Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Electronic Supplementary Information

Transition-Metal-Free Electrophilic Trifluoromethylthiolation with Sodium Trifluoromethanesulfinate at Room Temperature

Mei-jie Bu, Guo-ping Lu and Chun Cai*

Chemical Engineering College, Nanjing University of Science & Technology Nanjing, Jiangsu 210094, P. R. China

c.cai@mail.njust.edu.cn

Content

1.	General Information	S2
2.	Synthesis of Starting Materials	S2
3.	Experimental and Characterization of Reaction Products	S4
4.	Experiments for the Mechanistic Study	S12
5.	References	S14
6.	Copies of NMR Spectra	S15

1. General Information

Unless otherwise noted, all reactions were carried out under an atmosphere of argon in oven-dried Schlenk tubes. Dry solvents (water \leq 50 ppm) were purchased from Energy Chemical and stored over molecular sieves under argon atmosphere. Commercially available chemicals were used without any further purification. The products were purified by column chromatography over silica gel. Analytical thin-layer chromatography was performed on glass plates precoated with silica gel, and compounds were detected by visualization under an ultraviolet lamp (254 nm). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on an AVANCE III 500 Bruker spectrometer operating at 500 MHz, 125 MHz and 470 MHz, respectively. Chemical shifts were reported in ppm. Coupling constants (*J* values) are reported in Hz. Low-resolution mass spectra (EI) were obtained at 70 eV on a 5975C Mass Selective Detector. Elemental analysis was performed on a C/H mode.

2. Synthesis of Starting Materials

1-Benzyl-1H-indole, ¹ 2-phenyl-1H-pyrrole, ² and 1-(4-methoxyphenyl)-1H-pyrrole³ were synthesized according to previous reported procedures.

1-Benzyl-1*H*-indole (1c).

Chemical Formula: C₁₅H₁₃N Exact Mass: 207.1048 Elemental Analysis: C, 86.92; H, 6.32; N, 6.76

¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.7 Hz, 1H), 7.37 – 7.26 (m, 4H), 7.25 – 7.20 (m, 1H), 7.19 – 7.09 (m, 4H), 6.61 (d, J = 3.0 Hz, 1H), 5.31 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 137.8, 136.6, 129.0, 128.5, 127.8, 127.0, 121.9, 121.2, 119.8, 109.9, 101.9, 50.3. MS (EI) m/z: 207 (M⁺).

Analytical data are in accordance with the literature values.¹

2-Phenyl-1*H*-pyrrole (4a).

Chemical Formula: C₁₀H₉N Exact Mass: 143.0735 Elemental Analysis: C, 83.88; H, 6.34; N, 9.78

¹H NMR (500 MHz, CDCl₃) δ 8.38 (br, 1H), 7.50 (d, J = 7.9 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.26 (t, J = 7.4 Hz, 1H), 6.86 (q, J = 2.4 Hz, 1H), 6.60 (p, J = 1.7 Hz, 1H), 6.36 (q, J = 2.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 132.9, 132.3, 129.1, 126.4, 124.0, 119.1, 110.3, 106.3. MS (EI) m/z: 143 (M⁺).

Analytical data are in accordance with the literature values.²

1-(4-Methoxyphenyl)-1*H*-pyrrole (4b).

Chemical Formula: C₁₁H₁₁NO Exact Mass: 173.0841 Elemental Analysis: C, 76.28; H, 6.40; N, 8.09; O, 9.24

¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.9 Hz, 2H), 7.08 (t, *J* = 2.2 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 6.41 (t, *J* = 2.2 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.9, 134.7, 122.3, 119.8, 114.8, 110.1, 55.7. MS (EI) m/z: 173 (M⁺). Analytical data are in accordance with the literature values.³

General procedure for the synthesis of enamines:

Enamines were synthesized according to a modified procedure of Brandt.⁴ Ketones (2 mmol), amine (3 mmol), and acetic acid (48 mg, 0.8 mmol) in 2 mL of ethanol were stirred at room temperature or refluxed overnight. The resulting mixture was concentrated *in vacuo*, dissolved with EtOAc (30 mL), washed with water (2 x 8 mL) and brine (2 x 8 mL). The organic phase was concentrated and purified by column chromatography.

Methyl (Z)-3-(benzylamino)but-2-enoate (5a).

Chemical Formula: C₁₂H₁₅NO₂ Exact Mass: 205.1103 Elemental Analysis: C, 70.22; H, 7.37; N, 6.82; O, 15.59

¹H NMR (500 MHz, CDCl₃) δ 8.95 (br, 1H), 7.36 – 7.31 (m, 2H), 7.29 – 7.22 (m, 3H), 4.54 (s, 1H), 4.42 (d, *J* = 6.4 Hz, 2H), 3.63 (s, 3H), 1.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 162.1, 138.8, 128.9, 127.5, 126.8, 82.9, 50.1, 46.9, 19.5. MS (EI) m/z: 205 (M⁺).

