 (t, J = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 197.8, 169.0, 163.7, 150.4, 145.8, 143.5, 140.0, 138.8, 138.5, 136.2, 132.5, 130.9, 129.4, 129.2, 127.9, 126.9, 126.6, 126.0, 124.4, 121.7, 60.8, 35.3, 27.1, 22.6, 14.3, 10.5; MS (ESI) calcd for C₂₆H₂₄N₂O₄ [M+H]⁺: 428.17, found 429.08.

Ethyl (*E*)-2-(6-bromo-8-methyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3 (*2H*)-ylidene)butanoate (4l)

Following the general procedure I, 4-bromo-2-methyl-N-(quinolin-8-yl)benzamide (34 mg, 0.1 mmol), ethyl 2-ethylbuta-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 2.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 12 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 41 (30 mg) in 64% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.91-8.90 (m, 1H), 8.17 (d, J = 8.4 Hz, J = 1.2 Hz, 1H), 7.90 (d, J =7.2 Hz, J = 0.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.42-7.39 (m, 1H), 7.32 (d, J = 9.6 Hz, 2H), 4.83-4.79 (m, 1H), 4.40-4.36 (m, 1H), 4.18 (q, J =7.2 Hz, 2H), 2.66 (s, 3H), 2.16-2.09 (m, 1H), 2.05-1.98 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H), -0.12 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 168.9, 164.5, 150.4, 146.2, 143.8, 143.1, 140.2, 139.4, 136.3, 133.4, 130.9, 129.4, 127.9, 127.5, 126.2, 126.1, 123.2, 121.7, 60.7, 36.0, 22.6, 21.6, 14.3, 10.5; MS (ESI) calcd for C₂₅H₂₃BrN₂O₃ [M+H]⁺: 478.09, found 478.95.

Ethyl (*E*)-2-(6-fluoro-4-methyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3 (*2H*)-ylidene)acetate (4m)

Following the general procedure I, 4-flouro-*N*-(quinolin-8-yl)benzamide (34 mg, 0.1 mmol), ethyl penta-2,3-dienoate (38 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 2.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 11 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum

ether:Ethyl acetate = 4:1) to **4m** (28 mg) (including two fraction 1F and 2F) in 72% yield. **4m-1F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.87 (dd, J = 4.0 Hz, J = 1.2 Hz, 1H), 8.25 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H), 8.16-8.12 (m, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.70-7.66 (m, 1H), 7.61 (d, J = 6.8 Hz, 1H), 7.46 (dd, J = 8.4 Hz, J = 4.4 Hz, 1H), 7.10-7.06 (m, 2H), 5.53-5.47 (m, 1H), 4.61 (s, 1H), 4.10-3.99 (m, 2H), 1.91 (d, J = 7.2 Hz, 3H), 1.15-1.12 (m, 3H). **4m-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (dd, J = 4.0 Hz, J = 1.2 Hz, 0.6H), 8.21 (dd, J = 4.0 Hz, J = 1.2 Hz, 0.6H), 8.16-8.12 (m, 0.6H), 7.95 (d, J = 9.6 Hz, 0.6H), 7.70-7.66 (m, 1.2H), 7.43 (dd, J = 8.4 Hz, J = 4.4 Hz, 0.6H), 7.10-7.06 (m, 1.2H), 5.53-5.47 (m, 0.6H), 4.81 (s, 0.6H), 4.10-3.99 (m, 1.2H), 1.91 (d, J = 7.2 Hz, 1.8H), 1.15-1.12 (m, 1.8H); MS (ESI) calcd for C₂₃H₁₉FN₂O₃ [M+H]⁺: 391.14, found 391.07.

Ethyl (*E*)-2-(6-chloro-4-methyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3 (*2H*)-ylidene)acetate (4n)

Following the general procedure I, 4-chloro-N-(quinolin-8-yl)benzamide (28.2 mg, 0.1 mmol), ethyl penta-2,3-dienoate (38 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 2.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 12 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 4n (28.8 mg) (including two fraction 1F and 2F) in 71% yield. **4n-1F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (d, J = 4.0 Hz, 1H), 8.23 = 8.0 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.96-7.93 (m, 1H), 7.69-7.65 (m, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.46-7.35 (m, 3H), 5.51-5.44 (m, 1H), 4.60 (s, 1H), 4.09-3.97 (m, 2H), 1.74 (d, J = 7.2 Hz, 3H), 1.14-1.10 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.57, 162.4, 161.1, 151.6, 144.5, 144.4, 139.8, 136.6, 136.2, 129.6, 129.3, 127.8, 127.11, 127.0, 126.2, 124.4, 122.2, 101.2, 59.9, 35.0, 26.7, 14.3. **4n-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.82 (d, J = 4.0 Hz, 0.7H), 8.20 (d, J = 8.0 Hz, 0.7H), 8.05 (d, J = 8.4 Hz, 0.7H), 7.96-7.93 (m, 0.7H), 7.69-7.65 (m, 1.4H), 7.46-7.35 (m, 2.1H), 5.51-5.44 (m, 0.7H), 4.81 (s, 0.7H), 4.09-3.97 (m, 1.4H), 1.90 (d, J = 7.2 Hz, 2.1H), 1.14-1.10 (m, 2.1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.64, 162.4, 160.7, 151.1, 144.8, 143.8, 139.7, 136.9, 135.2, 129.53, 129.45, 127.7, 127.09, 127.0, 126.2, 124.5, 122.1, 100.5, 59.8, 35.3, 27.2, 14.3; MS (ESI) calcd for C₂₃H₁₉ClN₂O₃ [M+H]⁺: 407.11, found 407.15.

Ethyl (*E*)-2-(6-chloro-4-ethyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3 (*2H*)-ylidene)acetate (40)

Following the general procedure I, 4-chloro-N-(quinolin-8-yl)benzamide (28 mg, 0.1 mmol), ethyl hexa-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 1.5 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 8.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 40 (30 mg) (including two fraction 1F and 2F) in 74% yield. **40-1F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (br, 1H), 8.22 (t, J = 8.0Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.70-7.61 (m, 2H), 7.45-7.38 (m, 3H), 5.46-5.43 (m, 1H), 4.67 (s, 1H), 4.13-3.95 (m, 2H), 2.15-2.05 (m, 2H), 1.17-1.01 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.7, 162.8, 160.1, 151.6, 144.3, 142.6, 139.3, 136.5, 136.2, 131.0, 130.4, 129.6, 129.3, 127.7, 127.0, 126.3, 125.3, 122.2, 101.9, 59.84, 40.7, 33.7, 14.3, 11.0. 40-2F ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (br, 0.6H), 8.22 (t, J = 8.0 Hz, 0.6H), 8.07 (d, J = 8.4 Hz, 0.6H), 7.95 (d, J = 8.4 Hz, 0.6H), 7. J = 8.0 Hz, 0.6H), 7.70-7.61 (m, 1.2H), 7.45-7.38 (m, 1.8H), 5.41-5.38 (m, 0.6H), 4.86 (s, 0.6H), 4.13-3.95 (m, 1.2H), 2.39-2.34 (m, 0.6H), 2.28-2.22 (m, 0.6H), 1.17-1.01 (m, 3.6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.8, 162.7, 159.7, 151.0, 143.9, 143.0, 139.1, 137.0, 135.2, 130.3, 130.0, 129.4, 129.3, 127.8, 127.0, 126.3, 125.4, 122.0, 101.4, 59.80, 41.4, 34.3, 14.3, 11.4; MS (ESI) calcd for C₂₄H₂₁ClN₂O₃ [M+H]⁺: 420.13, found 421.04.

