SUPPORTING INFORMATION

Mechanochemical catalytic oxidations in the solid state with in situ-generated modified IBX from 3,5-di-*tert*-butyl-2-iodobenzoic acid (DTB-IA)/Oxone

Abhaya Kumar Mishra and Jarugu Narasimha Moorthy*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, INDIA

Table of Contents

1.	Results of oxidation of various alcohols using DTB-IA (10 mol%)/Oxone in $H_3CN:H_2O$ (1:1, v/v)	S3
2.	Oxidation of DTB-IA with Oxone in CD_3CN-D_2O (1:1) mixture at rt as followed by ¹³ C NMR of reaction mixture after 0 h, 6 h and 20 h. Evidence for formation of I(III) and I(V) species	S4
3.	Oxidation of DTB-IA with Oxone in CD ₃ CN-D ₂ O (1:1) mixture at rt as followed by ESI- MS of reaction mixture after 20 h. Evidence for formation of I(III) and I(V) species	S5
4.	Comparison of the results of solid state oxidation of 4-bromobenzyl alcohol with DiMe-IA and DTB-IA as catalysts employed in 10 mol% in the presence of 1.2 molar equivalent of Oxone	S6
5.	Characterization data of oxidation products	S7-S9
6.	¹ H NMR spectrum of 3,5-di- <i>tert</i> -butyl-2-iodotoluene (DTB-IT) in CDCl ₃	S10
7.	¹ H NMR spectrum of 3,5-di- <i>tert</i> -butyl-2-iodobenzoic acid (DTB-IA) in CDCl ₃	S11
8.	¹³ C NMR spectrum of 3,5-di- <i>tert</i> -butyl-2-iodobenzoic acid (DTB-IA) in CDCl ₃	S12
9.	¹ H NMR spectrum of palmitic acid in CDCl ₃	S13
10.	¹ H NMR spectrum of 4- <i>ter</i> -butylcyclohexanone in CDCl ₃	S14
11.	¹ H NMR spectrum of 4-oxatricyclo[4.3.1.1]undecane-5-one in CDCl ₃	S15
12.	¹³ C NMR spectrum of 4-oxatricyclo[4.3.1.1]undecane-5-one in CDCl ₃	S16
13.	¹ H NMR spectrum of camphor in CDCl ₃	S17
14.	¹ H NMR spectrum of 4-bromobenzoic acid in DMSO-d ₆	S18
15.	¹ H NMR spectrum of 4-nitrobenzoic acid in DMSO-d ₆	S19
16.	¹ H NMR spectrum of 4-cyanobenzoic acid in DMSO-d ₆	S20
17.	¹ H NMR spectrum of 4-chlorobenzoic acid in DMSO-d ₆	S21
18.	¹ H NMR spectrum of 2,4-dichlorobenzaldehyde in CDCl ₃	S22
19.	¹ H NMR spectrum of 2-nitrobenzaldehyde in CDCl ₃	S23