Analytical data are in accordance with the literature values.⁵

(Z)-4-(benzylamino)pent-3-en-2-one (5b).

Chemical Formula: C₁₂H₁₅NO Exact Mass: 189.1154 Elemental Analysis: C, 76.16; H, 7.99; N, 7.40; O, 8.45

¹H NMR (500 MHz, CDCl₃) δ 11.14 (br, 1H), 7.34 – 7.27 (m, 2H), 7.22 (t, *J* = 7.4 Hz, 3H), 5.01 (s, 1H), 4.40 (d, *J* = 6.4 Hz, 2H), 2.00 (s, 3H), 1.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 195.4, 163.2, 138.2, 128.9, 127.5, 126.8, 96.0, 46.8, 29.0, 19.0.

MS (EI) m/z: 189 (M⁺).

Analytical data are in accordance with the literature values.⁶

(Z)-3-(Benzylamino)-1-phenylbut-2-en-1-one (5c).

Chemical Formula: C₁₇H₁₇NO Exact Mass: 251.1310 Elemental Analysis: C, 81.24; H, 6.82; N, 5.57; O, 6.37

¹H NMR (500 MHz, CDCl₃) δ 11.79 (br, 1H), 7.92 (dd, J = 7.8, 1.8 Hz, 2H), 7.46 – 7.39 (m, 3H), 7.39 – 7.34 (m, 2H), 7.30 (dd, J = 14.8, 7.2 Hz, 3H), 5.77 (s, 1H), 4.52 (d, J = 6.3 Hz, 2H), 2.05 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 188.2, 165.1, 140.5, 137.9, 130.7, 129.0, 128.3, 127.7, 127.1, 127.1, 92.8, 47.2, 19.7.

MS (EI) m/z: 251 (M⁺).

Analytical data are in accordance with the literature values.⁶

Ethyl (Z)-3-(benzylamino)-3-phenylacrylate (5e).

Chemical Formula: C₁₈H₁₉NO₂ Exact Mass: 281.1416 Elemental Analysis: C, 76.84; H, 6.81; N, 4.98; O, 11.37

¹H NMR (500 MHz, CDCl₃) δ 8.93 (br, 1H), 7.37 (dq, *J* = 18.6, 6.7, 5.7 Hz, 5H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 7.4 Hz, 2H), 4.69 (s, 1H), 4.28 (d, *J* = 6.5 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 170.5, 164.9, 139.4, 136.1, 129.4, 128.7, 128.5, 128.0, 127.3, 127.0, 86.4, 58.9, 48.5, 14.7.

MS (EI) m/z: 281 (M⁺).

Analytical data are in accordance with the literature values.⁵

3. Experimental and Characterization of Reaction Products

General procedure for the electrophilic trifluoromethylthiolation with CF₃SO₂Na:

A 10-mL Schlenk tube with a magnetic stirring bar was charged with triphenylphosphine (0.6 mmol, 158 mg), chlorophtalimide (0.3 mmol, 55 mg) and sodium trifluoromethanesulfinate (0.3 mmol, 47 mg). The tube was evacuated and backfilled with dry nitrogen (this operation was repeated three times). Indole, pyrrole, or enamine (0.2 mmol) dissolved in dry acetonitrile (2 mL) was added by syringe. The resulting mixture was stirred at room temperature before the solvent was removed under reduced pressure. Purification of the crude product was achieved by column chromatography.

3-((Trifluoromethyl)thio)-1*H*-indole (3a).

SCF₃ Chemical Formula: C₉H₆F₃NS Exact Mass: 217.0173 Elemental Analysis: C, 49.77; H, 2.78; F, 26.24; N, 6.45; S, 14.76

¹H NMR (500 MHz, CDCl₃) δ 8.45 (br, 1H), 7.92 – 7.79 (m, 1H), 7.51 (d, J = 2.8 Hz, 1H), 7.45 –

7.39 (m, 1H), 7.37 – 7.28 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 136.2, 133.0, 129.6 (q, *J* = 309.7 Hz), 129.6, 123.6, 121.8, 119.5, 111.8, 95.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -44.5. MS (EI) m/z: 217 (M⁺). Anal. Calcd for C₉H₆F₃NS: C, 49.77; H, 2.78. Found: C, 49.40; H, 2.87. Analytical data are in accordance with the literature values.⁷

1-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (3b).

Chemical Formula: C₁₀H₈F₃NS Exact Mass: 231.0330 Elemental Analysis: C, 51.94; H, 3.49; F, 24.65; N, 6.06; S, 13.86

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.6 Hz, 1H), 7.40 – 7.31 (m, 4H), 3.80 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 137.4, 137.1, 129.6 (q, *J* = 310.4 Hz), 130.4, 123.1, 121.4, 119.5,

110.0, 93.2, 33.3.

