Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supplementary Material for

Palladium-Catalyzed Asymmetric Allylic Amination: Synthesis of chiral β-aminophosphonic acids derivatives

Xubin Wang, Xiaoming Wang, Zhaobin Han, Zheng Wang, Kuiling Ding*

State Key Laboratory of Oganometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

kding@mail.sioc.ac.cn

1. General

Unless otherwise noted, all reactions and manipulations involving air- and moisture-sensitive compounds were performed using standard Schlenk techniques. CH₂Cl₂, CH₃CN and THF were purified and dried using standard procedures. Melting points were measured on a RY-I apparatus and uncorrected. ¹H, ¹³C, ³¹P and ¹⁹F NMR spectra were recorded on Varian Mercury 400 MHz or Agilent Technologies 400/54 premium shilded spectrometers. Chemical shifts (δ values) were reported in ppm downfield from internal TMS for ¹H NMR, CDCl₃ or CD₃OD for ¹³C NMR, external 85% H₃PO₄ for ³¹P NMR, and external CF₃CO₂H for ¹⁹F NMR, respectively. Optical rotations were determined using Rudolph Autopol I polarimeter or JASCO P-1030 Polarimeter. The IR spectra were measured on a BRUKER TENSOR 27 FT-IR spectrometer. ESI-MS spectra were obtained on a Shimadzu LCMS-2010EV spectrometer. HRMS(ESI) were determined on Bruker APEXIII 7.0 TESLA FTMS spectrometer. HPLC analyses were performed on a JASCO 2089 liquid chromatograph. The chiral spiroketalbased diphosphine ligands (SKP) (S, S, S)-1a-1e were prepared by following our previously reported procedures,^[1] while ligands 1f [(R)-BINAP], 1g [(R)-SDP] and 1h [(R,R)-Trost ligand] were purchased from commercial sources and were used without further purification.

1. Preparation of 2-(diethoxyphosphoryl)-1-arylallyl acetates 2a-2h

The allylic substrates for the amination reaction, 2-(diethoxyphosphoryl)-1-

arylallyl acetates **2a-2h**, were synthesized by acetylation of the Morita-Baylis-Hillman (MBH) adducts **S1-S8**, which were in turn prepared by the reaction of aromatic aldehydes with diethyl vinylphosphonate in the presence of LDA.

1.1. General procedure for the preparation of the MBH adducts S1-S8

The MBH adducts **S1-S8** were prepared by following a literature procedure.^[2] To a solution of the aromatic aldehyde (32.5 mmol) and diethyl vinylphosphonate (5.0 mL, 32.5 mmol) in THF (10 mL) was added dropwise a solution of LDA in THF (2.0 M, 19.5 mL, 39.0 mmmol) at -78°C. After stirring the mixture for 0.5 h under -78°C, the reaction was quenched with distilled water (10 mL), and the resulting mixture was extracted with CH_2Cl_2 (20 mL × 3). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and the solvent was evaporated in vacuo. Purification of the residue by flash chromatography [SiO₂: EtOAc/petroleum ether (1/5-2/1)] to yield the product.

Diethyl (3-hydroxy-3-phenylprop-1-en-2-yl)phosphonate (S1)^[3]

Colorless oil, 30% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.21 (m, 5H), 6.10 (ddd, J = 46.2, 1.6, 1.6 Hz, 1H), 6.08 (ddd, J = 22.4, 1.6, 0.8 Hz, 1H), 5,41 (d, J = 10.4 Hz, 1H), 4.51 (*br* s, 1H), 3.93-3.79 (m, 3H), 3.65-3.59 (m, 1H), 1.19 (t, J = 6.8 Hz, 3H), 1.04 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.7 (d, $J_{(P, C)} = 170.2$ Hz), 141.1(d, $J_{(P, C)} = 3.5$ Hz), 129.3 (d, $J_{(P, C)} = 7.1$ Hz), 127.8, 127.3, 126.7, 73.2 (d, $J_{(P, C)} = 16.1$ Hz), 61.7 (d, $J_{(P, C)} = 5.7$ Hz), 61.6 (d, $J_{(P, C)} = 5.1$ Hz), 15.9 (d, $J_{(P, C)} = 6.8$ Hz), 15.6 (d, $J_{(P, C)} = 6.8$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.3 ppm; IR (neat) v 3556, 2983, 1453, 1392, 1226, 1195, 1179, 1016, 963, 799, 765, 698, 638 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₃H₁₉NaO₄P⁺: 293.0913, Found: 293.0911 [M+Na]⁺.

Diethyl (3-hydroxy-3-(*m-tolyl*)prop-1-en-2-yl)phosphonate (S2)

Light yellow oil, 42.2% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.13 (m, 3H), 7.06 (d, J = 7.2 Hz, 1H), 6.08 (d, J = 21.6 Hz, 1H), 6.05 (d, J = 47.2 Hz, 1H), 5.39 (d, J = 10.8 Hz, 1H), 4.16 (*br* s, 1H), 4.00-3.82 (m, 3H), 3.72-3.64 (m, 1H), 2.32 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.7 (d, $J_{(P, C)} = 170.1$ Hz), 140.8 (d, $J_{(P, C)} = 4.0$ Hz), 137.5, 129.4 (d, $J_{(P, C)} = 6.9$ Hz), 128.2, 127.9, 127.3, 123.8, 73.4 (d, $J_{(P, C)} = 15.1$ Hz), 61.8 (d, $J_{(P, C)} = 5.6$ Hz), 61.7 (d, $J_{(P, C)} = 5.7$ Hz), 21.2, 15.9 (d, $J_{(P, C)} = 6.5$ Hz), 15.7 (d, $J_{(P, C)} = 6.9$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.5 ppm; IR

(neat) v 3353, 2982, 1642, 1608, 1392, 1226, 1181, 1018, 963, 784, 703, 642 cm⁻¹; HRMS (ESI) m/z: calcd. for $C_{14}H_{21}NaO_4P^+$: 307.1070, Found: 307.1068 [M+Na]⁺.

Diethyl (3-hydroxy-3-(p-tolyl)prop-1-en-2-yl)phosphonate (S3)

Light yellow oil, 35.7% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.07 (d, *J* = 22.0 Hz, 1H), 6.03 (d, *J* = 46.0 Hz, 1H), 5.40 (dd, *J* = 10.8, 4.8 Hz, 1H), 4.02 (d, *J* = 4.8 Hz, 1H), 3.98-3.82 (m, 3H), 3.73-3.63 (m, 1H), 2.32(s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.09 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.8 (d, *J*_(P, C) = 169.6 Hz), 138.0 (d, *J*_(P, C) = 4.0 Hz), 137.1, 129.3 (d, *J*_(P, C) = 7.1 Hz), 128.7, 126.6, 73.3 (d, *J*_(P, C) = 15.4 Hz), 61.9 (d, *J*_(P, C) = 5.4 Hz), 61.8 (d, *J*_(P, C) = 5.5 Hz). 20.9, 16.0 (d, *J*_(P, C) = 6.5 Hz), 15.7 (d, *J*_(P, C) = 6.6 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.5 ppm; IR (neat) v 3349, 2982, 1642, 1512, 1392, 1227, 1017, 963, 823, 793, 736 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₄H₂₁NaO₄P⁺: 307.1070, Found: 307.1066 [M+Na]⁺.

Diethyl (3-hydroxy-3-(4-methoxyphenyl)prop-1-en-2-yl)phosphonate (S4)

White solid, 56.7% yield, m.p. 67-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.23 (m, 2H), 6.84-6.80 (m, 2H), 6.13 (ddd, J = 46.4, 1.2, 1.2 Hz, 1H), 6.07 (d, J = 22.4 Hz, 1H), 5.36 (dd, J = 8.4, 4.4 Hz, 1H), 4.54 (d, J = 4.4 Hz, 1H), 3.93-3.78 (m, 3H), 3.75 (s, 3H), 3.68-3.59 (m, 1H), 1.19 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 141.8 (d, $J_{(P, C)} = 169.8$ Hz), 133.2 (d, $J_{(P, C)} = 3.5$ Hz), 128.7 (d, $J_{(P, C)} = 7.0$ Hz), 127.9, 113.1, 72.3 (d, $J_{(P, C)} = 16.8$ Hz), 61.5 (d, $J_{(P, C)} = 4.0$ Hz), 61.4 (d, $J_{(P, C)} = 3.8$ Hz), 54.8, 15.7 (d, $J_{(P, C)} = 6.1$ Hz), 15.5 (d, $J_{(P, C)} = 7.0$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 18.1 ppm; IR (neat) v 3339, 2975, 2899, 1608, 1510, 1297, 1228, 1199, 1179, 1022, 961, 836, 816, 798, 750, 631 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₄H₂₁NaO₅P⁺: 323.1019, Found: 323.1021 [M+Na]⁺.