Ethyl (*E*)-2-(6-bromo-4,8-dimethyl-1-oxo-2-(quinolin-8-yl)-1,4 dihydroisoquinolin -3(*2H*)-ylidene)acetate (4p)

Following the general procedure I, 4-bromo-2-methyl-*N*-(quinolin-8-yl)benzamide (34 mg, 0.1 mmol), ethyl penta-2,3-dienoate (38 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOTf(37 mg, 0.2 mmol), and TFE 2.0 ml were

used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 10 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 4p (25 mg) (including two fraction 1F and 2F) in 55% yield. **4p-1F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (d, J = 4.0 Hz, 1H), 8.25 (d, J = 1.6 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.68-7.63 (m, 2H), 7.46-7.41 (m, 2H), 7.36 (s, 1H), 5.47-5.41 (m, 1H), 4.58 (s, 1H), 4.09-3.96 (m, 2H), 2.59 (s, 3H), 1.75 $(d, J = 7.2 \text{ Hz}, 3\text{H}), 1.16-1.12 \text{ (m, 3H)}; {}^{13}\text{C-NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta \text{ (ppm) } 166.79,$ 163.5, 161.1, 151.4, 145.3, 144.2, 144.0, 136.6, 136.2, 133.8, 130.7, 129.6, 129.3, 128.2, 127.06, 126.98, 126.3, 123.5, 122.2, 100.0, 59.8, 36.0, 27.2, 22.7, 14.3. 4p-2F ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (d, J = 4.0 Hz, 0.8H), 8.23 (dd, J = 1.6 Hz, 0.8H), 7.94 (d, J = 8.0 Hz, 0.8H), 7.68-7.63 (m, 1.6H), 7.36 (s, 1H), 5.47-5.41 (m, 0.8H), 4.74 (s, 0.8H), 4.09-3.96 (m, 1.6H), 2.59 (s, 2.4H), 1.92 (d, *J* = 7.2 Hz, 2.4H), 1.16-1.12 (m, 2.4H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.75, 163.2, 160.7, 151.1, 145.9, 144.3, 143.9, 137.5, 135.8, 133.7, 130.7, 129.9, 129.4, 128.3, 127.06, 126.98, 126.3, 123.2, 122.0, 99.2, 59.7, 35.6, 26.3, 22.5, 14.3; MS (ESI) calcd for C₂₄H₂₁BrNO₃ [M+H]⁺: 464.07, found 464.96.

Ethyl (*E*)-2-(4-ethyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3(*2H*)-ylidene)acetate (4q)

Following the general procedure I, N-(quinolin-8-yl)benzamide (24.8 mg, 0.1 mmol), ethyl hexa-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 1.5 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 8.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 4:1) to 4q (26 mg) (including two fraction 1F and 2F) in 67% yield. 4q-1F¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.86-8.84 (m, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.96-7.94 (m, 1H), 7.70-7.62 (m, 2H), 7.58 (t, J = 8.0 Hz, 1H),7.45-7.36 (m, 3H), 5.47-5.39 (m, 1H), 4.67 (s, 1H), 4.15-3.97 (m, 2H), 2.15-2.08 (m, 2H), 1.16-1.06 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.9, 163.6, 161.2, 151.6, 144.5, 140.9, 136.5, 136.2, 133.0, 131.0, 129.5, 129.4, 128.8, 127.8, 127.4, 127.1, 126.3, 122.2, 101.4, 59.8, 41.6, 34.5, 14.4, 11.4. 4q-2F ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.86-8.84 (m, 0.55H), 8.21 (d, J = 8.0 Hz, 0.55H), 8.13 (d, J = 8.0 Hz, 0.55H), 7.96-7.94 (m, 0.55H), 7.70-7.62 (m, 1.1H), 7.58 (t, J = 8.0 Hz, 0.55H), 7.45-7.36 (m, 1.65H), 5.47-5.39 (m, 0.55H), 4.84 (s, 0.55H), 4.15-3.97 (m, 1.1H), 2.35-2.23 (m, 1.1H), 1.16-1.06 (m, 3.3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 167.0, 163.6, 160.7, 151.0, 144.1, 141.3, 137.3, 135.7, 132.9, 131.0, 129.6, 129.3, 128.6, 127.8, 127.2, 126.7, 126.3, 122.0, 100.8, 59.7, 41.0, 33.8, 14.3, 11.1; MS (ESI) calcd for C₂₄H₂₂N₂O₃ [M+H]⁺: 387.16, found 387.11.

Ethyl (*E*)-2-(6-bromo-4-ethyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin-3 (*2H*)-ylidene)acetate (4r)

Following the general procedure I, 4-bromo-N-(quinolin-8-yl)benzamide (33 mg, 0.1 mmol), ethyl hexa-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (37 mg, 0.2 mmol), and TFE 1.5 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 4:1) to 4r (28 mg) (including two fraction 1F and 2F) in 60% yield. **4r-1F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (s, 1H), 8.23 (t, J = 9.0 Hz, 1H), 7.99-7.94 (m, 2H), 7.70-7.61 (m, 2H), 7.55 (d, J = 5.4 Hz, 2H), 7.45-7.43 (m, 1H), 5.45-5.41 (m, 1H), 4.66 (s, 1H), 4.09-3.95 (m, 2H), 2.14-2.07 (m, 2H), 1.16-1.07 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.7, 162.9, 160.0, 151.6, 144.3, 142.7, 136.5, 136.2, 130.7, 130.6, 130.3, 129.6, 129.5, 129.2, 127.9, 126.3, 125.68, 122.2, 101.9, 59.82, 40.6, 33.7, 14.3, 10.9. **4r-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (s, 0.55H), 8.23 (t, J = 9.0 Hz, 0.55H), 7.99-7.94 (m, 1.1H), 7.70-7.61 (m, 1.1H), 7.55 (d, J = 5.4 Hz, 1.1H), 7.45-7.43 (m, 0.55H), 5.40-5.36 (m, 0.55H), 4.86 (s, 0.55H),4.09-3.95 (m, 1.1H), 2.38-2.20 (m, 1.1H), 1.16-1.07 (m, 3.3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 166.8, 162.9, 159.6, 151.0, 143.8, 143.1, 136.9, 135.2, 130.9, 130.5, 129.9, 129.4, 129.2, 127.8, 126.3, 125.72, 122.0, 101.4, 59.78, 41.2, 34.3, 14.3, 11.3; MS (ESI) calcd for $C_{24}H_{21}BrN_2O_3$ [M+H]⁺: 465.07, found: 465.01.