SCF₃

Me

 ^{19}F NMR (470 MHz, CDCl₃) δ -44.8.

MS (EI) m/z: 231 (M⁺).

Anal. Calcd for C₁₀H₈F₃NS: C, 51.94; H, 3.49. Found: C, 52.27; H, 3.58.

Analytical data are in accordance with the literature values.⁷

1-Benzyl-3-((trifluoromethyl)thio)-1*H*-indole (3c).

SCF3

Chemical Formula: C₁₆H₁₂F₃NS Exact Mass: 307.0643 Elemental Analysis: C, 62.53; H, 3.94; F, 18.55; N, 4.56; S, 10.43

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.0 Hz, 1H), 7.47 (s, 1H), 7.36 – 7.28 (m, 6H), 7.16 (d, J = 6.5 Hz, 2H), 5.34 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 137.0, 136.5, 136.2, 130.6, 129.4 (q, J = 314.8 Hz), 129.1, 128.3, 127.1, 123.3, 121.6, 119.7, 110.6, 94.2, 50.8.

¹⁹F NMR (470 MHz, CDCl₃) δ -44.7.

MS (EI) m/z: 307 (M⁺).

SCF₃

Anal. Calcd for C₁₆H₁₂F₃NS: C, 62.53; H, 3.94. Found: C, 62.31; H, 4.03.

Analytical data are in accordance with the literature values.⁸

2-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (3d).

Chemical Formula: C₁₀H₈F₃NS Exact Mass: 231.0330 Elemental Analysis: C, 51.94; H, 3.49; F, 24.65; N, 6.06; S, 13.86

¹H NMR (500 MHz, CDCl₃) δ 8.29 (br, 1H), 7.73 (d, J = 6.9 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.27 –

7.22 (m, 2H), 2.57 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 135.2, 130.7, 129.9 (q, *J* = 311.0 Hz), 122.7, 121.5, 118.8,

110.9, 92.7, 12.2.

 ^{19}F NMR (470 MHz, CDCl₃) δ -44.4.

MS (EI) m/z: 231 (M⁺).

Anal. Calcd for C₁₀H₈F₃NS: C, 51.94; H, 3.49. Found: C, 51.59; H, 3.55.

Analytical data are in accordance with the literature values.⁷

2-Phenyl-3-((trifluoromethyl)thio)-1*H*-indole (3e).

SCF₃

Chemical Formula: C₁₅H₁₀F₃NS Exact Mass: 293.0486 Elemental Analysis: C, 61.43; H, 3.44; F, 19.43; N, 4.78; S, 10.93

 ${}^{1}\text{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \, \delta \, 8.56 \text{ (br, 1H)}, \, 7.93 - 7.86 \text{ (m, 1H)}, \, 7.83 - 7.74 \text{ (m, 2H)}, \, 7.58 - 7.52 \text{ (m, 2H)}, \, 7.58 + 7.52 \text{ (m, 2H)}, \, 7.58$

(m, 2H), 7.52 – 7.47 (m, 1H), 7.43 (dt, *J* = 7.4, 3.0 Hz, 1H), 7.37 – 7.30 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 144.5, 135.5, 131.6, 130.8, 129.9 (q, *J* = 310.8 Hz), 129.4, 129.0,

128.9, 123.8, 122.0, 119.9, 111.4, 92.6.

 ^{19}F NMR (470 MHz, CDCl₃) δ -43.4.

MS (EI) m/z: 293 (M⁺).

SCF₃

Anal. Calcd for C₁₅H₁₀F₃NS: C, 61.43; H, 3.44. Found: C, 61.19; H, 3.51.

Analytical data are in accordance with the literature values.⁷

4-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (3f).

Chemical Formula: C₁₀H₈F₃NS Exact Mass: 231.0330 Elemental Analysis: C, 51.94; H, 3.49; F, 24.65; N, 6.06; S, 13.86

¹H NMR (500 MHz, CDCl₃) δ 8.47 (br, 1H), 7.50 (d, J = 2.8 Hz, 1H), 7.26 (d, J = 8.1 Hz, 1H), 7.20

(t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 7.1 Hz, 1H), 2.88 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 136.5, 134.2, 131.8, 129.3 (q, *J* = 309.3 Hz), 126.9, 123.6, 109.9, 95.2, 19.5.

¹⁹F NMR (470 MHz, CDCl₃) δ -45.8.

MS (EI) m/z: 231 (M⁺).

Anal. Calcd for $C_{10}H_8F_3NS$: C, 51.94; H, 3.49. Found: C, 51.59; H, 3.55.