Diethyl (3-(4-fluorophenyl)-3-hydroxyprop-1-en-2-yl)phosphonate (S5)

Colorless oil, 33.1% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.34 (m, 2H), 7.05-7.01 (m, 2H), 6.07 (d, J = 21.6 Hz, 1H), 5.98 (d, J = 45.6 Hz, 1H), 5.45 (dd, J = 12.0, 4.8 Hz, 1H), 4.03-3.88 (m, 4H), 3.82-3.72 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, $J_{(F, C)} = 244.4$ Hz), 141.6 (dd, $J_{(P, C)} = 171.2$ Hz, $J_{(F, C)} = 0.8$ Hz,), 137.0 (dd, $J_{(P, C)} = 3.4$ Hz,), 129.1 (d, $J_{(P, C)} = 6.9$ Hz), 128.5 (d, $J_{(F, C)} = 8.4$ Hz),

114.6 (d, $J_{(F, C)} = 21.3$ Hz), 72.4 (d, $J_{(P, C)} = 16.4$ Hz), 61.8 (d, $J_{(P, C)} = 2.3$ Hz), 61.7 (d, $J_{(P, C)} = 2.4$ Hz), 15.8 (d, $J_{(P, C)} = 6.6$ Hz), 15.7 (d, $J_{(P, C)} = 6.3$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.0 ppm; IR (neat) v 3349, 2984, 1644, 1603, 1508, 1393, 1219, 1157, 1016, 964, 838, 792 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₃H₁₈FNaO₄P⁺: 311.0819, Found: 311.0809 [M+Na]⁺.

Diethyl (3-(3-bromophenyl)-3-hydroxyprop-1-en-2-yl)phosphonate (S6)

Light yellow solid, 28.7% yield, m.p. 62-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.11 (d, J = 44.8 Hz, 1H), 6.09 (d, J = 22.4 Hz, 1H), 5.37 (d, J = 10.4 Hz, 1H), 4.82 (*br*, s, 1H), 3.96-3.82 (m, 3H), 3.76-3.66 (m, 1H), 1.21 (t, J = 6.8 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 143.7 (d, $J_{(P, C)} = 3.4$ Hz), 141.1 (d, $J_{(P, C)} = 171.3$ Hz), 130.3, 129.8, 129.7, 129.5, 125.4, 121.9, 72.5 (d, $J_{(P, C)} = 15.9$ Hz), 61.9 (d, $J_{(P, C)} = 2.2$ Hz), 61.8 (d, $J_{(P, C)} = 2.0$ Hz), 15.9 (d, $J_{(P, C)} = 6.8$ Hz), 15.7 (d, $J_{(P, C)} = 7.0$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 16.9 ppm; IR (neat) v3286, 2987, 1567, 1391, 1287, 1229, 1189, 1019, 967, 943, 789, 765, 681 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₃H₁₉BrO₄P⁺: 349.0199, Found: 349.0188 [M+H]⁺.

Diethyl (3-hydroxy-3-(4-nitrophenyl)prop-1-en-2-yl)phosphonate (S7)

Brown oil, 7.8% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.22-8.19 (m, 2H), 7.6-7.57 (m, 2H), 6.10 (d, J = 21.6 Hz, 1H), 5.98 (d, J = 45.2 Hz, 1H), 5.56 (d, J = 14.0 Hz, 1H), 4.42 (*br* s, 1H), 4.08-3.83 (m, 4H), 1.27 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.4 (d, $J_{(P, C)} = 4.6$ Hz), 147.3, 141.0 (d, $J_{(P, C)} = 172.3$ Hz), 130.4(d, $J_{(P, C)} = 7.0$ Hz), 127.5, 123.3, 73.4 (d, $J_{(P, C)} = 13.9$ Hz), 62.4 (d, $J_{(P, C)} = 5.9$ Hz), 62.3 (d, $J_{(P, C)} = 6.1$ Hz), 16.1 (d, $J_{(P, C)} = 6.4$ Hz), 16.0 (d, $J_{(P, C)} = 6.4$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.2 ppm; IR (neat) v 3467, 2983, 1739, 1608, 1512, 1370, 1225, 1175, 1016, 959, 833, 795 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₃H₁₉NO₆P⁺: 316.0945, Found: 316.0931 [M+H]⁺.

Diethyl (3-hydroxy-3-(o-tolyl)prop-1-en-2-yl)phosphonate (S8)

Light yellow oil, 38.2% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.2 Hz, 1H), 7.24-7.11 (m, 3H), 6.07 (d, J = 22.0 Hz, 1H), 5.77 (d, J = 46.4 Hz, 1H), 5.67 (d, J = 7.6 Hz, 1H), 4.05-3.96 (m, 3H), 3.87-3.80 (m, 2H), 2.28 (s, 3H),

1.28 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 140.9 (d, $J_{(P, C)} = 170.5$ Hz), 138.5 (d, $J_{(P, C)} = 6.2$ Hz), 135.2, 129.9, 129.6 (d, $J_{(P, C)} = 7.3$ Hz), 127.3, 126.7, 125.7, 69.4 (d, $J_{(P, C)} = 5.3$ Hz), 61.9 (d, $J_{(P, C)} = 5.8$ Hz), 61.8 (d, $J_{(P, C)} = 5.8$ Hz), 18.8, 16.0 (d, $J_{(P, C)} = 6.1$ Hz), 15.8 (d, $J_{(P, C)} = 6.8$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 18.6 ppm; IR (neat) v 3334, 2980, 1392, 1228, 1186, 1018, 962, 788, 758, 728, 632 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₄H₂₁NaO₄P⁺: 307.1070, Found: 307.1067 [M+Na]⁺.

1.2. General procedure for acetylation of the MBH adducts S1-S8 for

preparation of 2a-2h

To an acetonitrile solution (40 mL) of the MBH adducts **S1-S8** (8.6 mmol, 1.0 equiv.) at ambient temperature was added acetic anhydride (1.05 mL, 10.3 mmol, 1.2 equiv.), followed by addition of ferric chloride (232.0 mg, 0.86 mmol, 0.1 equiv.). After stirring the mixture for 3 h, saturated aqueous NaHCO₃ solution (30 mL) was added, and the resulting mixture was stirred at ambient temperature until bubbling ceased. The resulting mixture was extracted with EtOAc (40 mL \times 3), and the combined organic layers were washed with brine, dried over MgSO₄, filtered, and the solvent was evaporated in vacuo. Purification of the residue by flash chromatography [SiO₂: EtOAc/petroleum ether (1/1-2/1)] to yield the product **2**.

2-(diethoxyphosphoryl)-1-phenylallyl acetate (2a)^[2]

Colorless oil, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 5H), 6.47 (d, J = 7.2 Hz, 1H), 6.31 (d, J = 22.4 Hz, 1H), 6.10 (ddd, J = 45.2, 1.2, 1.2 Hz, 1H), 4.06-3.88 (m, 3H), 3.74-3.64 (m, 1H), 2.10 (s, 3H), 1.28 (t, J = 6.8 Hz, 3H), 1.06 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 138.7 (d, $J_{(P, C)} = 174.6$ Hz), 137.1 (d, $J_{(P, C)} = 3.5$ Hz), 130.6 (d, $J_{(P, C)} = 7.1$ Hz), 128.3, 128.2, 127.7, 73.8 (d, $J_{(P, C)} = 8.1$ Hz), 61.9 (d, $J_{(P, C)} = 5.7$ Hz), 61.6 (d, $J_{(P, C)} = 5.8$ Hz), 20.9, 16.0 (d, $J_{(P, C)} = 6.5$ Hz), 15.7 (d, $J_{(P, C)} = 6.7$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 16.6 ppm; IR (neat) v 3473, 2983, 1741, 1371, 1225, 1016, 960, 797, 760, 698 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₅H₂₂O₅P⁺: 313.1199, Found: 313.1193 [M+H]⁺.