Ethyl (*E*)-2-(6-chloro-4,4-dimethyl-1-oxo-2-(quinolin-8-yl)-1,4dihydroisoquinolin -3(2*H*)-ylidene)propanoate (4s)

Following the general procedure I, 4-chloro-N-(quinolin-8-yl)benzamide (27.3 mg, 0.1 mmol), ethyl 4-methylpenta-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to 4s (29 mg) in 67% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.91 (dd, J = 1.6 Hz, J = 4.0 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 8.0Hz, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.75-7.71 (m, 3H), 7.60 (t, J = 8.0 Hz, 1H), 7.43 (q, J = 4.0 Hz, 1H), 5.48 (s, 1H), 3.23 (m, 1H), 2.98 (m, 1H), 1.87 (s, 3H), 1.78 (s, 3H), 0.70 (t, J = 7.2 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 165.5, 162.5, 153.6, 150.0, 146.7, 144.2, 139.2, 137.4, 136.1, 131.0, 130.1, 129.0, 128.3, 127.6, 126.7, 125.8, 123.0, 121.5, 103.8, 60.0, 41.2 (2C), 13.7; MS (ESI) calcd for C₂₄H₂₁ClN₂O₃ [M+H]⁺: 421.12, found: 421.04.

Ethyl (*E*)-2-(6-cyano-4,4-dimethyl-1-oxo-2-(quinolin-8-yl)-1,4-dihydroisoquinolin -3(2*H*)-ylidene)propanoate (4t)

Following the general procedure I, 4-cyano-*N*-(quinolin-8-yl)benzamide (27.3 mg, 0.1 mmol), ethyl 4-methylpenta-2,3-dienoate (42 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 40 °C for 9.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **4t** (30 mg) in 71% yield. ¹H-NMR (400 MHz, CDCl₃) δ

(ppm) 8.91 (dd, J = 1.6 Hz, J = 4.0 Hz, 1H), 8.23 (dd, J = 7.6 Hz, 1H), 8.19 (dd, J = 1.6 Hz, J = 7.6 Hz, 1H), 7.85 (dd, J = 2.0 Hz, J = 8.0 Hz, 1H), 7.74-7.70 (m, 3H), 7.59 (t, J = 8.0 Hz, 1H), 7.43 (q, J = 4.0 Hz, 1H), 5.48 (s, 1H), 3.23 (m, 1H), 2.98 (m, 1H), 1.87 (s, 3H), 1.78 (s, 3H), 0.70 (t, J = 7.2 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 165.3, 161.7, 152.6, 150.1, 145.9, 137.0, 136.2, 132.0, 131.0, 130.1, 129.9, 129.1, 128.6, 126.6, 125.8, 121.7, 116.3, 104.7, 60.2, 41.2, 13.7; MS (ESI) calcd for C₂₅H₂₁N₃O₃ [M+H]⁺: 412.16, found: 412.12.

(*E*)-2-bromo-6-(quinolin-8-yl)-6,8,9,10,11,12,13,13a-octahydro-5*H*-cyclonona[c] isoquinolin-5-one (4u)

Following the general procedure I, 4-bromo-N-(quinolin-8-yl)benzamide (32.6 mg, 0.1 mmol), cyclonona-1,2-diene (36.6 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOTf (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 10.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 6:1) to 4u (15.4 mg) in 34% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.91 (dd, J = 1.2 Hz, J = 4.0 Hz, 1H), 8.21 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H), 8.04 (d, J = 8.4Hz, 1H), 7.87-7.82 (m, 1H), 7.88 (d, J=1.6 Hz, 3H), 7.77 (s, 1H), 7.64-7.61 (m, 1H), 7.51 (dd, J = 1.6 Hz, J = 8.4 Hz, 1H), 7.42 (q, J = 4.0 Hz, 1H), 6.48 (t, J = 8.4 Hz, 1H), 5.32 (m, 2H), 2.54 (m, 1H), 2.34-2.18 (m, 2H), 2.06-1.12 (m, 20H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 162.6, 150.6, 138.5, 136.7, 131.3, 131.1, 130.9, 130.6, 129.9, 128.1, 127.1, 126.8, 126.5, 126.3, 121.5, 33.0, 27.8, 26.7, 25.6, 22.6. MS (ESI) calcd for C₂₅H₂₃BrN₂O [M+H]⁺: 447.10, found: 447.02.

Benzyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5a) Following the general procedure II, *N*-(quinolin-8-yl)benzamide (24.8 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5a** (25 mg) in 59% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (dd, J = 1.6 Hz, J = 4.0 Hz, 1H), 8.39 (d, J = 7.6 Hz, 2H), 8.22 (dd, J = 1.6 Hz, J = 8.4 Hz, 1H), 7.90 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H), 7.66 (m, 1H), 7.60 (dd, J = 1.2 Hz, J = 7.2 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.48 (m, 1H), 7.49-7.47 (m, 3H), 7.17 (dd, J =2.0 Hz, J = 6.0 Hz, 2H), 6.63 (s, 1H), 4.90 (d, J = 16.4 Hz, 1H), 4.89 (d, J = 16.4 Hz, 1H), 3.41 (d, J = 17.2 Hz, 1H), 3.12 (d, J = 17.2 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.2, 163.5, 151.4, 144.3, 137.0, 136.3, 135.5, 135.0, 132.5, 131.2, 129.5, 129.3, 128.48, 128.47, 128.4, 128.2, 126.7, 126.2, 125.9, 125.5, 121.8, 107.9, 66.8, 40.0.

Benzyl 2-(6-fluoro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5b)

Following the general procedure II, 4-flouro-N-(quinolin-8-yl)benzamide (26.6 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5b** (32.9 mg) in 75% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (dd, J = 4.0, 1.6 Hz, 1H), 8.40 (m, 1H), 8.22 (dd, J = 8.0, 1.6 Hz, 1H), 7.91 (dd, J = 8.4, 1H), 7.91.6 Hz, 1H), 7.59 (dd, J = 7.2, 1.2 Hz, 1H), 7.48-7.42 (m, 2H), 7.34-7.31 (m, 3H), 7.19-7.17 (m, 5H), 6.57 (s, 1H), 4.90-4.89 (m, 2H), 3.40 (d, J = 17.2 Hz, 1H), 3.10 (d, J =16.8 Hz, 1H);¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 165.5 (d, $J_{C-F} = 251$ Hz), 163.0, 144.4, 139.4 (d, $J_{C-F} = 10.6$ Hz), 138.1, 136.5, 135.4, 135.1, 131.7 (d, $J_{C-F} = 10$ Hz), 131.4, 129.8, 129.4, 128.7, 128.6, 126.3, 122.3, 122.1, 115.4 (d, $J_{C-F} = 23.3$ Hz), 110.8 (d, $J_{C-F} = 21.8$ Hz), 107.4 (d, $J_{C-F} = 3$ Hz), 67.1, 40.1; MS (ESI) calcd for C₂₇H₁₉FN₂O₃ [M+H]⁺: 438.14, found 439.12.

Benzyl 2-(6-chloro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5c)

Following the general procedure II, 4-chloro-*N*-(quinolin-8-yl)benzamide (28.2 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5c** (30 mg) in 67% yield.

¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (d, J = 2.8 Hz, 1H), 8.31 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 6.8 Hz, 1H), 7.53 (s, 1H), 7.49-7.40 (m, 3H), 7.35-7.28 (m, 3H), 7.17 (d, J = 4.0 Hz, 2H), 4.95-4.89 (m, 2H), 3.39 (d, J = 16.8 Hz, 1H), 3.10 (d, J = 16.8 Hz, 1H);¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 163.1, 151.7, 144.4, 139.2, 138.4, 138.2, 136.5, 135.4, 135.2, 131.3, 130.3, 129.8, 129.5, 128.7, 128.7, 128.7, 127.3, 126.3, 125.3, 124.0, 122.1, 107.0, 67.1, 40.2; MS (ESI) calcd for C₂₇H₁₉ClN₂O₃ [M+H]⁺: 454.12, found 455.02.

Benzyl 2-(6-bromo-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5d)

Following the general procedure II, 4-bromo-*N*-(quinolin-8-yl)benzamide (33 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5d** (36 mg) in 72% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (m, 1H), 8.22 (t, *J* = 8.8 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.70 (s, 1H), 7.57 (t, *J* = 8.4 Hz, 2H), 7.48-7.40 (m, 2H), 7.34-7.32 (m, 3H), 7.18-7.16 (m, 2H), 6.52 (s, 1H), 4.90-4.89 (m, 2H), 3.40

(d, J = 16.8 Hz, 1H), 3.10 (d, J = 16.8 Hz, 1H);¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.2, 163.0, 151.6, 144.3, 138.6, 138.2, 136.5, 135.4, 135.1, 131.3, 130.3, 130.0, 129.8, 129.4, 128.7, 128.7, 128.6, 128.6, 128.4, 127.8, 126.3, 124.3, 122.1, 106.8, 67.1, 40.1; MS (ESI) calcd for C₂₇H₁₉BrN₂O₃ [M+H]⁺:498.06, found 498.99.

Benzyl 2-(1-oxo-2-(quinolin-8-yl)-6-(trifluoromethyl)-1,2-dihydroisoquinolin-3-yl) acetate (5e)

Following the general procedure II, *N*-(quinolin-8-yl)-4-(trifluoromethyl)benzamide (32 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5e** (34 mg) in 70% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H), 8.23 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.92 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.83 (s, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.59 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.49-7.42 (m, 2H), 7.34-7.31 (m, 3H), 7.19-7.17 (m, 2H), 4.95-4.87 (m, 1H), 3.42 (d, *J* = 16.8 Hz, 1H), 3.11 (d, *J* = 16.8 Hz, 1H); MS (ESI) calcd for C₂₈H₁₉F₃N₂O₃ [M+H]⁺: 488.13, found 489.04.

Benzyl-2-(6-methyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5f)

Following the general procedure II, 4-methyl-*N*-(quinolin-8-yl)benzamide (26.2 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl

acetate = 1:1) to **5f** (25 mg) in 57% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (dd, J = 4.4, 1.6 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.21 (dd, J = 8.4, 1.6 Hz, 1H), 7.89 (dd, J = 8.4, 1.2 Hz, 1H), 7.58 (dd, J = 7.2, 1.2 Hz, 1H), 7.48-7.40 (m, 2H), 7.34-7.28 (m, 5H), 7.18-7.15 (m, 2H), 6.56 (s, 1H), 4.90-4.88 (m, 2H), 3.39 (d, J = 16.8 Hz, 1H), 3.10 (d, J = 16.8 Hz, 1H), 2.50 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.4, 163.7, 151.6, 144.7, 143.3, 137.4, 136.5, 136.5, 135.9, 135.3, 131.6, 129.7, 129.5, 128.7, 128.7, 128.6, 128.5, 128.5, 126.4, 125.9, 123.6, 122.0, 108.0, 67.0, 40.2, 22.1; MS (ESI) calcd for C₂₇H₁₉BrN₂O₃ [M+H]⁺: 434.16, found 435.18.

Benzyl 2-(6-cyano-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5g) Following the general procedure I, 4-cyano-N-(quinolin-8-yl)benzamide (27 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H2O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to **5g** (37 mg) in 80% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (d, J = 2.8 Hz, 1H), 8.46 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.87 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.49-7.43 (m, 2H), 7.34-7.33 (m, 3H), 7.17 (d, J = 4.0 Hz, 2H), 6.62 (s, 1H), 4.95-4.89 (m, 2H), 3.42 (d, J = 17.2 Hz, 1H), 3.11 (d, J = 16.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 168.9, 162.6, 151.8, 144.1, 139.1, 137.2, 136.6, 135.0, 135.0, 131.1, 130.7, 130.1, 129.6, 129.5, 128.7, 128.7, 128.7 128.6, 128.0, 126.4, 122.3, 118.4, 116.2, 106.8, 67.3, 40.1; MS (ESI) calcd for C₂₈H₁₉N₃O₃ [M+H]⁺: 445.14, found 446.09.

Benzyl 2-(6-acetyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5h) Following the general procedure I, 4-acetyl-*N*-(quinolin-8-yl)benzamide (29 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture

was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5h** (38 mg) in 83% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (dd, *J* = 4.0, 1.2 Hz, 1H), 8.46 (d, *J* = 8.4 Hz, 1H), 8.23 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.13 (d, *J* = 0.8 Hz, 1H), 8.00 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.49-7.42 (m, 2H), 7.34-7.32 (m, 3H), 7.18-7.17(m, 2H), 6.70 (s, 1H), 4.95-4.90 (m, 1H), 3.43 (d, *J* = 16.8 Hz, 1H), 3.12 (d, *J* = 16.8 Hz, 1H), 2.72 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 198.0, 169.1, 163.1, 151.7, 144.3, 140.1, 137.7, 137.1, 136.5, 135.4, 135.2, 131.3, 129.9, 129.5, 129.1, 128.7, 128.6, 128.6, 128.4, 126.6, 126.4, 125.5, 122.1, 108.0, 67.1, 40.1, 27.2; MS (ESI) calcd for C₂₉H₂₂N₂O₄ [M+H]⁺: 462.16, found 463.11.

Benzyl 2-(6-bromo-8-methyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5i)

Following the general procedure I, 4-bromo-2-methyl-N-(quinolin-8-yl)benzamide (34 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5i** (35 mg) in 68% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (dd, J = 4.0, 1.6 Hz, 1H), 8.21 (dd, J = 8.4, 2.0 Hz, 1H), 7.89 (dd, J = 8.0, 1.2 Hz, 1H),7.58 (d, J = 1.2 Hz, 1H), 7.56 (d, J = 1.2 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 7.48-7.41 (m, 2H), 7.35-7.31(m, 3H), 7.18-7.15 (m, 2H), 6.45 (s, 1H), 4.95-4.89 (m, 2H), 3.34 (d, J = 16.8 Hz, 1H), 3.04 (d, J = 16.8 Hz, 1H), 2.79 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 164.0, 151.7, 144.8, 144.4, 140.2, 137.7, 136.6, 135.8, 135.2, 132.6, 131.4, 129.7, 129.5, 128.7, 128.7, 128.6, 126.7, 126.7, 126.4, 122.8, 122.1, 107.3, 67.1, 40.0, 23.7; MS (ESI) calcd for C₂₈H₂₁BrN₂O₃ [M+H]⁺: 512.07, found 512.93.