20.	¹ H NMR spectrum of 2,5-dibromobenzaldehyde in CDCl ₃	S24
21.	¹ H NMR spectrum of 4-bromo-2,3,5,6-tetramethylbenzaldehyde in CDCl ₃	S25
22.	¹ H NMR spectrum of 4,5-dibromo-2-mehtyl-benzaldehyde in CDCl ₃	S26
23.	¹³ C NMR spectrum of 4,5-dibromo-2-mehtyl-benzaldehyde in CDCl ₃	S27
24.	¹ H NMR spectrum of 2-bromo-4,5-dimethoxybenzaldehyde in CDCl ₃	S28
25.	¹ H NMR spectrum of 5,7-dibromo-1-tetralone in CDCl ₃	S29
26.	¹ H NMR spectrum of benzophenone in CDCl ₃	S30
27.	¹ H NMR spectrum of 9-fluorenone in CDCl ₃	S 31
28.	¹ H NMR spectrum of benzil in CDCl ₃	\$32
29.	¹ H NMR spectrum of terephthalic acid in DMSO-d ₆	S 33
30.	¹ H NMR spectrum of 2-chloro-4-carboxybenzaldehyde in DMSO-d ₆	\$34
31.	13 C NMR spectrum of 2-chloro-4-carboxybenzaldehyde in DMSO-d ₆	\$35
32.	¹ H NMR spectrum of 2-chloroterephthalic acid in DMSO-d ₆	S 36
33.	¹ H NMR spectrum of 2-bromo-4-carboxybenzaldehyde in DMSO-d ₆	\$37
34.	13 C NMR spectrum of 2-bromo-4-carboxybenzaldehyde in DMSO-d ₆	S38
35.	¹ H NMR spectrum of 2-bromoterephthalic acid in DMSO-d ₆	S39
36.	¹ H NMR spectrum of phthalide in CDCl ₃	S40
37.	¹ H NMR spectrum of 5,6-dichlorophthalide in CDCl ₃	S41
38.	¹ H NMR spectrum of 5,6-dibromophthalide in CDCl ₃	S42
39.	¹ H NMR spectrum of 5,6-dimethylphthalide in CDCl ₃	S43
40.	¹ H NMR spectrum of benzoic in CDCl ₃	S44
41.	¹ H NMR spectrum of acetophenone in CDCl ₃	S45

Entry	Substrate	Oxone (equiv)	Time (h)	Product (Isolated Yield, $\%$) ^{<i>a</i>}	
1	Br	1.1	8	Br-COOH	(92)
2	O ₂ N-OH	1.1	16	02N-СООН	(90)
3	CIOH	1.1	12	сі СІ	(94)
4	H ₃ C H ₃ C H ₃ C OH	1.1	24	H_3C H_3C H_3C H_3C	(59)
5	ОН	1.1	28	0	(68)
6	OH	1.1	20	0 C	(92)
7	ОН	2.0	24	0	(84) ^b

Table S1. Results of oxidations of various alcohols using DTB-IA (10 mol%)/Oxone^a

^{*a*}All reactions were carried out on 0.10 g of the substrate in a 2 mL of CH₃CN-H₂O mixture (1:1, v/v) by employing 1.2 equiv of Oxone, unless mentioned otherwise. ^{*b*}2.0 equiv of Oxone was employed.

Fig. S1 Oxidation of **DTB-IA** with Oxone in CD₃CN-D₂O (1:1) mixture at rt as followed by ¹³C NMR of the reaction mixture after 0 h, 6 h and 24 h. As can be seen, the signals due to I(III) are prominent, but those for I(V) are inadequate. This is because of very low concentration of I(V) species in the mixture, as revealed by ¹H NMR analysis. Otherwise, appearance of a new signal at ca. 31.2 ppm is noteworthy for the methyl group of the *tert*-butyl groups.

Fig. S2 ESI-MS of the reaction of **DTB-IA** with Oxone in CD_3CN-D_2O (1:1) mixture at rt after 20 h. It may be noted that the I(III) species is unambiguously established, while that of I(V) species is less clear-cut.

Fig. S3 Comparison of the solid state oxidation of 4-bromobenzyl alcohol with DiMe-IA and **DTB-IA** as catalysts employed in 10 mol% in the presence of 1.2 molar equivalent of Oxone. The solid reaction mixtures were removed after 1 and 3 h, and analyzed by ¹H NMR spectroscopy in CDCl₃.

Characterization data of oxidation products

Palmitic acid. Yield 85% (0.084 g); colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3H), 1.23–1.36 (m, 24H), 1.62 (quint, J = 7.3 Hz, 2H), 2.34 (t, J = 7.8 Hz, 2H).

4-tert-Butylcyclohexanone. Yield 65% (0.032 g); colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (s, 9H), 1.41–1.49 (m, 3H), 2.05–2.09 (m, 2H), 2.26–2.41 (m, 4H).