2-(diethoxyphosphoryl)-1-(*m-tolyl*)allyl acetate (2b)

Light yellow oil, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.10 (m, 4H), 6.44 (d, J = 7.2 Hz, 1H), 6.31 (d, J = 22.4 Hz, 1H), 6.09 (d, J = 45.6 Hz, 1H), 4.07-3.89 (m, 3H), 3.75-3.65 (m, 1 H), 2.34 (s, 3H), 2.09 (s, 3H), 1.28 (t, J = 6.8

Hz, 3H), 1.07 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 138.5 (d, $J_{(P, C)} = 175.1$ Hz), 137.6, 136.7 (d, $J_{(P, C)} = 3.3$ Hz), 130.5 (d, $J_{(P, C)} =$ 7.5 Hz), 128.9, 128.2, 127.9, 124.6, 73.6 (d, $J_{(P, C)} = 18.0$ Hz), 61.7 (d, $J_{(P, C)} =$ 5.2 Hz), 61.4 (d, $J_{(P, C)} = 5.1$ Hz), 20.9, 20.6, 15.8 (d, $J_{(P, C)} = 6.6$ Hz), 15.5 (d, $J_{(P, C)} =$ C_{12} Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 16.2 ppm; IR (neat) v 2983, 1743, 1370, 1224, 1017, 964, 789, 700 cm⁻¹; HRMS (ESI) m/z: calcd. for $C_{16}H_{24}O_5P^+$: 327.1356, Found: 327.1351 [M+H]⁺

2-(diethoxyphosphoryl)-1-(*p-tolyl*)allyl acetate (2c)

Light yellow oil, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 2H), 6.43 (d, *J* = 6.8 Hz, 1H), 6.29 (d, *J* = 22.4 Hz, 1H), 6.08 (d, *J* = 45.6 Hz, 1H), 4.07-3.88 (m, 3H), 3.74-3.64 (m, 1H), 2.33 (s, 3H), 2.09 (s, 3H), 1.29 (t, *J* = 6.8 Hz, 3H), 1.08 (t, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 138.8 (d, *J*_(P, C) = 174.6 Hz), 138.3, 134.1 (d, *J*_(P, C) = 3.4 Hz), 130.6 (d, *J*_(P, C) = 7.0 Hz), 128.9, 127.8, 73.7 (d, *J*_(P, C) = 17.9 Hz), 62.0 (d, *J*_(P, C) = 5.4 Hz), 61.7 (d, *J*_(P, C) = 5.3 Hz), 21.1, 21.0, 16.1 (d, *J*_(P, C) = 6.6 Hz), 15.8 (d, *J*_(P, C) = 6.8 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 16.3 ppm; IR (neat) v 2983, 1742, 1371, 1226, 1017, 961, 821, 790, 731 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₆H₂₄O₅P⁺: 327.1356, Found: 327.1350 [M+H]⁺

2-(diethoxyphosphoryl)-1-(4-methoxyphenyl)allyl acetate (2d)

Compound **2d** was obtained as a mixture along with its regioisomer **6d** in a molar ratio of 3/1 (by ¹H NMR). Since the isomers were found hardly isolated from each other by regular flash chromatography, the mixture was used directly in the subsequent allylic amination reaction without further purification. Light yellow oil, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.42 (d, *J* = 6.4 Hz, 1H), 6.28 (d, *J* = 22.4 Hz, 1H), 6.10 (d, *J* = 45.6 Hz, 1H), 4.07-3.90 (m, 3H), 3.80 (s, 3H), 3.72-3.66 (m, 1H), 2.09 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.08 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 159.6, 139.0 (d, *J*_(P, C) = 175.0 Hz), 130.2 (d, *J*_(P, C) = 6.8 Hz), 129.3, 129.2 (d, *J*_(P, C) = 5.2 Hz), 55.2, 21.0, 16.1 (d, *J*_(P, C) = 6.1 Hz), 15.9 (d, *J*_(P, C) = 7.0 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 15.6 ppm; IR (neat) v 3304, 1599, 1519, 1345, 1228, 1020, 969, 956, 800, 700 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₄H₂₃NaO₆P⁺: 365.1124, Found: 365.112 [M+H]⁺.

2-(diethoxyphosphoryl)-1-(4-fluorophenyl)allyl acetate (2e)

Light yellow oil, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 2H), 7.06-7.01 (m, 2H), 6.46 (d, J = 7.2 Hz, 1H), 6.30 (d, J = 22.0 Hz, 1H), 6.12 (d, J = 45.2 Hz, 1H), 4.07-3.91 (m, 3H), 3.80-3.71 (m, 1H), 2.10 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 162.1 (d, $J_{(F, C)}$ = 245.7 Hz), 138.3 (d, $J_{(P, C)}$ = 174.9 Hz), 132.8 (dd, $J_{(P, C)}$ = 3.4 Hz, $J_{(F, C)}$ = 3.4 Hz), 130.0 (d, $J_{(P, C)}$ = 7.1 Hz), 129.3 (d, $J_{(F, C)}$ = 8.4 Hz), 114.7 (d, $J_{(F, C)}$ = 21.8 Hz), 72.8 (d, $J_{(P, C)}$ = 18.3 Hz), 61.6 (d, $J_{(P, C)}$ = 5.1 Hz), 61.4 (d, $J_{(P, C)}$ = 5.8 Hz), 20.4, 15.6 (d, $J_{(P, C)}$ = 6.5 Hz), 15.4 (d, $J_{(P, C)}$ = 7.0 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 15.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.4 ppm; IR (neat) v 2984, 1744, 1605, 1510, 1371, 1219, 1016, 961, 862, 798 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₅H₂₁FO₅P⁺: 331.1105, Found: 331.1098 [M+H]⁺.

1-(3-bromophenyl)-2-(diethoxyphosphoryl)allyl acetate (2f)

Light yellow oil, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 1.6 Hz, 1H), 7.46-7.43 (m,1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 6.42 (d, *J* = 7.6 Hz, 1H), 6.32 (d, *J* = 22.0 Hz, 1H), 6.18-6.06 (ddd, *J* = 44.8, 1.2, 1.2 Hz, 1H), 4.05-3.94 (m, 3H), 3.82-3.73 (m, 1H), 2.12 (s, 3H), 1.28 (t, *J* = 6.8 Hz, 3H), 1.11(t, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.7,139.3 (d, *J*_(P, C) = 3.1 Hz), 138.1 (d, *J*_(P, C) = 176.2 Hz), 131.2, 130.8 (d, *J*_(P, C) = 7.2 Hz), 130.4, 129.6, 126.3, 121.9, 72.8 (d, *J*_(P, C) = 6.8 Hz), 61.8 (d, *J*_(P, C) = 5.9 Hz), 61.6 (d, *J*_(P, C) = 5.5 Hz), 20.6, 15.8 (d, *J*_(P, C) = 6.8 Hz), 15.6 (d, *J*_(P, C) = 6.8 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 15.7 ppm; IR (neat) v 2982, 1745, 1572, 1222, 1017, 963, 799, 784, 692 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₅H₂₁BrO₅P⁺: 391.0304, Found: 391.0293 [M+H]⁺.

2-(diethoxyphosphoryl)-1-(4-nitrophenyl)allyl acetate (2g)

Brown oil, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 6.46 (d, J = 8.8 Hz, 1H), 6.25 (d, J = 22.0 Hz, 1H), 6.07 (d, J = 44.4 Hz, 1H), 3.99-3.88 (m, 3H), 3.80-3.72 (m, 1H), 2.07 (s, 3H), 1.18 (t, J = 6.8 Hz, 3H), 1.06 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 147.4, 144.4 (d, $J_{(P, C)}$ = 3.0 Hz), 137.8 (d, $J_{(P, C)}$ = 177.0 Hz), 131.3 (d, $J_{(P, C)}$ = 6.8 Hz), 128.3, 123.2 72.7 (d, $J_{(P, C)}$ = 17.9 Hz), 61.9 (d, $J_{(P, C)}$ = 5.6 Hz), 61.8 (d, $J_{(P, C)}$ = 6.1 Hz), 20.6, 15.9 (d, $J_{(P, C)}$ = 6.3 Hz), 15.7 (d, $J_{(P, C)}$ = 6.6 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 14.5 ppm; IR (neat) v 2984, 1745, 1607, 1521, 1347, 1220, 1015, 963, 855, 834, 793, 750, 696 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₅H₂₁NO₇P⁺: 358.1050, Found: 358.1039 [M+H]⁺.

2-(diethoxyphosphoryl)-1-(o-tolyl)allyl acetate (2h)

Light yellow oil, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.30 (m, 1H), 7.20-7.13 (m, 3H), 6.73 (d, J = 6.4 Hz, 1H), 6.31 (d, J = 22.4 Hz, 1H), 5.94 (d, J = 45.2 Hz, 1H), 4.10-3.91 (m, 3H), 3.77-3.69 (m, 1H), 2.39 (s, 3H), 2.08 (s, 3H), 1.30 (t, J = 6.8 Hz, 3H), 1.09 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 137.9 (d, $J_{(P, C)} = 174.7$ Hz), 135.9, 134.9 (d, $J_{(P, C)} = 4.7$ Hz), 130.9 (d, $J_{(P, C)} = 7.4$ Hz), 130.0, 127.9, 127.0, 125.5, 70.0 (d, $J_{(P, C)} = 16.7$ Hz), 61.5 (d, $J_{(P, C)} = 5.3$ Hz), 61.4 (d, $J_{(P, C)} = 5.4$ Hz), 20.4, 18.6, 15.7 (d, $J_{(P, C)} = 6.7$ Hz), 15.4 (d, $J_{(P, C)} = 7.0$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 16.4 ppm; IR (neat) v 2982, 1741, 1370. 1229, 1016, 959, 790, 758 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₆H₂₄O₅P⁺: 327.1356, Found: 327.1361 [M+H]⁺.