Analytical data are in accordance with the literature values.⁷

5-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (3g).

Me N H Elemental Ar

Chemical Formula: C₁₀H₈F₃NS Exact Mass: 231.0330 Elemental Analysis: C, 51.94; H, 3.49; F, 24.65; N, 6.06; S, 13.86

¹H NMR (500 MHz, CDCl₃) δ 8.39 (br, 1H), 7.62 (s, 1H), 7.47 (d, *J* = 2.8 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.15 (dd, *J* = 8.3, 1.2 Hz, 1H), 2.53 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 134.5, 133.0, 131.4, 129.8, 129.6 (q, *J* = 310.2 Hz), 125.2, 119.0,

111.5, 95.0, 21.7.

 ^{19}F NMR (470 MHz, CDCl₃) δ -44.6.

MS (EI) m/z: 231 (M⁺).

Anal. Calcd for C₁₀H₈F₃NS: C, 51.94; H, 3.49. Found: C, 52.20; H, 3.40.

Analytical data are in accordance with the literature values.⁷

5-Methoxy-3-((trifluoromethyl)thio)-1*H*-indole (3h).

MeO

Chemical Formula: C₁₀H₈F₃NOS Exact Mass: 247.0279 Elemental Analysis: C, 48.58; H, 3.26; F, 23.05; N, 5.67; O, 6.47; S, 12.97

¹H NMR (500 MHz, CDCl₃) δ 8.52 (br, 1H), 7.49 (d, J = 2.8 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 7.24

(d, *J* = 2.4 Hz, 1H), 6.95 (dd, *J* = 8.8, 2.4 Hz, 1H), 3.91 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 155.7, 133.4, 131.1, 130.4, 129.6 (q, *J* = 310.2 Hz), 114.1, 112.7, 100.7, 95.1, 56.0.

¹⁹F NMR (470 MHz, CDCl₃) δ -44.6.

MS (EI) m/z: 247 (M⁺).

SCF₃

Anal. Calcd for C₁₀H₈F₃NOS: C, 48.58; H, 3.26. Found: C, 48.83; H, 3.37.

Analytical data are in accordance with the literature values.⁷

5-Bromo-3-((trifluoromethyl)thio)-1*H*-indole (3i).

Chemical Formula: C₉H₅BrF₃NS Exact Mass: 294.9278 Elemental Analysis: C, 36.51; H, 1.70; Br, 26.99; F, 19.25; N, 4.73; S, 10.83

¹H NMR (500 MHz, CDCl₃) δ 8.59 (br, 1H), 7.99 – 7.89 (m, 1H), 7.54 (d, J = 2.8 Hz, 1H), 7.38 (dd, J

J = 8.7, 1.9 Hz, 1H), 7.29 (d, *J* = 8.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 134.8, 133.9, 131.3, 129.3 (q, *J* = 310.2 Hz), 126.7, 122.2, 115.4,

113.3, 95.6.

¹⁹F NMR (470 MHz, CDCl₃) δ -44.5.

MS (EI) m/z: 295 (M⁺).

Anal. Calcd for C₉H₅BrF₃NS: C, 36.51; H, 1.70. Found: C, 36.20; H, 1.76.

Analytical data are in accordance with the literature values.⁷

5-Iodo-3-((trifluoromethyl)thio)-1*H*-indole (3j).

Chemical Formula: C₉H₅F₃INS Exact Mass: 342.9139 Elemental Analysis: C, 31.51; H, 1.47; F, 16.61; I, 36.99; N, 4.08; S, 9.34

¹H NMR (500 MHz, CDCl₃) δ 8.59 (br, 1H), 8.13 (s, 1H), 7.55 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.23 – 7.17 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 135.3, 133.5, 132.1, 132.0, 129.3 (q, *J* = 309.5 Hz), 128.4, 113.7,

95.2, 85.6.

 ^{19}F NMR (470 MHz, CDCl₃) δ -44.4.

MS (EI) m/z: 343 (M⁺).

Anal. Calcd for C₉H₅F₃INS: C, 31.51; H, 1.47. Found: C, 31.87; H, 1.52.

Analytical data are in accordance with the literature values.⁸

5-Nitro-3-((trifluoromethyl)thio)-1*H*-indole (3k).

O₂N SCF₃

 $\label{eq:chemical Formula: C_9H_5F_3N_2O_2S} \\ Exact Mass: 262.0024 \\ Elemental Analysis: C, 41.23; H, 1.92; F, 21.74; N, 10.68; O, 12.20; S, 12.23 \\$

¹H NMR (500 MHz, CD₃OD) δ 8.56 (d, *J* = 2.2 Hz, 1H), 8.12 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.90 (s, 1H), 7.59 (d, *J* = 9.0 Hz, 1H).