4-Oxatricyclo[4.3.1.1]undecane-5-one. Yield 71% (0.077 g); colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 1.72–2.09 (m, 12H), 3.07 (t, *J* = 5.9 Hz, 1H), 4.46–4.49 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.8, 30.9, 33.8, 35.7, 41.2, 73.1, 178.8.

Camphor. Yield 76% (0.073 g); colorless solid; ¹H NMR (500 MHz, CDCl₃) δ 0.83 (s, 3H), 0.90 (s, 3H), 0.95 (s, 3H), 1.29–1.43 (m, 3H), 1.64–1.71 (m, 1H), 1.81–1.98 (m, 1H), 2.08 (t, *J* = 4.6 Hz, 1H), 2.31–2.36 (m, 1H).

4-Bromobenzoic acid. Yield 90% (0.095 g) and 86% (0.172 g, Scheme 5); colorless solid; ¹H NMR (400 MHz, DMSO-d₆) δ 7.69 (d, J = 8.7 Hz, 2H), 7.85 (d, J = 8.7 Hz, 2H).

4-Nitrobenzoic acid. Yield 88% (0.096 g); pale yellow solid; ¹H NMR (400 MHz, DMSO-d₆) δ 8.15 (d, J = 9.1 Hz, 2H), 8.30 (d, J = 9.1 Hz, 2H).

4-Cyanobenzoic acid. Yield 84% (0.046 g); white solid; ¹H NMR (400 MHz, DMSO-d₆), δ 7.97 (d, J = 8.7 Hz, 2H), 8.07 (d, J = 8.7 Hz, 2H).

4-Chlorobenzoic acid. Yield 89% (0.097 g); white solid; ¹H NMR (400 MHz, DMSO-d₆) δ 7.55 (d, J = 8.2 Hz, 2H), 7.93 (d, J = 8.2 Hz, 2H).

2,4-Dichlorobenzaldehyde. Yield 71% (0.07 g); white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, J = 8.0, 1.8 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 7.87 (d, J = 8.7 Hz, 1H), 10.41 (s, 1H).

2-Nitrobenzaldehyde. Yield 72% (0.071 g); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.82 (m, 2H), 7.96 (dd, J = 7.5, 1.5 Hz, 1H), 8.12 (dd, J = 8.4, 1.8 Hz, 1H), 10.43 (s, 1H).

2,5-Dibromobenzaldehyde. Yield 79% (0.039 g); colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 7.51– 7.57 (m, 2H), 8.02 (d, *J* = 2.3 Hz, 1H), 10.28 (s, 1H).

4-Bromo-2,3,5,6-tetramethylbenzaldehyde. Yield 80% (0.038 g); white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 6H), 2.44 (s, 6H), 10.59 (s, 1H).

4,5-Dibromo-2-mehtyl-benzaldehyde. Yield 82% (0.040 g); white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.59 (s, 3H), 7.56 (s, 1H), 7.98 (s, 1H), 10.15 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 18.6, 122.6, 131.1, 134.2, 136.2, 136.8, 140.5, 190.3.

2-Bromo-4,5-dimethoxybenzaldehyde. Yield 73% (0.036 g); light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 3.96 (s, 3H), 7.05 (s, 1H), 7.41 (s, 1H), 10.18 (s, 1H).

5,7-Dibromo-1-tetralone. Yield 92% (0.045 g); light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 2.15 (quintet, *J* = 6.8 Hz, 2H), 2.64 (t, *J* = 6.8 Hz, 2H), 2.94 (t, *J* = 6.4 Hz, 2H), 7.87 (d, *J* = 2.3 Hz, 1H), 8.12 (d, *J* = 2.3 Hz, 1H).