Benzyl 2-(8-fluoro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5j) Following the general procedure I, 4-bromo-2-methyl-N-(quinolin-8-yl)benzamide (34 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to 5j (34 mg) in 78% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (dd, J = 4.4, 1.6 Hz, 1H), 8.20 (dd, J = 8.4, 1.6 Hz, 1H), 7.89 (dd, J = 8.0, 1.2 Hz, 1H),7.61-7.56 (m, 2H), 7.48-7.41 (m, 2H), 7.35-7.29 (m, 4H), 7.18-7.15 (m, 2H), 7.13-7.08 (m, 1H), 6.58 (d, J = 1.6 Hz, 1H), 4.94-4.86 (m, 2H), 3.38 (d, J = 17.2 Hz, 1H), 3.10 (d, J = 16.8 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 162.9 (d, $J_{C-F} = 263$ Hz), 160.8 (d, *J*_{C-F} = 4.8 Hz), 144.5, 139.9, 137.8, 136.5, 135.2 (d, *J*_{C-F} = 12 Hz), 133.6 (d, $J_{C-F} = 12$ Hz), 131.6, 129.7, 129.4, 128.7, 128.6 (d, $J_{C-F} = 3.7$ Hz), 126.3, 122.0, 121.9 (d, $J_{C-F} = 4.3$ Hz), 114.8 (d, $J_{C-F} = 5.7$ Hz), 113.7 (d, $J_{C-F} = 3.7$ Hz), 107.3 (d, $J_{C-F} = 3.7$ $_{\rm F}$ = 4.0 Hz), 67.1, 40.1; MS (ESI) calcd for C₂₇H₁₉FN₂O₃ [M+H]⁺: 438.14, found 439.07.

Benzyl 2-(8-methyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5k)

Following the general procedure I, 2-methyl-N-(quinolin-8-yl)benzamide (27 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to 5k (26 mg) in 60% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.87-8.86 (m, 1H), 8.21 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 7.89 (d, J =8.4 Hz, 1H), 7.60 (d, J = 6.4 Hz, 1H), 7.52-7.45 (m, 2H), 7.44-7.41 (m, 1H), 7.38-7.32 (m, 5H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.18-7.16 (m, 2H), 6.57 (s, 1H), 4.93-4.86 (m, 2H), $3.37 (d, J = 16.8 Hz, 1H), 3.06 (d, J = 16.8 Hz, 1H), 2.85 (s, 1H); {}^{13}C-NMR (100 MHz, 100 MHz)$ CDCl₃) δ (ppm) 169.4, 164.5, 151.6, 144.6, 142.4, 138.9, 136.5, 136.2, 135.2, 132.0, 131.6, 130.0, 129.5, 128.7, 126.4, 124.5, 124.1, 122.0, 108.5, 67.0, 40.0, 23.9; MS (ESI) calcd for C₂₈H₂₂N₂O₃ [M+H]⁺: 435.16, found 435.08.

Benzyl 2-(1-oxo-2-(quinolin-8-yl)-8-(trifluoromethyl)-1,2-dihydroisoquinolin-3-yl) acetate (5l)

Following the general procedure I, N-(quinolin-8-yl)-2-(trifluoromethyl)benzamide (32 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5l** (36.5 mg) in 75% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (dd, *J* = 4.0, 1.2 Hz, 1H), 8.20 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.90-7.87 (m, 2H), 7.72-7.69 (m, 2H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.48-7.40 (m, 2H), 7.34-7.32 (m, 3H), 7.17-7.15 (m, 2H), 6.62 (s, 1H), 4.94-4.89 (m, 2H), 3.39 (d, *J* = 16.8 Hz, 1H), 3.10 (d, *J* = 16.8 Hz, 1H); MS (ESI) calcd for C₂₈H₁₉F₃N₂O₃ [M+H]⁺: 489.13, found 489.04.

Benzyl-2-(7-fluoro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5m)

Following the general procedure I, *N*-(quinolin-8-yl)-2-(trifluoromethyl)benzamide (26.6 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H₂O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5m** (28.9 mg) in 66% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.22 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.17 (d, *J* = 7.6 Hz, 1H), 7.91 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.58 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.48-7.35 (m, 4H), 7.34-7.31 (m, 3H), 7.18-7.15 (m, 2H), 6.86 (s, 1H), 4.90-4.89 (m, 2H), 3.45 (d, *J* = 17.2 Hz, 1H), 3.11 (d, *J* = 17.2 Hz, 1H); MS (ESI) calcd for C₂₇H₁₉FN₂O₃ [M+H]⁺: 439.14, found

439.03.

Benzyl-2-(7-bromo-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5n)

Benzyl-2-(5-bromo-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)acetate (5n')

Following the general procedure I, 3-bromo-N-(quinolin-8-yl)benzamide (33 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with H2O. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to **5n** (22 mg) in 42% yield and **5n'** (15 mg) in 28% yield. For **5n**, ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (dd, J = 4.4, 2.0 Hz, 1H), 8.51 (d, J = 2.0 Hz, 1H), 8.22 (dd, J =8.0, 1.6 Hz, 1H), 7.91 (dd, J = 8.4, 1.6 Hz, 1H), 7.76 (d, J = 8.4, 2.0 Hz, 1H), 7.58 (d, J = 7.2, 1.2 Hz, 1H), 7.49-7.41 (m, 3H), 7.34-7.31 (m, 3H), 7.18-7.15 (m, 2H), 6.59 (s, 1H), 4.93-4.86 (m, 2H), 3.39 (d, J = 17.2 Hz, 1H), 3.08 (d, J = 17.2 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 162.5, 151.7, 144.4, 137.3, 136.5, 135.9, 135.9, 135.5, 135.2, 131.3, 131.1, 129.9, 129.5, 128.7, 128.7, 128.7, 127.8, 127.1, 126.4, 122.1, 120.6, 107.4, 67.1, 40.2; MS (ESI) calcd for C₂₇H₁₉BrN₂O₃ [M+H]⁺: 498.06, found 498.94. For **5n'**, ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (dd, J = 4.4, 1.6 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H), 8.22 (dd, J = 8.4, 1.6 Hz, 1H), 7.94-7.90 (m, 2H), 7.58 (dd, J = 7.2, 1.2 Hz, 1H), 7.48-7.42 (m, 2H), 7.35-7.30 (m, 4H), 7.18-7.16 (m, 2H), 7.00(s, 1H), 4.94-4.86 (m, 2H), 3.49 (d, J = 17.2 Hz, 1H), 3.13 (d, J = 17.2 Hz, 1H), ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.1, 163.0, 151.7, 144.3, 138.0, 136.5, 136.5, 135.4, 135.2, 131.4, 129.9, 129.5, 128.7, 128.7, 128.7, 128.6, 128.2, 127.4, 127.3, 126.4, 122.2, 120.8, 106.7, 67.1, 40.5; MS (ESI) calcd for C₂₇H₁₉BrN₂O₃ [M+H]⁺: 498.06, found 498.89.