¹³C NMR (125 MHz, CD₃OD) δ 142.9, 139.9, 137.6, 129.4 (q, *J* = 309.4 Hz), 129.0, 117.8, 115.0, 112.5, 95.9.

¹⁹F NMR (470 MHz, CD₃OD) δ -46.6.

MS (EI) m/z: 262 (M⁺).

SCF₃

Anal. Calcd for C₉H₅F₃N₂O₂S: C, 41.23; H, 1.92. Found: C, 41.12; H, 1.97.

Analytical data are in accordance with the literature values.⁸

6-Fluoro-3-((trifluoromethyl)thio)-1H-indole (3l).

Chemical Formula: C₉H₅F₄NS Exact Mass: 235.0079 Elemental Analysis: C, 45.96; H, 2.14; F, 32.31; N, 5.96; S, 13.63

¹H NMR (500 MHz, CDCl₃) δ 8.54 (br, 1H), 7.72 (dd, J = 8.8, 5.2 Hz, 1H), 7.52 (d, J = 2.7 Hz, 1H),

7.11 (dd, *J* = 9.2, 2.3 Hz, 1H), 7.05 (ddd, *J* = 9.5, 8.8, 2.2 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 160.7 (d, J = 239.8 Hz), 136.1 (d, J = 12.3 Hz), 133.2, 129.5 (q, J = 12.3 Hz), 135.5 (q, J = 12

309.8 Hz), 126.0, 120.5 (d, *J* = 10.2 Hz), 110.7 (d, *J* = 24.9 Hz), 98.2 (d, *J* = 26.8 Hz), 96.1.

¹⁹F NMR (470 MHz, CDCl₃) δ -44.5, -119.1.

MS (EI) m/z: 235 (M⁺).

Anal. Calcd for C₉H₅F₄NS: C, 45.96; H, 2.14. Found: C, 45.61; H, 2.10.

Analytical data are in accordance with the literature values.8

7-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (3m).

Chemical Formula: C₁₀H₈F₃NS Exact Mass: 231.0330 Elemental Analysis: C, 51.94; H, 3.49; F, 24.65; N, 6.06; S, 13.86

¹H NMR (500 MHz, CDCl₃) δ 8.44 (br, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 2.2 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 7.1 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 135.8, 132.6, 129.6 (q, *J* = 309.7 Hz), 129.2, 124.1, 121.9, 121.0, 117.2, 96.1, 16.4.

 ^{19}F NMR (470 MHz, CDCl₃) δ -44.5.

MS (EI) m/z: 231 (M⁺).

Anal. Calcd for $C_{10}H_8F_3NS$: C, 51.94; H, 3.49. Found: C, 52.24; H, 3.59.

Analytical data are in accordance with the literature values.⁷

Methyl 3-((trifluoromethyl)thio)-1*H*-indole-7-carboxylate (3n).

Chemical Formula: C₁₁H₈F₃NO₂S Exact Mass: 275.0228 Elemental Analysis: C, 48.00; H, 2.93; F, 20.71; N, 5.09; O, 11.63; S, 11.65

¹H NMR (500 MHz, CD₃OD) δ 7.88 (q, *J* = 7.2 Hz, 2H), 7.71 (s, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 3.96 (s, 3H).

¹³C NMR (125 MHz, CD₃OD) δ 166.9, 135.4, 135.1, 130.8, 129.6 (q, *J* = 309.1 Hz), 125.3, 124.0, 120.3, 113.8, 94.0, 51.2.

¹⁹F NMR (470 MHz, CD₃OD) δ -46.7.

MS (EI) m/z: 275 (M⁺).

Anal. Calcd for C₁₁H₈F₃NO₂S: C, 48.00; H, 2.93. Found: C, 47.93; H, 3.05.

Analytical data are in accordance with the literature values.8

2-Phenyl-5-((trifluoromethyl)thio)-1*H*-pyrrole (6a).

Chemical Formula: C₁₁H₈F₃NS Exact Mass: 243.0330 Elemental Analysis: C, 54.32; H, 3.32; F, 23.43; N, 5.76; S, 13.18

¹H NMR (500 MHz, CDCl₃) δ 8.59 (br, 1H), 7.55 – 7.49 (m, 2H), 7.43 (dd, J = 8.6, 7.0 Hz, 2H), 7.35 – 7.28 (m, 1H), 6.73 (dd, J = 3.7, 2.6 Hz, 1H), 6.59 (dd, J = 3.6, 2.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 136.9, 130.4, 128.1, 127.4 (q, J = 311.3 Hz), 126.7, 123.5, 122.1, 107.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -45.0. MS (EI) m/z: 243 (M⁺).

Anal. Calcd for C₁₁H₈F₃NS: C, 54.32; H, 3.32. Found: C, 54.09; H, 3.27.