Benzophenone. Yield 97% (0.047 g) and 97% (0.096 g, Scheme 5); white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, *J* = 7.8 Hz, 4H), 7.59 (tt, *J* = 7.3, 1.4 Hz, 2H), 7.80 (dd, *J* = 8.2, 1.3 Hz, 4H).

9-Fluorenone. Yield 94% (0.046 g) and 93% (0.074 g, Scheme 5); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (td, *J* = 7.1, 1.4 Hz, 2H), 7.46–7.52 (m, 4H), 7.65 (d, *J* = 7.3 Hz, 2H).

Benzil. Yield 86% (0.042 g); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (t, J = 7.4 Hz, 4H), 7.66 (t, J = 7.8Hz, 2H), 7.97 (dd, J = 8.4, 1.4 Hz, 4H).

Terephthalic acid. Yield 89% (0.106 g); colorless solid; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.03 (s, 4H).

2-Chloro-4-carboxybenzaldehyde. Yield 67% (0.070 g); white solid; FT-IR (KBr) cm⁻¹ 3300–2500, 2963, 1696, 1265, 1124, 762; ¹H NMR (400 MHz, DMSO-d₆) δ 7.97 (d, *J* = 7.8 Hz, 3H), 8.00–8.03 (m, 2H) 10.37 (s, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ 128.8, 130.5, 131.6, 135.3, 136.6, 137.3, 165.8, 190.0.

2-Chloroterephthalic acid. Yield 18% (0.019 g); colorless solid; ¹H NMR (400 MHz, DMSO-d₆) δ 7.45
(d, J = 7.8 Hz, 1H), 7.71–7.76 (m, 1H), 7.95 (s, 1H).

2-Bromo-4-carboxybenzaldehyde. Yield 62% (0.032 g); white solid; FT-IR (KBr) cm⁻¹ 3300–2500, 2960, 1671, 1255, 1124, 762; ¹H NMR (400 MHz, DMSO-d₆) δ 7.94 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 7.7 Hz, 1H), 8.20 (s, 1H), 10.26 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 125.8, 129.3, 130.9, 134.8, 136.4, 137.4, 165.8, 191.9.

2-Bromoterephthalic acid. Yield 21% (0.012 g); white solid; ¹H NMR (400 MHz, DMSO-d₆) δ 7.81 (d, J = 7.7 Hz, 1H), 7.97 (dd, J = 8.0, 1.8 Hz, 1H), 8.14 (d, J = 1.8 Hz, 1H).

Phthalide. Yield 93% (0.045 g); colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 5.33 (s, 2H), 7.48–7.56 (m, 2H), 7.68 (td, J = 7.5, 1.1 Hz, 1H), 1.92 (d, J = 7.7 Hz, 1H).

5,6-Dichlorophthalide. Yield 60% (0.029 g); white solid; ¹H NMR (400 MHz, CDCl₃) δ 5.29 (s, 2H), 7.63 (s, 1H), 7.99 (s, 1H).

5,6-Dibromophthalide. Yield 65% (0.031 g); white solid; ¹H NMR (400 MHz, CDCl₃) δ 5.26 (s, 2H), 7.81 (s, 1H), 8.16 (s, 1H).

5,6-Dimethylphthalide. Yield 77% (0.037 g); white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 3H), 2.38 (s, 3H), 5.23 (s, 2H), 7.24 (s, 1H), 7.66 (s, 1H).

Benzoic acid. Yield 89% (0.101 g); colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, *J* = 7.3, 2H), 7.60–7.64 (m, 1H), 8.14 (dd, *J* = 8.2, 1.3 Hz, 2H).

Acetophenone. Yield 76% (0.037 g); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 2.60 (s, 3H), 7.45 (t, J = 7.5 Hz, 2H), 7.53-7.57 (m, 1H), 7.95 (dd, J = 8.5, 0.9 Hz, 2H).

Spectra of Products

Fig. S4 ¹H NMR spectrum of 3,5-di-*tert*-butyl-2-iodotoluene (**DTB-IT**) in CDCl₃.