Benzyl-2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydrobenzo[*H*]isoquinolin-3-yl)acetate (50)

Following the general procedure II, N-(quinolin-8-yl)-1-naphthamide (29.8 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **50** (25 mg) in 53% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 10.03 (d, J = 8.8 Hz, 1H), 8.84 (d, J= 4.0 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 8.07 (d, J= 8.4 Hz, 1H), Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.67-7.53 (m, 4H), 7.52 (t, J = 8.0 Hz, 1H), 7.44 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 7.34-7.32 (m, 3H), 7.20-7.17 (m, 2H), 6.79 (s, 1H), 4.93 (dd, J = 8.0 Hz, J = 17.6 Hz, 2H), 3.50 (d, J = 16.8 Hz, 1H), 3.19 (d, J = 16.8 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.2, 164.2, 151.8, 144.5, 139.2, 138.0, 136.6, 136.3, 135.2, 134.4, 132.6, 132.3, 131.3, 129.7, 129.6, 128.8, 128.7, 128.5, 128.4, 127.5, 126.5, 126.4, 124.9, 122.2, 119.0, 108.8, 67.2, 40.2; MS (ESI) calcd for $C_{31}H_{22}N_2O_3$ [M+H]⁺: 471.16, found 471.06.

Benzyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydrobenzo[g]isoquinolin-3-yl)acetate (5p) Following the general procedure II, *N*-(quinolin-8-yl)-2-naphthamide (29.8 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOAc (19.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5p** (31 mg) in 67% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 9.01 (s, 1H), 8.85 (dd, J = 1.6 Hz, J = 4.0 Hz,, 1H), 8.22 (dd, J = 1.6 Hz, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 8.02 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.91 (dd, J = 1.2 Hz, J = 8.4 Hz, 1H), 7.6m (dd, J = 1.6 Hz, J = 7.6 Hz, 1H), 7.59 (m, 1H), 7.49 (m, 2H), 7.43 (q, J = 4.0 Hz, 1H), 7.32 (m, 3H), 7.17 (m, 1H), 6.74 (s, 1H), 4.91 (d, J = 12.0 Hz, 1H), 4.87 (d, J = 12.0 Hz, 1H), 3.43 (d, J = 17.2 Hz, 1H), 3.12 (d, J = 17.2 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 169.5, 164.1, 151.6, 144.7, 137.0, 136.5, 135.8, 135.4, 135.3, 133.0, 132.0, 131.6, 129.8, 129.8, 129.7, 129.4, 128.7, 128.6, 128.57, 128.2, 127.7, 126.3, 125.9, 124.2, 124.1, 122.0, 108.2, 67.0, 40.3; MS (ESI) calcd for C₃₁H₂₂N₂O₃ [M+H]⁺: 471.16, found 471.09.

3-(2-(benzyloxy)ethyl)-6-methyl-2-(quinolin-8-yl)isoquinolin-1(2H)-one (5q)

Following the general procedure II, 4-methyl-N-(quinolin-8-yl)benzamide (26.2 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 2.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to 5q (26 mg) in 62% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.83 (d, J= 2.8 Hz, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.21 (d, J= 8.4 Hz, 1H), 7.94 (m, 1H), 7.63 (d, J = 4.8 Hz, 1H), 7.40 (q, J = 4.4 Hz, 4H), 7.32-7.25 (m, 5H), 7.19 (d, J = 7.2 Hz, 2H), 6.48 (s, 1H), 4.35 (m, 2H), 3.57 (m, 1H), 3.50 (m, 1H), 2.50 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 163.8, 151.5, 144.8, 143.1, 140.9, 138.0, 137.6, 137.59, 136.4, 130.6, 129.5, 129.3, 128.5, 128.3, 127.9, 127.8, 126.4, 125.5, 123.0, 121.9, 105.1, 73.1, 68.2, 33.6, 22.0; MS (ESI) calcd for C₂₈H₂₄N₂O₂ [M+H]⁺: 421.18, found 421.19.

3-(2-(benzyloxy)ethyl)-6-fluoro-2-(quinolin-8-yl)isoquinolin-1(2*H*)-one (5r)

Following the general procedure II, 4-flouro-*N*-(quinolin-8-yl)benzamide (26.2 mg, 0.1 mmol), benzyl buta-2,3-dienoate (53 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol),

Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 2.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to 5r (32 mg) in 75% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (dd, J = 4.0, 1.6 Hz, 1H), 8.39-8.35 (m, 1H), 8.23 (dd, J = 8.0, 1.6 Hz, 1H), 7.96 (dd, J)= 6.8, 2.4 Hz, 1H), 7.67-7.61 (m, 2H), 7.44-7.41 (m, 1H), 7.32-7.27 (m, 3H), 7.21-7.19 (m, 2H), 7.16-7.11 (m, 2H), 6.48 (s, 1H), 4.37-4.36 (m, 2H), 3.61-3.46 (m, 2H), 2.47 $(t, J = 6.8 \text{ Hz}, 2\text{H}); {}^{13}\text{C-NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta (\text{ppm}) 165.52 \text{ (d}, J_{\text{C-F}} = 250.52 \text{ Hz},$ 1C), 163.0, 151.5, 144.5, 142.5, 139.62 (d, $J_{C-F} = 10.68$ Hz, 1C), 137.74, 136.22 (d, J_{C-F} = 10.04 Hz, 1C), 130.38, 129.44, 128.55, 128.44, 127.99, 127.82, 127.78, 126.33, 121.92, 121.70, 114.7 (d, J_{C-F} = 23.33 Hz, 1C), 110.4 (d, J_{C-F} = 21.68 Hz, 1C), 104.5 (d, $J_{C-F} = 3.08$ Hz, 1C), 73.0, 67.7, 33.5; MS (ESI) calcd for $C_{27}H_{21}FN_2O_2$ [M+H]⁺: 424.16, found 425.08.

3-(2-oxo-2-phenylethyl)-2-(quinolin-8-yl)isoquinolin-1(2H)-one (5s)

Following the general procedure II, 4-bromo-N-(quinolin-8-yl)benzamide (32.6 mg, 0.1 mmol), 1-phenylbuta-2,3-dien-1-one (43.2 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 2.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to 5s (28.5 mg) in 61% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.67 (d, J= 2.8 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.07 (d, J= 8.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.75 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H),7.51(m, 4H), 7.26 (m, 3H), 7.10 (s, 1H), 4.09 (d, J = 8.0 Hz, 2H), 4.07 (d, J = 8.0 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 162.2, 160.4, 151.0, 144.2, 136.6, 136.4, 136.2, 133.8, 133.0, 130.7, 130.4, 130.3, 131.1, 129.6, 129.2, 129.1, 128.4, 128.3, 126.9, 126.2, 121.8, 112.0, 61.2; MS (ESI) calcd for C₂₆H₁₇BrN₂O₂ [M+H]⁺: 469.05, found 469.04.

Ethyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (5t) Following the general procedure II, N-(quinolin-8-yl)benzamide (24.8 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (19.6 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to 5t (25 mg) (including two fraction 1F and 2F) in 67% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.87 (d, J= 4.0 Hz, 1H), 8.40 (m, J= 8.0 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J*= 8.0 Hz, 1H), 7.73-7.67 (m, 3H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.67-7.53 (m, 4H), 7.52 (t, J = 8.0 Hz, 1H), 7.44 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 7.34-7.32 (m, 3H), 6.69 (s, 1H), 4.01 (m, 2H), 3.50 (d, J = 7.2 Hz, 1H), 1.41 (d, J = 7.2 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 173.1, 163.6, 151.8, 142.7, 137.2, 136.5, 136.1, 135.9, 132.7, 131.7, 129.6, 129.5, 128.3, 126.7, 126.3, 126.2, 125.6, 122.0, 104.6, 61.2, 42.6, 18.7, 17.2; MS (ESI) calcd for C₂₃H₂₀N₂O₃[M+H]⁺: 273.15, found 273.08.

