Catalytic Enantioselective Bromohydroxylation of Aryl Olefins with Flexible Functionalities

Jing Li,^{a,b} Zequan Li,^{a,b} Xun Zhang,^{a,b} Bing Xu,^{a,b} and Yian Shi^{*,a,c,d}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
^bUniversity of Academy of Sciences, Beijing 100049, P. R. China.
^cState Key Laboratory of Coordination Chemistry, Center for Multimolecular Organic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
^dDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.

Supporting Information

Table of Contents

Experimental procedures and characterization data	S-2
X-ray structures of compounds 2d and 2j	S-25
Data for determination of enantiomeric excesses	S-54
NMR spectra	S-81

General Methods. All commercially available reagents were used without further purification unless otherwise noted. All dry solvents were freshly distilled under nitrogen from appropriate drying agents before use. Tetrahydrofuran and ethyl ether were distilled from sodium-benzophenone. Acetone AR was used directly. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. 2-Aryl allylic alcohols were prepared by reacting the corresponding aryl Grignard regents with propargyl alcohol in the presence of CuI according to the reported procedures.¹ Homoallylic alcohol **1** was prepared by reacting 4-chloro- α -methylstyrene with paraformaldehyde and Sc(OTf)₃ according to the reported procedure.² Olefin 5a was prepared from the corresponding alcohol (1a) via deprotonation with NaH and subsequent alkylation with MeI according to the reported procedures.³ Olefin **5b** was prepared from the corresponding alcohol (**1a**) with Et_3N and AcCl in DCM at rt. Olefin 5c was prepared by reacting the corresponding alcohol (1a) with pyridine and ClCOOEt.⁴ Olefin **5d** was prepared by reacting the corresponding allylic bromide⁵ with LiCl.⁶ Allylic fluorides **5e-g** and allylic azides **5h-l** were prepared by reacting the corresponding allylic bromide^{1,5} with TBAF⁷ or NaN₃^{1,8} according to the reported procedures. Olefins 7a, 7b, 7d-h, 7p-t, 7v, 7x, and 7y were purchased from commercial suppliers. Olefins 7c, 7i-o, and 7u were prepared from the corresponding aldehydes or ketones by wittig reaction.^{9,10} Olefin 7w was prepared from 7-bromo-1-tetralone according to the reported procedures.¹¹⁻¹⁴

- 1) Y. Kawato, A. Kubota, H. Ono, H. Egami and Y. Hamashima, *Org. Lett.* 2015, **17**, 1244.
- 2) S. Sultana, S. Bondalapati, K. Indukuri, P. Gogoi, P. Saha and A. K. Saikia, *Tetrahedron Lett.* 2013, **54**, 1576.
- 3) X. Sun, K. Frimpong and K. L. Tan, J. Am. Chem. Soc. 2010, 132, 11841.
- S. M. Smith, G. L. Hoang, R. Pal, M. O. B. Khaled, L. S. W. Pelter, X. C. Zeng and J. M. Takes, *Chem. Commun.* 2012, 48, 12180.
- 5) C. B. Tripathi and S. Mukherjee, Angew. Chem., Int. Ed. 2013, 52, 8450.
- 6) D. Huang, X. Liu, L. Li, Y. Cai, W. Liu and Y. Shi, J. Am. Chem. Soc. 2013, 135, 8101.
- 7) D. P. Cox, J. Terpinski and W. Lawrynowicz, J. Org. Chem. 1984, 49, 3216.

- 8) A. Garzan, A. Jaganathan, N. S. Marzijarani, R. Yousefi, D. C. Whitehead, J. E. Jackson and B. Borhan, *Chem. Eur. J.* 2013, **19**, 9015.
- 9) T. Okamoto, K. Kobayashi, S. Oka and S. Taninoto, J. Org. Chem. 1988, 53, 4897.
- 10) X.-L. Qiu, J. Zhu, G. Wu, W.-H. Lee and A. R. Chamberlin, J. Org. Chem. 2009, 74, 2018.
- 11) L. Li, C. Su, X. Liu, H. Tian and Y. Shi, Org. Lett. 2014, 16, 3728.
- 12) M. F. Gross, N. A. Castle, A. Zou, A. D. Wickenden, W. Yu and K. L. Spear, *Bioorg. Med. Chem. Lett.* 2009, **19**, 3063.
- 13) Y. Yu, S. K. Singh, A. Liu, T.-K. Li, L. F. Liu and E. J. LaVoie, *Bioorg. Med. Chem.* 2003, **11**, 1475.
- 14) F. Portela-Cubillo, J. S. Scott and J. C. Walton, J. Org. Chem. 2008, 73, 5558.