Fig. S5¹H NMR spectrum of 3,5-di-*tert*-butyl-2-iodobenzoic acid (DTB-IA) in CDCl₃.

Fig. S6 ¹³C NMR spectrum of 3,5-di-*tert*-butyl-2-iodobenzoic acid (DTB-IA) in CDCl₃.

Fig. S7 ¹H NMR spectrum of palmitic acid in CDCl₃.

Fig. S8 ¹H NMR spectrum of 4-*ter*-butylcyclohexanone in CDCl₃.

Fig. S9 ¹H NMR spectrum of 4-oxatricyclo[4.3.1.1]undecane-5-one in CDCl₃.

Fig. S10 ¹³C NMR spectrum of 4-oxatricyclo[4.3.1.1]undecane-5-one in CDCl₃.

Fig. S11 ¹H NMR spectrum of camphor in CDCl₃.

Fig. S12 ¹H NMR spectrum of 4-bromobenzoic acid in DMSO-d₆.

Fig. S13 ¹H NMR spectrum of 4-nitrobenzoic acid in DMSO-d₆.

Fig. S14 ¹H NMR spectrum of 4-cyanobenzoic acid in DMSO-d₆.

Fig. S15¹H NMR spectrum of 4-chlorobenzoic acid in DMSO-d₆.

Fig. S16 ¹H NMR spectrum of 2,4-dichlorobenzaldehyde in CDCl₃.

Fig. S17¹H NMR spectrum of 2-nitrobenzaldehyde in CDCl₃.

Fig. S18¹H NMR spectrum of 2,5-dibromobenzaldehyde in CDCl₃.

Fig. S19 ¹H NMR spectrum of 4-bromo-2,3,5,6-tetramethylbenzaldehyde in CDCl₃.

Fig. S20¹H NMR spectrum of 4,5-dibromo-2-mehtyl-benzaldehyde in CDCl₃.

Fig. S21 ¹³C NMR spectrum of 4,5-dibromo-2-mehtyl-benzaldehyde in CDCl₃.

Fig. S22 ¹H NMR spectrum of 2-bromo-4,5-dimethoxybenzaldehyde in CDCl₃.

Fig. S23 ¹H NMR spectrum of 5,7-dibromo-1-tetralone in CDCl₃.

Fig. S24 ¹H NMR spectrum of benzophenone in CDCl₃.

Fig. S25 ¹H NMR spectrum of 9-fluorenone in CDCl₃.

Fig. S26¹H NMR spectrum of benzil in CDCl₃.

Fig. S27¹H NMR spectrum of terephthalic acid in DMSO-d₆.

Fig. S28¹H NMR spectrum of 2-chloro-4-carboxybenzaldehyde in DMSO-d₆.

Fig. S29¹³C NMR spectrum of 2-chloro-4-carboxybenzaldehyde in DMSO-d₆.

Fig. S30 ¹H NMR spectrum of 2-chloroterephthalic acid in DMSO-d₆.

Fig. S31 ¹H NMR spectrum of 2-bromo-4-carboxybenzaldehyde in DMSO-d₆.

Fig. S32 ¹³C NMR spectrum of 2-bromo-4-carboxybenzaldehyde in DMSO-d₆.

Fig. S33 ¹H NMR spectrum of 2-bromoterephthalic acid in DMSO-d₆.

Fig. S34 ¹H NMR spectrum of phthalide in CDCl₃.

Fig. S35 ¹H NMR spectrum 5,6-dichlorophthalide in CDCl₃.

Fig. S36 ¹H NMR spectrum of 5,6-dibromophthalide in CDCl₃.

Fig. S37 ¹H NMR spectrum of 5,6-dimethylphthalide in CDCl₃.

Fig. S38 ¹H NMR spectrum of benzoic in CDCl₃.

Figure S39. ¹H NMR spectrum of acetophenone in CDCl₃.