Analytical data are in accordance with the literature values.⁷

1-(4-Methoxyphenyl)-2-((trifluoromethyl)thio)-1*H*-pyrrole (6b).

SCF₃ Chemical Formula: C12H10F3NOS Exact Mass: 273.0435 Elemental Analysis: C, 52.74; H, 3.69; F, 20.86; N, 5.13; O, 5.85; S, 11.73

¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 7.08 (t, J = 2.4 Hz, 1H), 6.99 – 6.95 (m, 2H),

6.82 (dd, J = 3.8, 1.8 Hz, 1H), 6.35 (t, J = 3.3 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 132.0, 129.1, 128.4, 128.3 (q, J = 311.3 Hz), 123.6, 114.1, 111.1, 109.9, 55.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -45.3. MS (EI) m/z: 273 (M⁺). Anal. Calcd for C₁₂H₁₀F₃NOS: C, 52.74; H, 3.69. Found: C, 52.45; H, 3.77. Analytical data are in accordance with the literature values.⁸

2,5-Dimethyl-3-((trifluoromethyl)thio)-1*H*-pyrrole (6c).

SCF₃

Chemical Formula: C₇H₈F₃NS Exact Mass: 195.0330 Elemental Analysis: C, 43.07; H, 4.13; F, 29.20; N, 7.18; S, 16.42

¹H NMR (500 MHz, CDCl₃) δ 7.92 (br, 1H), 5.96 (s, 1H), 2.31 (s, 3H), 2.22 (s, 3H).

 ^{19}F NMR (470 MHz, CDCl₃) δ -46.3.

MS (EI) m/z: 195 (M⁺).

Analytical data are in accordance with the literature values.⁹

Methyl (E)-3-(benzylamino)-2-((trifluoromethyl)thio)but-2-enoate (7a).

Chemical Formula: C₁₃H₁₄F₃NO₂S Exact Mass: 305.0697 Elemental Analysis: C, 51.14; H, 4.62; F, 18.67; N, 4.59; O, 10.48; S, 10.50

¹H NMR (500 MHz, CDCl₃) δ 10.77 (br, 1H), 7.38 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.26 (d, J = 7.4 Hz, 2H), 4.53 (d, J = 5.9 Hz, 2H), 3.74 (s, 3H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 171.4, 137.0, 130.1 (q, J = 311.8 Hz), 129.2, 128.1, 127.0, 76.3, 51.7, 48.5, 17.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -47.3.

MS (EI) m/z: 305 (M⁺).

Anal. Calcd for C₁₃H₁₄F₃NO₂S: C, 51.14; H, 4.62. Found: C, 51.41; H, 4.54.

Analytical data are in accordance with the literature values.¹⁰

(E)-4-(benzylamino)-3-((trifluoromethyl)thio)pent-3-en-2-one (7b).

SCF₃

Chemical Formula: C₁₃H₁₄F₃NOS Exact Mass: 289.0748 Elemental Analysis: C, 53.97; H, 4.88; F, 19.70; N, 4.84; O, 5.53; S, 11.08

¹H NMR (500 MHz, CDCl₃) δ 12.91 (br, 1H), 7.38 – 7.24 (m, 5H), 4.54 (d, *J* = 5.9 Hz, 2H), 2.44 (s, 3H), 2.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 199.9, 172.4, 136.4, 130.1 (q, *J* = 311.5 Hz), 129.2, 128.1, 127.0, 88.7, 48.5, 29.2, 17.9.

¹⁹F NMR (470 MHz, CDCl₃) δ -47.2.

MS (EI) m/z: 289 (M⁺).

Anal. Calcd for $C_{13}H_{14}F_3NOS$: C, 53.97; H, 4.88. Found: C, 54.06; H, 4.96. Analytical data are in accordance with the literature values.¹⁰

(E)-3-(Benzylamino)-1-phenyl-2-((trifluoromethyl)thio)but-2-en-1-one (7c).

Chemical Formula: C₁₈H₁₆F₃NOS Exact Mass: 351.0905 Elemental Analysis: C, 61.53; H, 4.59; F, 16.22; N, 3.99; O, 4.55; S, 9.12

¹H NMR (500 MHz, CDCl₃) δ 13.04 (br, 1H), 7.49 – 7.29 (m, 10H), 4.63 (t, *J* = 4.8 Hz, 2H), 2.51 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 197.9, 174.0, 142.3, 136.1, 129.8 (q, *J* = 311.6 Hz), 129.3, 129.2, 128.2, 127.7, 127.6, 127.2, 88.0, 48.8, 18.4.

¹⁹F NMR (470 MHz, CDCl₃) δ -47.5.

MS (EI) m/z: 351 (M⁺).