2. Preliminary survey of the conditions for the allylic amination

The solvent effect and the base additives were examined using reaction of MBH adduct **2a** (0.2 mmol) and aniline **3a** (0.4 mmol). The reactions were performed in the specified solvent (2 mL) under ambient temperature, in the presence of (S,S,S)-**1a** (0.005 mmol) and $[Pd(allyl)Cl]_2$ (0.002 mmol). The relative molar ratios of **4a/5a/6a** were determined by ¹H NMR analysis of the crude reaction mixture, and *ee* values of **4a** were determined by chiral HPLC with a Chiracel OD-H column.

OAc F 2a	Aniline 3a (2 P(O)(OEt) ₂ (S,S,S)- 1a (2 Base (2.0 solvent (2.0 m	2.0 equiv) (1.0 mol%) 2.5 mol%) p equiv) nL), rt, 0.5 h	H P(O)(OEt) ₂ +	P(O)(OEt) ₂ + 5a 6	P(O)(OEt) ₂ OAc
Entry	Base	Solvent	4a/5a/6a ^[b]	Yield of 4a (%) ^[c]	<i>ee</i> (%) ^[d]
1	None	CH_2Cl_2	82/6/12	80	98
2	K_2CO_3	CH_2Cl_2	>98/<2/0	95	> 99
3	K_2CO_3 (aq)	CH_2Cl_2	97/3/0	93	98
4	Cs_2CO_3	CH_2Cl_2	70/4/26	66	98
5	NaOMe	CH_2Cl_2	41/49/10	30	96

Table S1. Effects of the base and the solvent^[a]

6	KO ^t Bu	CH_2Cl_2		0	
7	K ₃ PO ₄	CH_2Cl_2	83/0/17	80	98
8	NEt ₃	CH_2Cl_2	71/0/29	68	98
9	K ₂ CO ₃	THF	44/33/23	35	97
10	K ₂ CO ₃	toluene	58/32/10	54	98
11	K ₂ CO ₃	CH ₃ CN	95/0/5	93	98
12	K ₂ CO ₃	DMF	65/14/21	63	> 99
13	K ₂ CO ₃	DME	10/0/90	7	> 99
14	K ₂ CO ₃	Et ₂ O	69/12/19	66	94
15	K ₂ CO ₃	CHCl ₃	85/4/11	82	> 99

[a] Unless otherwise noted, all reactions were conducted at rt in the specified solvent (2 mL) for 0.5 h, with **2a** (0.2 mmol), aniline (0.4 mmol), $[Pd(C_3H_5)Cl]_2$ (0.001 mmol), (*S*,*S*,*S*)-**1a** (0.0025 mmol), in the presence of the specified base (0.4 mmol). [b] Molar ratios were determined by ¹H NMR analysis. [c] Yield of the isolated **4a**. [d] Determined by chiral HPLC.

3. Palladium-catalyzed asymmetric allylic amination of racemic

MBH adducts 2a-h with amines 3a-j

General procedure: Into a schlenk tube equipped with magnetic stirring bar were added $Pd_2(dba)_3$ (1.8 mg, 0.005 mmol), (*S*,*S*,*S*)-1a (9.6 mg, 0.0125 mmol) and CH_2Cl_2 (5 mL) under a stream of argon. The solution was stirred for 5 min, followed by addition of 2 (0.5 mmol), K_2CO_3 (138 mg, 1.0 mmol) and 3 (1.0 mmol). The mixture was stirred for 3 h at room temperature, then the solid residue was removed by filtration through a pad of celite. The ratio of 4/5 was determined by ¹H NMR analysis of an aliquot of the filtrate. The solvent was

removed in vacuo, and the residue was purified by flash chromatography on silica gel with petroleum ether/EA (1/2) as the eluent to afford optically enriched α -methylene β -amino phosphonate esters 4.

Characterization data:

(R)-diethyl (3-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (4a)

White solid, 94% yield, m.p. 95-97 °C, >99% *ee*. $[\alpha]_D^{26} = -84.7$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 7.15-7.11 (m, 2H), 6.70 (t, J = 7.6 Hz, 1H), 6.58 (d, J = 8.0 Hz, 2H), 6.24 (d, J = 22.4 Hz, 1H), 6.10 (d, J = 44.8 Hz, 1H), 5.21 (dd, J = 8.8, 4.4 Hz, 1H), 4.36 (d, J = 4.4 Hz, 1H), 4.05-3.85 (m, 3H), 3.71-3.61 (m, 1H), 1.24 (t, J = 6.8 Hz, 3H), 1.06 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 140.0 (d, $J_{(P, C)} = 3.2$ Hz), 139.5 (d, $J_{(P, C)} = 171.1$ Hz), 130.6 (d, $J_{(P, C)} = 8.4$ Hz), 129.0, 128.5, 127.8, 127.7, 117.7, 113.4, 61.8 (d, $J_{(P, C)} = 6.4$ Hz), 61.7 (d, $J_{(P, C)} = 6.1$ Hz), 59.9 (d, $J_{(P, C)} = 15.7$ Hz), 16.1 (d, $J_{(P, C)} = 6.6$ Hz), 15.9 (d, $J_{(P, C)} = 6.6$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 18.0 ppm; IR (neat) v 3294, 1601, 1496, 1235, 1018, 958, 798, 746, 694 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₂₅NO₃P⁺: 346.1567, Found: 346.1557 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 6.50 min; t_R (major) = 7.42 min.

(E)-diethyl (1-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (5a)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 24.0 Hz, 1H), 7.47-7.34 (m, 5H), 7.17 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.2 Hz, 1H), 6.56 (d, J = 8.0 Hz, 2H), 4.18-4.09 (m, 4H), 4.05 (d, J = 22.4 Hz, 2H), 1.32 (t, J = 7.2 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 146.3 (d, $J_{(P, C)} = 11.8$ Hz), 134.6 (d, $J_{(P, C)} = 22.3$ Hz), 129.4 (d, $J_{(P, C)} = 1.6$ Hz), 129.2, 129.1, 128.6, 127.1 (d, $J_{(P, C)} = 178.9$ Hz), 117.8, 113.2, 62.1 (d, $J_{(P, C)} = 5.3$ Hz), 41.6 (d, $J_{(P, C)} = 9.1$ Hz), 16.3 (d, $J_{(P, C)} = 5.6$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 21.6 ppm; IR (neat) v 3397, 3335, 3054, 2981, 2930, 2906, 1601, 1503, 1255, 1230, 1048, 1021, 966, 794, 750, 694 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₂₅NO₃P⁺: 346.1567, Found: 346.1574 [M+H]⁺.

(E)-2-(diethoxyphosphoryl)-3-phenylallyl acetate (6a)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 24.0 Hz, 1H), 7,47-7.31 (m, 5H), 4.89 (d, J = 18.0 Hz, 2H), 4.15 (q, J = 7.2 Hz, 4H), 2.11 (s, 3H), 1.36 (t, J = 7.2 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 148.9 (d, $J_{(P, C)} = 10.7$ Hz), 133.8 (d, $J_{(P, C)} = 21.6$ Hz), 129.1, 128.9, 128.3, 124.4 (d, $J_{(P, C)} = 181.7$ Hz), 61.7 (d, $J_{(P, C)} = 6.2$ Hz), 59.0 (d, $J_{(P, C)} = 9.1$ Hz), 20.5, 15.9 (d, $J_{(P, C)} = 7.6$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 19.7 ppm; IR (neat) v 3466, 2983, 2934, 2907, 1739, 1621, 1222, 1162, 1015, 962, 789, 755, 697 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₅H₂₂O₅P⁺: 313.1199, Found: 313.1206 [M+H]⁺.

(R)-diethyl (3-phenyl-3-(p-tolylamino)prop-1-en-2-yl)phosphonate (4b)

Yellow oil, 91% yield, 95% *ee*. $[\alpha]_D^{26} = -97.7$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.24 (m, 5H), 6.94 (d, J = 8.4 Hz, 2H), 6.50 (d, J = 8.4 Hz, 2H), 6.23 (d, J = 22.0 Hz, 1H), 6.11(d, J = 46.4 Hz, 1H), 5.18 (d, J = 8.8 Hz, 1H), 4.23 (*br* s, 1H), 4.00-3.85 (m, 3H), 3.69-3.59 (m, 1H), 2.21 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 140.2, 140.1, 139.6 (d, $J_{(P, C)} = 170.8$ Hz), 130.5 (d, $J_{(P, C)} = 8.2$ Hz), 129.4, 128.5, 127.7, 126.9, 113.4, 61.8 (d, $J_{(P, C)} = 6.4$ Hz), 61.7 (d, $J_{(P, C)} = 5.5$ Hz), 60.0 (d, $J_{(P, C)} = 15.9$ Hz), 20.2 (d, $J_{(P, C)} = 1.4$ Hz), 16.1 (d, $J_{(P, C)} = 6.7$ Hz), 15.8 (d, $J_{(P, C)} = 6.8$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.6 ppm; IR (neat) v 3327, 2980, 1616, 1518, 1237, 1018, 961, 803, 697 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₇NO₃P⁺: 360.1723, Found: 360.1722 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 5.94 min; t_R (major) = 7.02 min.