Ethyl 2-(6-chloro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (5u)

Following the general procedure II, 4-chloro-*N*-(quinolin-8-yl)benzamide (29 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (38 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 12 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 1:1) to **5u** (28 mg) (including two fraction 1F and 2F)

in 70% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (s, 1H), 8.31-8.25 (m, 2H), 8.00 (br, 1H), 7.69-7.58 (m, 3H), 7.44-7.39 (m, 2H), 6.65 (s, 1H), 3.79-3.64 (m, 2H), 3.23-3.21 (m, 1H), 1.38 (br, 3H), 0.95 (br, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 172.0, 163.0, 151.3, 144.7, 144.4, 139.09, 138.4, 136.5, 136.2, 131.6, 130.19, 129.9, 129.53, 127.2, 126.3, 125.5, 123.78, 122.10, 103.8, 61.4, 42.7, 18.7, 17.2, 13.8; ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (s, 0.6H), 8.31-8.25 (m, 1.2H), 8.00 (br, 0.6H), 7.69-7.58 (m, 1.8H), 7.44-7.39 (m, 1.2H), 6.59 (s, 1H), 4.00-3.95 (m, 1.2H), 3.12-3.11 (m, 0.6H), 1.38 (br, 1.8H), 1.11 (br, 1.8fH); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 172.9, 163.0, 151.6, 144.6, 144.3, 139.07, 138.4, 135.5, 135.9, 131.6, 130.16, 129.8, 129.48, 127.2, 126.3, 125.5, 123.85, 122.12, 103.6, 61.1, 42.6, 18.7, 17.2, 14.1; MS (ESI) calcd for C₂₃H₁₉ClN₂O₃ [M+H]⁺: 407.11, found 407.05.

Ethyl 2-(6-cyano-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (5v)

Following the general procedure II, 4-cyano-N-(quinolin-8-yl)benzamide (28 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (38 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), KOTf (4 mg, 0.04 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to 5v (32 mg) in 80% (including two fraction 1F and 2F) yield. 5v-2F ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.84 (m, 1H), 8.46 (dd, J = 2.8 Hz, J = 8.0 Hz, 1H), 8.27 (dd, J = 1.2 Hz, J = 8.4 Hz, 1H), 8.02 (dd, J = 3.6 Hz, J = 6.0 Hz, 1H), 7.94 (s, 1H), 7.69-7.64 (m, 3H), 7.48 (q, J = 4.0 Hz, 1H), 6.67 (s, 1H), 3.99 (m, 2H), 3.13 (q, J = 6.8 Hz, 1H), 1.40 (d, J = 7.2 Hz, 1H), 1.10 (d, J = 7.2 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 172.7, 162.5, 151.7, 145.2, 144.3, 137.2, 136.6, 135.1, 131.4, 130.95, 130.0, 129.5, 128.4, 127.9, 126.4, 122.3, 118.4, 116.1, 103.5, 61.5, 42.7, 17.1, 14.0. **5v-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (dd, J = 1.6 Hz, J = 8.4 Hz, 1H), 8.45 (d, J = 8.4 Hz, 1H), 8.26 (dd, J = 1.6 Hz, J8.4 Hz, 1H), 8.03 (dd, J = 2.4 Hz, J = 6.8 Hz, 1H), 7.93 (s, 1H), 7.73-7.71 (m, 2H), 7.64 (d, J = 1.6 Hz, J = 8.4 Hz, 1H), 7.46-7.45 (m, 2H), 6.74 (s, 1H), 3.80 (m, 1H), 3.64 (m, 1H), 3.25 (m, 1H), 1.39 (d, J = 7.2 Hz, 1H), 0.95 (d, J = 7.2 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 171.8, 162.6, 151.4, 145.5, 144.6, 137.3, 136.3, 135.6, 131.0, 130.1, 130.08, 129.6, 129.5, 128.4, 128.0, 127.8, 126.4, 122.3, 118.4, 116.2, 103.7, 61.2, 42.7, 18.7, 13. MS (ESI) calcd for C₂₄H₁₉N₃O₃ [M+H]⁺: 398.14, found:

398.06.

Ethyl 2-(6-acetyl-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (5w)

Following the general procedure II, 4-acetyl-N-(quinolin-8-yl)benzamide (30 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (38 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 12 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to 5w (28 mg) (including two fraction 1F and 2F) in 68% yield. **5w-1F**¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85-8.84 (m, 1H), 8.45 (d, J = 8.4 Hz, 1H), 8.27 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 8.19 (s, 1H), 8.01-7.97 (m, 2H), 7.72-7.65 (m, 2H), 7.48-7.45 (m, 1H), 6.76 (s, 1H), 4.04-3.93 (m, 2H), 3.17-3.12 (m, 1H), 2.72 (s, 3H), 1.40 (d, J = 7.2 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm)198.1, 173.0, 163.1, 151.7, 144.6, 143.9, 140.1, 137.2, 136.6, 135.6, 131.6, 130.0, 129.5, 129.0, 128.3, 127.0, 126.4, 125.4, 122.2, 104.8, 61.4, 42.7, 27.2, 17.2, 14.1; **5w-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.86-8.84 (m, 1H), 8.45 (d, J = 8.4 Hz, 1H), 8.26 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 8.17 (d, J = 0.8 Hz, 1H),8.03-7.97 (m, 2H), 7.72-7.71 (m, 2H), 7.46-7.44 (m, 1H), 6.82 (s, 1H), 3.83-3.76 (m, 1H), 3.67-3.59 (m, 1H), 3.28-3.22 (m, 1H), 2.72 (s, 3H), 1.39 (d, J = 7.2 Hz, 3H), 0.95 $(t, J = 7.2 \text{ Hz}, 3\text{H}); {}^{13}\text{C-NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta (\text{ppm}) 198.1, 172.1, 163.1, 151.4,$ 144.8, 144.1, 140.1, 137.2, 136.2, 136.0, 130.2, 129.9, 129.6, 129.0, 128.2, 127.0, 126.4, 125.4, 122.2, 104.9, 61.1, 42.6, 27.2, 18.7, 13.8; MS (ESI) calcd for C₂₅H₂₂N₂O₄ [M+H]⁺:415.16, found 415.05.