Anal. Calcd for C₁₈H₁₆F₃NOS: C, 61.53; H, 4.59. Found: C, 61.90; H, 4.73.

Analytical data are in accordance with the literature values.¹⁰

Methyl (*E*)-3-(phenylamino)-2-((trifluoromethyl)thio)but-2-enoate (7d).

SCF₃

Chemical Formula: C₁₂H₁₂F₃NO₂S Exact Mass: 291.0541 Elemental Analysis: C, 49.48; H, 4.15; F, 19.57; N, 4.81; O, 10.98; S, 11.01

¹H NMR (500 MHz, CDCl₃) δ 11.99 (br, 1H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 7.7 Hz, 2H), 3.79 (s, 3H), 2.35 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 171.2, 170.1, 138.3, 130.1 (q, *J* = 312.0 Hz), 129.5, 127.1, 126.0, 78.5, 51.9, 19.4.

 ^{19}F NMR (470 MHz, CDCl_3) δ -46.6.

MS (EI) m/z: 291 (M⁺).

Anal. Calcd for C₁₂H₁₂F₃NO₂S: C, 49.48; H, 4.15. Found: C, 49.16; H, 4.01.

Analytical data are in accordance with the literature values.¹⁰

Ethyl (E)-3-(benzylamino)-3-phenyl-2-((trifluoromethyl)thio)acrylate (7e).

Chemical Formula: C₁₉H₁₈F₃NO₂S Exact Mass: 381.1010 Elemental Analysis: C, 59.83; H, 4.76; F, 14.94; N, 3.67; O, 8.39; S, 8.41

¹H NMR (500 MHz, CDCl₃) δ 10.62 (br, 1H), 7.42 (dd, J = 4.9, 1.7 Hz, 3H), 7.35 – 7.24 (m, 3H), 7.12 (dd, J = 17.0, 5.5 Hz, 4H), 4.26 (q, J = 7.1 Hz, 2H), 4.13 (d, J = 6.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.1, 171.0, 137.6, 134.2, 129.6 (q, *J* = 311.2 Hz), 129.3, 128.9, 128.5, 127.8, 127.2, 78.2, 60.6, 49.7, 14.5.

¹⁹F NMR (470 MHz, CDCl₃) δ -46.6. MS (EI) m/z: 381 (M⁺). Anal. Calcd for $C_{19}H_{18}F_{3}NO_{2}S$: C, 59.83; H, 4.76. Found: C, 59.48; H, 4.87. Analytical data are in accordance with the literature values.¹⁰

4. Experiments for the Mechanistic Study

A 10-mL Schlenk tube with a magnetic stirring bar was charged with triphenylphosphine (0.6 mmol, 158 mg), chlorophtalimide (0.3 mmol, 55 mg) and sodium trifluoromethanesulfinate (0.3 mmol, 47 mg). The tube was evacuated and backfilled with dry nitrogen (this operation was repeated three times). Dry acetonitrile (2 mL) was added by syringe. The resulting mixture was stirred at room temperature and monitored by ¹⁹F and ³¹P NMR spectroscopies with PhCF₃ as the internal standard. As can be seen from Figure S1 and S2, triphenylphosphine converted completely into triphenylphosphine oxide after 1.5 hours, and CF₃SCl was afforded in 75% yield determined by ¹⁹F NMR. Considering the volatility of CF₃SCl, the yield should be greater than 75%. Indole (**1a**, 0.2 mmol) was added to this mixture under nitrogen, and then the mixture was stirred for 14 hours. Trifluoromethylthiolated product **3a** was afforded in 70% based on **1a** after the reaction.

Figure S1. ¹⁹F NMR spectrum of reaction mixture (after a reaction time of 1.5 h).

-29.37

Figure S2. ³¹P NMR spectrum of reaction mixture (after a reaction time of 1.5 h).

To a 100 mL round-bottom flask with indole (1.00 g, 8.54 mmol, 1.0 equiv) in DMF (35 mL) was added *N*-chlorosuccinimide (1.23 g, 8.96 mmol, 1.05 equiv) at room temperature. After 1 h, water (40 mL) was added and the aqueous layer was extracted with EtOAc (3×35 mL). The combined organic layers were washed with brine (50 mL), and concentrated *in vacuo*. Purification of 3-chloroindole was achieved by column chromatography.

A 10-mL Schlenk tube with a magnetic stirring bar was charged with triphenylphosphine (0.6 mmol, 158 mg), and sodium trifluoromethanesulfinate (0.3 mmol, 47 mg). The tube was evacuated and backfilled with dry nitrogen (this operation was repeated three times). 3-Chloroindole dissolved in dry acetonitrile (2 mL) was added by syringe. The reaction mixture was stirred at room temperature for 14 hours. No trifluoromethylthiolated product **3a** could be detected after the reaction.