(R)-diethyl (3-((4-fluorophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4c)

Light yellow solid, 94% yield, m.p. 55-56 °C, 96% *ee*. $[\alpha]_D^{26} = -68.1$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.26 (m, 5H), 6.83 (t, J = 8.8 Hz, 2H), 6.53-6.50 (m, 2H), 6.21 (d, J = 22.0 Hz, 1H), 6.06 (d, J = 46.0 Hz, 1H), 5.14 (d, J = 9.6 Hz, 1H), 4.36 (*br*, s, 1H), 4.04-3.85 (m, 3H), 3.72-3.62 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 155.8(d, $J_{(F, C)} = 233.5$ Hz), 142.8 (d, $J_{(F, C)} = 2.3$ Hz), 139.8 (d, $J_{(P, C)} = 2.3$ Hz)

3.2 Hz), 139.5 (d, $J_{(P, C)} = 171.6$ Hz), 130.5 (d, $J_{(P, C)} = 8.7$ Hz), 128.5, 127.8, 127.6, 115.3 (d, $J_{(F, C)} = 22.6$ Hz), 114.1 (d, $J_{(F, C)} = 7.2$ Hz), 61.9 (d, $J_{(P, C)} = 11.6$ Hz), 61.8, 60.4 (d, $J_{(P, C)} = 15.1$ Hz), 16.1 (d, $J_{(P, C)} = 6.3$ Hz), 15.8 (d, $J_{(P, C)} = 7.0$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.3 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -127.5 ppm; IR (neat) v 3289, 2984, 1519, 1235, 1047, 1018, 963, 954, 822, 782, 698 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₂₄FNO₃P⁺: 364.1472, Found: 364.1467 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90: 10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 6.11 min; t_R (major) = 7.70 min.

(R)-diethyl (3-((4-bromophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4d)

White solid, 87% yield, m.p. 82-83 °C, 98% *ee*. $[\alpha]_D^{26} = -82.6$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 7.19 (d, J = 8.8 Hz, 2H), 6.46 (d, J = 8.4 Hz, 2H), 6.21 (d, J = 21.6 Hz, 1H), 6.04 (d, J = 45.6 Hz, 1H), 5.16 (d, J = 9.6 Hz, 1H), 4.53 (*br* s, 1H), 4.04-3.84 (m, 3H), 3.72-3.62 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 139.4 (d, $J_{(P, C)} = 2.7$ Hz), 139.2 (d, $J_{(P, C)} = 171.2$ Hz), 131.6, 130.5 (d, $J_{(P, C)} = 8.1$ Hz), 128.6, 127.8, 127.5, 114.9, 109.3, 61.9 (d, $J_{(P, C)} = 5.9$ Hz), 61.8 (d, $J_{(P, C)} = 5.7$ Hz), 59.8 (d, $J_{(P, C)} = 5.3$ Hz), 16.1 (d, $J_{(P, C)} = 6.7$ Hz), 15.8 (d, $J_{(P, C)} = 6.8$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.1 ppm; IR (neat) v 3315, 2976, 1592, 1505, 1487, 1316, 1237, 1021, 964, 817, 699 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₂₄BrNO₃P⁺: 424.0672, Found: 424.0665 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 6.80 min; t_R (major) = 8.54 min.

(R)-diethyl (3-phenyl-3-(m-tolylamino)prop-1-en-2-yl)phosphonate (4e)

Light yellow solid, 83% yield, m.p. 63-64 °C, 94% *ee*. $[\alpha]_D^{26} = -99.4$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.25 (m, 5H), 7.01 (t, J = 8.0 Hz, 1H), 6.52 (d, J = 7.6 Hz, 1H), 6.42 (s, 1H), 6.38 (d, J = 8.0 Hz, 1H), 6.24(d, J = 22.0, 1H), 6.13(d, J = 46.8 Hz, 1H), 5.20 (d, J = 8.8 Hz, 1H), 4.32 (*br* s, 1H), 4.10-3.85 (m, 3H), 3.66-3.56 (m, 1H), 2.23 (s, 3H), 1.25 (t, J = 6.8 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 140.0 (d, $J_{(P, C)} = 2.7$ Hz), 139.4(d, $J_{(P, C)} = 170.5$ Hz), 138.5, 130.5, 130.4, 128.7, 128.4, 127.6, 118.5, 114.0, 110.4, 61.6 (d, $J_{(P, C)} = 6.1$ Hz), 61.5 (d, $J_{(P, C)} = 5.6$ Hz), 59.7 (d,

 $J_{(P, C)} = 15.8 \text{ Hz}$), 21.4, 16.1 (d, $J_{(P, C)} = 6.6 \text{ Hz}$), 15.7 (d, $J_{(P, C)} = 7.2 \text{ Hz}$) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.6 ppm; IR (neat) v 3327, 2980, 1604, 1489, 1237, 1167, 1049, 1018, 961, 800, 768, 694 cm⁻¹; HRMS (ESI) m/z: calcd. for $C_{20}H_{27}NO_3P^+$: 360.1723, Found: 360.1736 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254 \text{ nm}$; t_R (minor) = 6.09 min; t_R (major) = 7.16 min.

(*R*)-diethyl (3-((4-methoxyphenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4f)

Brown oil, 88% yield, 96% *ee*. $[\alpha]_D^{26} = -82.3$ (c 0.70, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 6.72 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 8.4 Hz, 2H), 6.22 (d, J = 21.6 Hz, 1H), 6.10 (d, J = 46.4 Hz, 1H), 5.14 (d, J = 9.2 Hz, 1H), 4.16 (*br* s, 1H), 4.04-3.85 (m, 3H), 3.70 (s, 3H), 3.68-3.63 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 140.6, 140.1 (d, $J_{(P, C)} = 2.9$ Hz), 139.7 (d, $J_{(P, C)} = 170.9$ Hz), 130.5, 130.4, 128.4, 127.6, 114.53, 114.50, 61.7 (d, $J_{(P, C)} = 6.2$ Hz), 61.6 (d, $J_{(P, C)} = 5.6$ Hz), 60.4 (d, $J_{(P, C)} = 15.4$ Hz), 55.5, 16.0 (d, $J_{(P, C)} = 6.8$ Hz), 15.8 (d, $J_{(P, C)} = 6.6$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.6 ppm; IR (neat) v 3328, 2982, 1510, 1233, 1021, 964, 818, 699 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₇NO₄P⁺: 376.1672, Found: 376.1675 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 8.01 min; t_R (major) = 10.07 min.

(R)-diethyl (3-phenyl-3-(o-tolylamino)prop-1-en-2-yl)phosphonate (4g)

Light yellow oil, 70% yield, 98% *ee*. $[\alpha]_D^{26} = -63.5$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 2H), 7.33-7.22 (m, 3H), 7.03-6.98 (m, 2H), 6.62 (t, J = 7.2 Hz, 1H), 6.48 (d, J = 8.4 Hz, 1H), 6.20 (d, J = 21.6 Hz, 1H), 6.04 (d, J = 46.4 Hz, 1H), 5.29 (dd, J = 11.2, 4.8 Hz, 1H), 4.40 (*br* s, 1H), 4.03-3.83 (m, 3H), 3.73-3.63 (m, 1H), 2.17 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 139.8 (d, $J_{(P, C)} = 3.0$ Hz), 139.5 (d, $J_{(P, C)} = 171.0$ Hz), 130.3 (d, $J_{(P, C)} = 8.3$ Hz), 129.6, 128.2, 127.4, 127.2, 126.5, 121.7, 117.0, 110.6, 61.6 (d, $J_{(P, C)} = 5.7$ Hz), 61.5 (d, $J_{(P, C)} = 6.2$ Hz), 59.7 (d, $J_{(P, C)} = 14.5$ Hz), 17.2, 15.8 (d, $J_{(P, C)} = 6.5$ Hz), 15.6 (d, $J_{(P, C)} = 6.6$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.5 ppm; IR (neat) v 3437, 3372, 2980,

1604, 1586, 1510, 1452, 1311, 1239, 1017, 960, 793, 745, 698 cm⁻¹; HRMS (ESI) m/z: calcd. for $C_{20}H_{27}NO_3P^+$: 360.1723, Found: 360.1726 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 98:2, 1.0 mL/min, UV-vis detection at λ = 254 nm; t_R (minor) = 16.95 min; t_R (major) = 18.62 min.