Ethyl 2-(8-fluoro-1-oxo-2-(quinolin-8-yl)-1,2-dihydroisoquinolin-3-yl)propanoate (5x)

Following the general procedure II, 2-flouro-N-(quinolin-8-yl)benzamide (26.6 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (38 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (20 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 9 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated aqueous NaHCO₃. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether: Ethyl acetate = 1:1) to 5x (30 mg) (including two fraction 1F and 2F) in 77% yield. **5x-1F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.87-8.85 (m, 1H), 8.25 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H, 7.97 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.70-7.63 (m, 2H), 7.62-7.56 (m, 2H), 7.46-7.43 (m, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.10-7.05 (m, 1H), 6.62 (d, J = 1.6 Hz, 1H), 4.04-3.92 (m, 2H), 3.15-3.10 (m, 1H), 1.38 (d, J = 7.2 Hz, 3H),1.12 (t, J = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 173.0, 162.9 (d, $J_{C-F} =$ 263.2 Hz), 160.8 (d, $J_{C-F} = 4.7$ Hz), 151.6, 144.8, 143.9, 140.0, 136.4 (d, $J_{C-F} = 17$ Hz), 135.5, 133.5 (d, $J_{C-F} = 10$ Hz), 131.9, 129.8, 129.6 (d, $J_{C-F} = 18$ Hz), 126.3, 122.14 (d, $J_{C-F} = 4.5 \text{ Hz}$, 122.08, 114.7 (d, $J_{C-F} = 5.2 \text{ Hz}$), 113.5 (d, $J_{C-F} = 17 \text{ Hz}$), 104.0 (d, J_{C-F} = 2.6 Hz), 61.4, 42.7, 17.1, 14.1; **5x-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.86-8.85 (m, 1H), 8.23 (d, J = 8.0 Hz, 1H), 8.00-7.97 (m, 1H), 7.70-7.68 (m, 2H), 7.61-7.56 (m, 1H), 7.45-7.42 (m, 2H), 7.34 (d, J = 8.0 Hz, 1H), 7.10-7.05 (m, 1H), 6.68 (s, 1H), 3.86-3.78 (m, 1H), 3.68-3.60 (m, 1H), 3.24-3.19 (m, 1H), 1.37 (d, J = 6.8 Hz, 3H), 0.95 (t, J)= 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 172.2, 162.9 (d, J_{C-F} = 263.0 Hz), 160.7 (d, $J_{C-F} = 5.0$ Hz), 151.3, 144.9, 144.1, 140.0, 136.2, 135.9, 133.5 (d, $J_{C-F} = 10$ Hz), 130.5, 129.8, 129.5, 126.3, 122.12 (d, $J_{C-F} = 4.5$ Hz), 122.07, 114.6 (d, $J_{C-F} = 5.2$ Hz), 113.5 (d, $J_{C-F} = 21$ Hz), 104.8 (d, $J_{C-F} = 2.4$ Hz), 61.1, 42.6, 18.7, 13.8; MS (ESI) calcd for C₂₃H₁₉FN₂O₃ [M+H]⁺: 391.14, found 391.66.

Ethyl 2-(1-oxo-2-(quinolin-8-yl)-1,2-dihydrobenzo[h]isoquinolin-3-yl)propanoate (5y)

Following the general procedure II, *N*-(quinolin-8-yl)-1-naphthamide (29.8 mg, 0.1 mmol), ethyl 2-methylbuta-2,3-dienoate (37.8 mg, 0.3 mmol), $Co(acac)_2$ (5.4 mg, 0.02 mmol), $Mn(OAc)_2$ (35 mg, 0.2 mmol), KOAc (39.8 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O₂ ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 3.5 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum

ether: Ethyl acetate = 1:1) to 5y (29 mg) (including two fraction 1F and 2F) in 69% yield. 5y-1F ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 10.04 (m, 1H), 8.84 (s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.07-8.01 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.62-7.53 (m, 4H), 7.52 (t, J = 8.0 Hz, 1H), 7.44 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 7.62-7.54 (m, 4H), 7.46-7.42 (m, 2H), 6.89 (s, 1H), 3.32-3.26 (m, 1H), 3.24-3.19 (m, 1H), 1.44 (m, 3H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 173.0, 172.2, 164.0, 151.3, 144.9, 144.3, 139.2, 136.9, 136.5, 134.3, 132.5, 132.2, 131.6, 130.1, 129.7, 129.6, 128.4, 128.2, 127.5, 126.5, 126.4, 125.1, 122.1, 108.7, 105.5, 61.1, 42.8, 17.2, 13.8. **5y-2F** ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 10.04 (m, 1H), 8.84 (s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.07-8.01 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 8.80 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 8.80 (d, J = 8.4 Hz, 1H), 7.78-7.13 (m, 2H), 8.80 (d, J = 8.4 Hz, 1H), 8.80 (d, J = 8.8 Hz, 1H), 8.802H), 7.62-7.53 (m, 4H), 7.52 (t, J = 8.0 Hz, 1H), 7.44 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 7.62-7.54 (m, 4H), 7.46-7.42 (m, 2H), 6.82 (s, 1H), 4.01 (m, 2H), 1.44 (m, 3H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 172.2, 171.6, 164.0, 151.7, 144.7, 144.1, 139.2, 136.5, 136.2, 134.3, 132.5, 132.2, 131.6, 130.1, 129.6, 129.56, 128.3, 128.2, 127.5, 126.4, 125.1, 122.1, 108.6, 105.4, 61.3, 42.8, 21.2, 17.2; MS (ESI) calcd for C₂₇H₂₂N₂O₃ [M+H]⁺: 423.16, found 423.09.

2-bromo-6-(quinolin-8-yl)-6,7,8,9,10,11,12,13-octahydro-5*H*-cyclonona[*c*] isoquin olin-5-one (5*z*)

Following the general procedure II, 4-bromo-N-(quinolin-8-yl)benzamide (32.6 mg, 0.1 mmol), cyclonona-1,2-diene (36.6 mg, 0.3 mmol), Co(acac)₂ (5.4 mg, 0.02 mmol), Mn(OAc)₂ (35 mg, 0.2 mmol), KOAc (19.6 mg, 0.2 mmol), and TFE 1.0 ml were used. Resulting solution was purged with O_2 ballon for 0.5 min, then the reaction mixture was stirred at 80 °C for 6.0 h. After completion of the reaction, the reaction mixture was diluted with EtOAc and washed once with saturated brine. Then organic layer was dried over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, the residue was purified by silica gel column chromatography (Petroleum ether:Ethyl acetate = 5:1) to 5z (18.3 mg) (including two fraction 1F and 2F) in 41% yield. ¹H-NMR (400 MHz, CDCl₃) δ (ppm) 8.85 (dd, J = 1.2 Hz, J = 4.0 Hz, 1H), 8.30 (d, J =8.4 Hz, 1H), 8.24 (dd, J=1.2 Hz, J=8.4 Hz, 1H), 7.95 (dd, J=2.0 Hz, J=7.2 Hz, 1H), 7.88 (d, J = 1.6 Hz, 1H), 7.68 (m, 1H), 7.54 (d, J = 1.6 Hz, J = 8.8 Hz, 1H), 7.42 (q, J =4.0 Hz, 1H), 3.02 (m, 1H), 2.93 (m, 1H), 2.64 (m, 1H), 2.22-2.15 (m, 1H), 1.82 (m, 2H), 1.62-1.21 (m, 14H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 151.4, 144.7, 143.2, 138.9, 137.2, 136.3, 130.6, 130.5, 129.3, 129.2, 128.9, 127.9, 126.2, 126.0, 124.3, 121.9, 112.7, 29.6, 26.8, 26.7, 26.4, 25.8, 25.1, 22.7; MS (ESI) calcd for C₂₅H₂₃BrN₂O [M+H]⁺: 447.10, found: 447.06.