A 10-mL Schlenk tube with a magnetic stirring bar was charged with triphenylphosphine (0.6 mmol, 158 mg), chlorophtalimide (0.3 mmol, 55 mg) and sodium trifluoromethanesulfinate (0.3 mmol, 47 mg). The tube was evacuated and backfilled with dry nitrogen (this operation was repeated three times). Indole (**1a**, 0.2 mmol, 24 mg) and TEMPO (0.3 mmol, 47 mg) dissolved in dry acetonitrile

(2 mL) was added by syringe. The resulting mixture was stirred at room temperature before the solvent was removed under reduced pressure. A 74% yield of 3-((trifluoromethyl)thio)-1*H*-indole (**3a**) was achieved by column chromatography.

5. References

- 1 H. Huo, C. Fu, K. Harms and E. Meggers, J. Am. Chem. Soc., 2014, 136, 2990.
- 2 J. Wen, R. Y. Zhang, S. Y. Chen, J. Zhang and X. Q. Yu, J. Org. Chem., 2012, 77, 766.
- 3 Z.-L. Xu, H.-X. Li, Z.-G. Ren, W.-Y. Du, W.-C. Xu and J.-P. Lang, *Tetrahedron*, 2011, 67, 5282.
- 4 C. A. Brandt, A. C. M. P. da Silva, C. G. Pancote, C. L. Brito and M. A. B. da Silveira, *Synthesis*, 2004, 1557.
- 5 X.-Y. Zhang, Z.-W. Yang, Z. Chen, J. Wang, D.-L. Yang, Z. Shen, L.-L. Hu, J.-W. Xie, J. Zhang and H.-L. Cui, *J. Org. Chem.*, 2016, **81**, 1778.
- 6 G. Cheng, X. Zeng, J. Shen, X. Wang and X. Cui, Angew. Chem. Int. Ed., 2013, 52, 13265.
- 7 L. Jiang, J. Qian, W. Yi, G. Lu, C. Cai and W. Zhang, Angew. Chem. Int. Ed., 2015, 54, 14965.
- 8 R. Honeker, J. B. Ernst and F. Glorius, *Chem. Eur. J.*, 2015, **21**, 8047.
- 9 H. Chachignon, M. Maeno, H. Kondo, N. Shibata and D. Cahard, Org. Lett., 2016, 18, 2467.
- 10 Y.-D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro and N. Shibata, J. Am. Chem. Soc., 2013, 135, 8782.

6. Copies of NMR Spectra

¹³C NMR spectrum (125 MHz, CDCl₃) of 1c

¹³C NMR spectrum (125 MHz, CDCl₃) of **4b**

¹³C NMR spectrum (125 MHz, CDCl₃) of **5a**

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of $\mathbf{5b}$

¹³C NMR spectrum (125 MHz, CDCl₃) of **5**c

¹³C NMR spectrum (125 MHz, CDCl₃) of **5e**

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 3a

 ^{19}F NMR spectrum (470 MHz, CDCl₃) of 3b

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 3c

 ^{19}F NMR spectrum (470 MHz, CDCl₃) of 3d

¹³C NMR spectrum (125 MHz, CDCl₃) of 3e

 $^{19}\text{F}\,\text{NMR}$ spectrum (470 MHz, CDCl_3) of 3f

¹³C NMR spectrum (125 MHz, CDCl₃) of **3g**

¹H NMR spectrum (500 MHz, CDCl₃) of **3h**

¹⁹F NMR spectrum (470 MHz, CDCl₃) of **3h**

¹³C NMR spectrum (125 MHz, CDCl₃) of **3i**

80 70 60 50 40 30 20

10 0 -10

150 140 130 120 110 100 90 f1 (ppm)

210 200 190 180 170 160

¹⁹F NMR spectrum (470 MHz, CDCl₃) of **3j**

 ^{13}C NMR spectrum (125 MHz, CD₃OD) of 3k

 ^{19}F NMR spectrum (470 MHz, CDCl₃) of 3l

¹³C NMR spectrum (125 MHz, CDCl₃) of **3m**

¹⁹F NMR spectrum (470 MHz, CD₃OD) of **3n**

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 6a

 ^{19}F NMR spectrum (470 MHz, CDCl₃) of 6b

¹⁹F NMR spectrum (470 MHz, CDCl₃) of **6c**

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 7a

¹⁹F NMR spectrum (470 MHz, CDCl₃) of **7b**

¹³C NMR spectrum (125 MHz, CDCl₃) of 7c

¹H NMR spectrum (500 MHz, CDCl₃) of **7d**

 ^{19}F NMR spectrum (470 MHz, CDCl₃) of 7d

¹³C NMR spectrum (125 MHz, CDCl₃) of 7e