(R)-diethyl (3-((4-chlorophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4h)

White solid, 84% yield, m.p. 73-74 °C, 98% *ee*. $[\alpha]_D^{26} = -82.6$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.25 (m, 5H), 7.03 (d, J = 8.8 Hz, 2H), 6.50 (d, J = 8.4 Hz, 2H), 6.18 (d, J = 22.0 Hz, 1H), 5.99 (d, J = 46.0 Hz, 1H), 5.17 (dd, J = 8.4, 3.6 Hz, 1H), 4.71 (d, J = 4.0 Hz, 1H), 3.97-3.81 (m, 3H), 3.67-3.61 (m, 1H), 1.20 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 139.2 (d, $J_{(P, C)} = 3.1$ Hz), 139.0 (d, $J_{(P, C)} = 171.3$ Hz), 130.2 (d, $J_{(P, C)} = 8.1$ Hz), 128.6, 128.2, 127.5, 127.3, 121.7, 114.1, 61.6 (d, $J_{(P, C)} = 6.2$ Hz), 61.5 (d, $J_{(P, C)} = 5.8$ Hz), 59.5 (d, $J_{(P, C)} = 5.1$ Hz), 15.8 (d, $J_{(P, C)} = 7.6$ Hz), 15.5 (d, $J_{(P, C)} = 6.8$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.8 ppm; IR (neat) v 3282, 2984, 1597, 1511, 1491, 1313, 1234, 1017, 963, 950, 818, 791, 765, 698 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₂₄ClNO₃P⁺: 380.1177, Found: 380.1161 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 6.42 min; t_R (major) = 8.03 min.

(R)-diethyl(3-phenyl-3-((3,4,5-trimethoxyphenyl)amino)prop-1-en-2-yl)phosphonate (4i)

Light gray solid, 89% yield, m.p. 109-110 °C, 98% *ee*. $[\alpha]_D^{26} = -96.7$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.25 (m, 5H), 6.24 (d, J = 21.6 Hz, 1H), 6.19 (d, J = 46.4 Hz, 1H), 5.87 (s, 2H), 5.19 (dd, J = 8.4, 4.0 Hz, 1H), 4.50 (d, J = 4.4 Hz, 1H), 4.03-3.83 (m, 3H), 3.72 (s, 6H), 3.71 (s, 3H), 3.63-3.55 (m, 1H), 1.22 (t, J = 6.8 Hz, 3H), 1.04 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 142.9, 139.5 (d, $J_{(P, C)} = 2.5$ Hz), 139.1 (d, $J_{(P, C)} = 171.2$ Hz), 130.0 (d, $J_{(P, C)} = 8.0$ Hz), 129.6, 128.2, 127.4, 127.3, 90.6, 61.5 (d, $J_{(P, C)} = 5.8$ Hz), 61.4 (d, $J_{(P, C)} = 6.0$ Hz), 60.4, 59.8 (d, $J_{(P, C)} = 16.5$ Hz), 55.3, 15.8 (d, $J_{(P, C)} = 6.2$ Hz), 15.5 (d, $J_{(P, C)} = 6.7$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 18.1 ppm; IR (neat) v 3300, 2977, 1607, 1505, 1232, 1122, 1013, 962, 816, 783, 704

cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₂H₃₁NO₆P⁺: 436.1884, Found: 436.1896 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel PA-2 column; n-Hex/*i*-PrOH = 70 : 30, 0.7 mL/min, UV-vis detection at λ = 214 nm; t_R (major) = 33.49 min; t_R (minor) = 61.36 min.

(R)-diethyl (3-(benzylamino)-3-phenylprop-1-en-2-yl)phosphonate (4j)

Light yellow oil, 84% yield, 95% *ee*. $[\alpha]_D^{26} = -25.6$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.21 (m, 10H), 6.25 (d, J = 22.0 Hz, 1H), 6.19 (d, J =46.8 Hz, 1H), 4.56 (d, J = 10.0 Hz, 1H), 3.98-3.83 (m, 3H), 3.73-3.57 (m, 3H), 2.08 (*br*, s, 1H), 1.19 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.1 (d, $J_{(P, C)} = 171.1$ Hz), 140.7 (d, $J_{(P, C)} = 3.7$ Hz), 139.9, 130.2 (d, $J_{(P, C)} = 8.0$ Hz), 128.2, 128.1, 127.9, 127.8, 127.3, 126.7, 62.4 (d, $J_{(P, C)} = 14.4$ Hz), 61.6 (d, $J_{(P, C)} = 5.6$ Hz), 61.5 (d, $J_{(P, C)} = 5.2$ Hz), 51.4, 16.0 (d, $J_{(P, C)} = 6.2$ Hz), 15.8 (d, $J_{(P, C)} = 6.8$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 18.8 ppm; IR (neat) v 3442, 2981, 1619, 1453, 1235, 1048, 1018, 958, 792, 746, 697, 611 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₇NO₃P⁺: 360.1723, Found: 360.1715 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 5.95 min; t_R (major) = 6.48 min.

(R)-diethyl (3-(phenylamino)-3-(m-tolyl)prop-1-en-2-yl)phosphonate (4k)

Colorless oil, 75% yield, 94% ee. $[\alpha]_D^{26} = -102.3$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.08 (m, 6H), 6.69 (t, J = 7.6 Hz, 1H), 6.58 (d, J = 7.6 Hz, 2H), 6.23 (d, J = 21.2 Hz, 1H), 6.11(ddd, J = 46.0, 1.2, 1.2 Hz, 1H), 5.17 (dd, J = 8.8, 4.8 Hz, 1H), 4.33 (d, J = 4.4 Hz, 1H), 4.07-3.86 (m, 3H), 3.71-3.61 (m, 1H), 2.33 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 139.8 (d, $J_{(P, C)} = 3.2$ Hz), 139.5 (d, $J_{(P, C)} =$ 170.7 Hz), 138.1, 130.4 (d, $J_{(P, C)} = 8.2$ Hz), 128.9, 128.5, 128.4, 128.3, 124.7, 117.6, 113.3, 61.7 (d, $J_{(P, C)} = 6.5$ Hz), 61.6 (d, $J_{(P, C)} = 5.6$ Hz), 59.7 (d, $J_{(P, C)} =$ 15.0 Hz), 21.3, 16.0 (d, $J_{(P, C)} = 6.8$ Hz), 15.8 (d, $J_{(P, C)} = 6.9$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 18.3 ppm; IR (neat) v 3318, 2976, 1602, 1513, 1497, 1309, 1236, 1179, 1053, 1019, 949, 906, 758, 697 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₇NO₃P⁺: 360.1723, Found: 360.1721 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD-H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, 254 nm; t_R (minor) = 5.81 min; t_R (major) = 6.47 min. The *ee* value was determined by HPLC analysis using a Chiralcel OD-H column; n-Hex/i-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 5.81 min; t_R

(major) = 6.47 min.

(R)-diethyl (3-(phenylamino)-3-(p-tolyl)prop-1-en-2-yl)phosphonate (41)

White solid, 92% yield, m.p. 74-75 °C, 97% *ee*. $[\alpha]_D^{26} = -91.9$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.0 Hz, 2H), 7.14-7.09 (m, 4H), 6.67 (t, J = 7.2Hz, 1H), 6.57 (d, J = 7.6 Hz, 2H), 6.21 (d, J = 21.6 Hz, 1H), 6.08(d, J = 46.4 Hz, 1H), 5.18 (d, J = 8.8 Hz, 1H), 4.36 (*br* s, 1H), 4.04-3.87 (m, 3H), 3.71-3.62 (m, 1H), 2.32 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 139.5 (d, $J_{(P, C)} = 170.4$ Hz), 137.3, 136.9 (d, $J_{(P, C)} = 3.3$ Hz), 130.2 (d, $J_{(P, C)} = 8.2$ Hz), 129.0, 128.8, 127.5, 117.5, 113.2, 61.7 (d, $J_{(P, C)} = 6.0$ Hz), 61.6 (d, $J_{(P, C)} = 5.7$ Hz), 59.4 (d, $J_{(P, C)} = 15.7$ Hz), 20.8, 16.0 (d, $J_{(P, C)} = 6.3$ Hz), 15.7 (d, $J_{(P, C)} = 6.6$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.6 ppm; IR (neat) v 3308, 2978, 1601, 1513, 1498, 1317, 1021, 959, 794, 742, 692 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₇NO₃P⁺: 360.1723, Found: 360.1708 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 6.19 min; t_R (major) = 6.94 min.

(*R*)-diethyl (3-(4-methoxyphenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (4m)

Light gray solid, 80% yield, m.p. 85-86 °C, 94% *ee*. $[\alpha]_D^{26} = -98.0$ (c 0.50, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.8 Hz, 2H), 7.13 (t, J = 8.0 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 7.6 Hz, 2H), 6.21 (d, J = 22.0 Hz, 1H), 6.12 (d, J = 46.4 Hz, 1H), 5.16 (d, J = 8.8 Hz, 1H), 4.68 (*br* s, 1H), 4.04-3.87 (m, 3H), 3.78 (s, 3H), 3.74-3.64 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 146.1, 139.5 (d, $J_{(P, C)} = 170.9$ Hz), 131.8 (d, $J_{(P, C)} = 2.8$ Hz), 130.2 (d, $J_{(P, C)} = 8.2$ Hz), 128.95, 128.90, 117.9, 113.8, 113.6, 61.8 (d, $J_{(P, C)} = 6.2$ Hz), 61.7 (d, $J_{(P, C)} = 7.0$ Hz), 59.4 (d, $J_{(P, C)} = 16.0$ Hz), 55.1, 16.1 (d, $J_{(P, C)} = 6.5$ Hz), 15.9 (d, $J_{(P, C)} = 6.5$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.6 ppm; IR (neat) v 3317, 2983, 1602, 1510, 1304, 1271, 1233, 1185, 1177, 1027, 961, 747, 695 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₇NO₄P⁺: 376.1672, Found: 376.1660 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 9.17 min; t_R (major) = 10.74 min.

White solid, 70% yield, m.p. 93-94 °C 96% *ee*. $[\alpha]_D^{26} = -61.9$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.33 (m, 2H), 7.13 (t, J = 8.0 Hz, 2H), 7.02 (t, *J* = 9.2 Hz, 2H), 6.72-6.68 (m, 1H), 6.57 (d, *J* = 8.4 Hz, 2H), 6.21 (d, *J* = 21.6 Hz, 1H), 6.06 (d, J = 46.0 Hz, 1H), 5.21 (dd, J = 9.6, 4.4 Hz, 1H), 4.42 (d, J = 4.4 Hz, 1H), 4.05-3.88 (m, 3H), 3.79-3.69 (m, 1H), 1.24 (t, J = 6.8 Hz, 3H), 1.10 (t, J =6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, $J_{(F, C)} = 245.4$ Hz), 146.2, 139.5 (d, $J_{(P, C)} = 171.4 \text{ Hz}$), 135.8 (dd, $J_{(P, C)} = 3.1 \text{ Hz}$, $J_{(F, C)} = 3.1 \text{ Hz}$), 130.5 (d, $J_{(P, C)} = 8.9$ Hz), 129.2 (d, $J_{(F, C)} = 8.2$ Hz), 128.9, 117.8, 115.3 (d, $J_{(F, C)}$ = 22.2 Hz), 113.3, 61.9 (d, $J_{(P, C)}$ = 5.3 Hz), 61.8 (d, $J_{(P, C)}$ = 6.1 Hz), 59.1 (d, $J_{(P, C)}$ _{C)} = 15.2 Hz), 16.0 (d, $J_{(P, C)}$ = 6.4 Hz), 15.9 (d, $J_{(P, C)}$ = 6.2 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.5 ppm; IR (neat) v 3308, 2981, 1601, 1519, 1498, 1236, 1216, 1157, 1016, 960, 793, 751, 695 cm⁻¹; HRMS (ESI) m/z: calcd. for $C_{19}H_{24}FNO_3P^+$: 364.1472, Found: 364.1475 [M+H]⁺. The ee value was determined by HPLC analysis using a Chiralcel OD-H column; n-Hex/i-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; $t_{\rm R}$ (minor) = 6.96 min; $t_{\rm R}$ (major) = 7.75 min.

(R)-diethyl (3-(3-bromophenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (40)

Colorless oil, 84% yield, 98% *ee*. $[\alpha]_D^{26} = -60.1$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.20 (t, J = 8.0 Hz, 1H), 7.13 (t, J = 8.4 Hz, 2H), 6.71(t, J = 7.2 Hz, 1H), 6.57 (d, J = 7.6 Hz, 2H), 6.23 (d, J = 21.6 Hz, 1H), 6.05 (d, J = 46.4 Hz, 1H), 5.19 (dd, J = 10.4, 4.8 Hz, 1H), 4.47 (d, J = 5.2 Hz, 1H), 4.06-3.89 (m, 3H), 3.82-3.73 (m, 1H), 1.24 (t, J = 6.8 Hz, 3H), 1.12 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 142.4 (d, $J_{(P, C)} = 3.3$ Hz), 139.2 (d, $J_{(P, C)} = 172.4$ Hz), 131.1 (d, $J_{(P, C)} = 6.2$ Hz), 61.8 (d, $J_{(P, C)} = 6.2$ Hz), 59.4 (d, $J_{(P, C)} = 16.9$ Hz), 16.0 (d, $J_{(P, C)} = 6.6$ Hz), 15.8 (d, $J_{(P, C)} = 7.4$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.6 ppm; IR (neat) v 3318, 2980, 1600, 1499, 1309, 1236, 1018, 962, 797, 747, 691 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₂₄BrNO₃P⁺: 424.0672, Found: 424.0656[M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel IC column; n-Hex/*i*-PrOH = 95:5, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (major) = 23.5 min; t_R (minor) = 25.3 min.

Yellow oil, 75% yield, >99% *ee*. $[\alpha]_D^{26} = -5.5$ (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.14 (t, J = 7.6 Hz, 2H), 6.73 (t, J = 7.6 Hz, 1H), 6.57 (d, J = 8.0 Hz, 2H), 6.23 (d, J = 21.6 Hz, 1H), 5.99 (d, J = 45.2 Hz, 1H), 5.35 (dd, J = 12.4, 5.2 Hz, 1H), 4.69 (d, J = 5.2 Hz, 1H), 4.07-3.86 (m, 4H), 1.24 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 147.6 (d, $J_{(P, C)} = 3.1$ Hz), 147.2, 145.9, 139.2 (d, $J_{(P, C)} = 174.0$ Hz), 131.6 (d, $J_{(P, C)} = 7.9$ Hz), 129.0, 128.3, 123.6, 118.3, 113.4, 62.2 (d, $J_{(P, C)} = 5.9$ Hz), 62.0 (d, $J_{(P, C)} = 6.1$ Hz), 59.5 (d, $J_{(P, C)} = 13.9$ Hz), 16.0 (d, $J_{(P, C)} = 6.4$ Hz), 15.9 (d, $J_{(P, C)} = 6.5$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 16.4 ppm; IR (neat) v 3409, 3320, 2982, 2923, 2851, 1600, 1519, 1344, 1314, 1236, 1017, 968, 854, 795, 750, 693 cm⁻¹; HRMS (ESI) m/z: calcd. for C₁₉H₂₄N₂O₅P⁺: 391.1417, Found: 391.1415 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel IC-3 column; n-Hex/*i*-PrOH = 80:20, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 18.16 min; t_R (major) = 19.89 min.

(R)-diethyl (3-(phenylamino)-3-(o-tolyl)prop-1-en-2-yl)phosphonate (4q)

Light yellow oil, 40% yield, 94% *ee*. $[\alpha]_D^{26} = -25.0$ (c 1.00, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.31 (m, 1H), 7.25-7.12 (m, 5H), 6.70(t, J = 7.2 Hz, 1H), 6.55 (d, J = 8.4 Hz, 2H), 6.28 (d, J = 22.0 Hz, 1H), 6.03 (d, J = 46.8 Hz, 1H), 5.43 (d, J = 6.8 Hz, 1H), 4.08-3.89 (m, 3H), 3.73-3.64 (m, 1H), 2.38 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 139.8 (d, $J_{(P, C)} = 171.7$ Hz), 137.8 (d, $J_{(P, C)} = 3.6$ Hz), 136.3, 130.8 (d, $J_{(P, C)} = 8.3$ Hz), 130.6, 129.1, 127.7, 127.0, 126.2, 117.6, 113.0, 61.9, 61.8, 55.4 (d, $J_{(P, C)} = 16.4$ Hz), 19.2, 16.2 (d, $J_{(P, C)} = 6.8$ Hz), 15.9 (d, $J_{(P, C)} = 7.0$ Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) δ 17.8 ppm; IR (neat) v 3321, 2980, 1601, 1500, 1241, 1049, 1021, 965, 799, 749, 692 cm⁻¹; HRMS (ESI) m/z: calcd. for C₂₀H₂₇NO₃P⁺: 360.1723, Found: 360.1722 [M+H]⁺. The *ee* value was determined by HPLC analysis using a Chiralcel OD–H column; n-Hex/*i*-PrOH = 90:10, 1.0 mL/min, UV-vis detection at $\lambda = 254$ nm; t_R (minor) = 5.46 min; t_R (major) = 6.36 min.

4. Determination of absolute configurations of the amination

products 4a-q

The absolute configuration of (R)-4d was determined by X-ray single-crystal diffractional analysis, while those of 4a-c and 4e-q were all found to the (R) by comparison of their CD spectra with that of (R)-4d (*vide infra*).

4. 1. Crystal structural data of (R)-4d

Single crystals of (R)-4d were obtained by recrystallization from ethyl acetate/petroleum ether. The X-ray diffractional data and the refinement were shown in Table S3, and the solid-state structure was shown in Figure S1.

Empirical formula	C ₁₉ H ₂₃ Br N O ₃ P
Temperature	133(2) K
Wavelength	0.71073 Å
Crystal system, Space group	Orthorhombic, P 21 21 2
	$a = 9.8916(7) \text{ Å} \alpha = 90^{\circ}.$
Unit cell dimensions	$b = 26.4389(19) \text{ Å } \beta = 90^{\circ}.$
	$c = 7.7778(6) \text{ Å} \gamma = 90^{\circ}.$
Volume	2034.1(3) Å ³
Z, Calculated density	4, 1.385 Mg/m ³
Absorption coefficient	2.116 mm ⁻¹
F(000)	872
Crystal size	0.300 x 0.250 x 0.100 mm ³
Theta range for data collection	1.540 to 30.535°.
Index ranges	-14<=h<=13, -37<=k<=37, -11<=l<=11
Reflections collected	20495
Independent reflections	6186 [R(int) = 0.0361]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.5154
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6186 / 12 / 228
Goodness-of-fit on F ²	1.092
Final R indices [I>2sigma(I)]	R1 = 0.0454, $wR2 = 0.1077$
R indices (all data)	R1 = 0.0629, $wR2 = 0.1145$
Absolute structure parameter	0.024(5)
Extinction coefficient	n/a
Largest diff. peak and hole	1.535 and -0.681 e.Å ⁻³

Table S2. X-ray Crystallographic Data for (R)-4d

CIF file of (*R*)-4d can be obtained from the Cambridge Crystallographic Data Centre using deposition number 1012761. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].

Figure S1. X-ray single crystal structure of (*R*)-4d

4. 2. CD spectra of the amination products 4a-q

Electronic circular dichroism (ECD) was applied for the determination of absolute configurations of the amination products 4a-q, and the assignments were made on the basis of their CD spectra (Figure S2) measured in their acetonitrile solutions with uv-vis wavelength ranging from 190-350 nm.

Figure S2. CD spectra of 4a-q measured in acetonitrile solutions

References

- [1] a) X. Wang, Z. Han, Z. Wang, K. Ding, *Angew. Chem. Int. Ed.* 2012, *51*, 936; b)
 X. Wang, P. Guo, X. Wang, Z. Wang, K. Ding, *Adv. Synth. Catal.* 2013, *355*, 2900; c) X. Wang, F. Meng, Y. Wang, Z. Han, Y.-J. Chen, L. Liu, Z. Wang, K. Ding, *Angew. Chem. Int. Ed.* 2012, *51*, 9276.
- [2] H. Park, C.-W. Cho, M. J. Krische, J. Org. Chem. 2006, 71, 7892.
- [3] B. Zhu, L. Yan, Y. Pan, R. Lee, H. Liu, Z. Han, K.-W. Huang, C.-H. Tan, Z. Jiang, J. Org. Chem. 2011, 76, 6894.

NMR spectra of 4a-q

diethyl (3-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (4a)

diethyl (3-((4-bromophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4d)

diethyl (3-((4-methoxyphenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4f)

diethyl (3-((4-chlorophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4h)

diethyl (3-(benzylamino)-3-phenylprop-1-en-2-yl)phosphonate (4j)

diethyl (3-(phenylamino)-3-(p-tolyl)prop-1-en-2-yl)phosphonate (4l)

PPM

diethyl (3-(4-fluorophenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (4n)

diethyl (3-(3-bromophenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (40)

250 200 150 100 50 0 -50 -100 -150 PPM

HPLC chromatograms for 4a-q

diethyl (3-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (4a)

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		5.923	491459.938	5617868.500	49.7486	
2		7.015	391248.563	5674654.000	50.2514	
Total			882708.500	11292522.500	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		5.948	17215.313	195055.406	2.0570
2		7.020	636527.500	9287262.000	97.9430
Total			653742.813	9482317.406	100.0000

diethyl (3-((4-fluorophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4c)

Total

diethyl (3-((4-bromophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4d)

diethyl (3-phenyl-3-(m-tolylamino)prop-1-en-2-yl)phosphonate (4e)

420163.875

433572.567

6171373.000

6330708.188

7.163

2

Total

97.4831

100.0000

diethyl (3-((4-methoxyphenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4f)

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		8.117	46212.832	807181.188	50.1584
2		10.298	33773.387	802082.125	49.8416
Total			79986.219	1609263.313	100.0000

			Results		
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		8.015	4412.016	77170.000	1.8627
2		10.077	177095.719	4065684.000	98.1373
Total			181507.735	4142854.000	100.0000

diethyl (3-phenyl-3-(o-tolylamino)prop-1-en-2-yl)phosphonate (4g)

Results								
Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		17.432	1946.533	69802.250	49.2915			
2		19.273	1774.231	71808.898	50.7085			
Total			3720.764	141611.148	100.0000			

Results Peak No. Peak ID Ret Time Height Area Conc. 16.958 872.032 28281.898 0.7985 1 89011.305 99.2015 2 18.627 3513537.250 89883.337 3541819.148 100.0000 Total

S56

diethyl (3-((4-chlorophenyl)amino)-3-phenylprop-1-en-2-yl)phosphonate (4h)

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		6.422	11700.917	145632.781	0.9649
2		8.037	892849.563	14946775.000	99.0351
Total			904550.479	15092407.781	100.0000

diethyl (3-phenyl-3-((3,4,5-trimethoxyphenyl)amino)prop-1-en-2-yl)phosphonate (4i)

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	34.10	n.a.	53.303	86.559	50.62	n.a.	BMB
2	60.48	n.a.	16.234	84.456	49.38	n.a.	BMB*
Total:			69.537	171.015	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	33.49	n.a.	776.218	1323.340	99.01	n.a.	BMB*
2	61.36	n.a.	2.534	13.290	0.99	n.a.	BMB*
Total:			778.752	1336.630	100.00	0.000	

diethyl (3-(benzylamino)-3-phenylprop-1-en-2-yl)phosphonate (4j)

diethyl (3-(phenylamino)-3-(m-tolyl)prop-1-en-2-yl)phosphonate (4k)

diethyl (3-(phenylamino)-3-(p-tolyl)prop-1-en-2-yl)phosphonate (41)

diethyl (3-(4-methoxyphenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (4m)

diethyl (3-(4-fluorophenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (4n)

Results							
Peak No.	Peak ID	Ret Time	Height	Area	Conc.		
1		6.962	1374.563	18753.189	1.6372		
2		7.753	69743.492	1126713.500	98.3628		
Total			71118.055	1145466.689	100.0000		

diethyl (3-(3-bromophenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (40)

Results					
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		23.565	44426.133	1629510.875	50.2532
2		25.332	41078.535	1613092.375	49.7468
Total			85504.668	3242603.250	100.0000

		Results			
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		23.505	137967.000	4973829.000	99.4434
2		25.302	797.460	27840.672	0.5566
Total			138764.460	5001669.672	100.0000

diethyl (3-(4-nitrophenyl)-3-(phenylamino)prop-1-en-2-yl)phosphonate (4p)

.

Results						
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		18.037	32635.557	982520.688	49.4757	
2		19.768	31178.234	1003344.125	50.5243	
Total			63813.791	1985864.813	100.0000	
	500-	Chromatogram	(wxb-6-26-IC3-c. org)			
		1				
	450					
	400	× [™] №H				
		P(O)(OEt) ₂				
	350					
	300 O ₂ N					
	250			897		
	H 230			10		
	200			{		
	150			/\		
				[]		
	100] {		
	50			67		
				18		
	0 1 2 3	4 5 6 7 8 9 10	11 12 13 14 15 16 17	18 19 20 21 22 23	24 25	
			Time(min)			
			Results			
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		18.167	1242.568	35995.508	0.4638	
2		19.897	228884.188	7725528.000	99.5362	
Total			230126.755	7761523.508	100.0000	

Total

	Results				
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		5.465	36108.188	387258.875	49.8535
2		6.365	28359.361	389534.719	50.1465
Total			64467.549	776793.594	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		5.467	4267.333	42852.148	2.5327
2		6.362	122419.727	1649089.250	97.4673
Total			126687.060	1691941.398	100.0000