Representative procedure for asymmetric bromohydroxylation of allylic alcohol (Table 2, entry 1). A mixture of $(DHQD)_2PHAL$ (0.0389 g, 0.050 mmol), (+)-CSA (0.0116 g, 0.050 mmol), and *N*-bromobenzamide¹ (0.120 g, 0.60 mmol) in acetone (5.0 mL) and water (0.5 mL) was stirred at -50 °C for 15 min. Allylic alcohol (1a) (0.0843 g, 0.50 mmol) was subsequently added. Upon stirring at -50 °C for 72 h, the reaction mixture was quenched with saturated aqueous Na₂S₂O₃ (10 mL) at -50 °C, extracted with EtOAc (3×10 mL), dried over MgSO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 2:1) to afford bromohydrin 2a as colorless oil (0.1102 g, 83% yield, 96% ee).

S. Fujisaki, S. Hamura, H. Eguchi and A. Nishida, *Bull. Chem. Soc. Jpn.* 1993, 66, 2426.

Representative procedure for asymmetric bromohydroxylation of styrene (Table 4, entry 1). A mixture of $(DHQD)_2PHAL$ (0.0389 g, 0.050 mmol), (-)-CSA (0.0116 g, 0.050 mmol), and *N*-bromobenzamide (0.120 g, 0.60 mmol) in acetone (5.0 mL) and water (0.25 mL) was stirred at -40 °C for 15 min. 2-Methylstyrene (**7a**) (0.0591 g, 0.50 mmol) was subsequently added. The reaction mixture was stirred at -40 °C for 72 h, quenched with saturated aqueous Na₂S₂O₃ (10 mL) at -40 °C, extracted with DCM (3×10 mL), dried over MgSO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 15:1) to afford bromohydrin **8a** as pale yellow oil (0.0891 g, 83% yield, 90% ee).

Table 2, entry 1

Colorless oil; $[\alpha]_D{}^{20} = +11.9 (c \ 1.1, CHCl_3) (96\% ee);$ IR (film) 3465, 1492, 1074, 818 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.42-7.34 (m, 4H), 3.90 (d, J = 10.8 Hz, 1H), 3.86-3.81 (m, 2H), 3.78 (d, J = 10.8 Hz, 1H), 3.02 (br s, 1H), 2.17 (br s, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 139.8, 134.3, 129.0, 127.2, 75.8, 68.4, 41.0; HRMS Calcd for C₉H₁₀BrClNaO₂ (M+Na): 286.9445; Found: 286.9446.

Y. Zhang, H. Xing, W. Xie, X. Wan, Y. Lai and D. Ma, Adv. Synth. Catal. 2013, 355, 68.

Table 2, entry 2

Colorless oil; $[\alpha]_D{}^{20} = +11.6 (c \ 1.1, CHCl_3) (91\% ee);$ IR (film) 3433, 1510, 1075, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.47-7.40 (m, 2H), 7.11-7.04 (m, 2H), 3.90 (d, J = 10.8 Hz, 1H), 3.85-3.81 (m, 2H), 3.79 (d, J = 10.8 Hz, 1H), 3.05 (br s, 1H), 2.23 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 163.8, 161.4, 136.98, 136.95, 127.6, 127.5, 115.8, 115.6, 75.8, 68.4, 41.2; HRMS Calcd for C₉H₁₀BrFNaO₂ (M+Na): 270.9740; Found: 270.9741.

Y. Zhang, H. Xing, W. Xie, X. Wan, Y. Lai and D. Ma, Adv. Synth. Catal. 2013, 355, 68.

Table 2, entry 3

Colorless oil; $[\alpha]_D^{20} = +12.4 (c \ 0.97, CHCl_3) (96\% \text{ ee});$ IR (film) 3465, 1078, 818 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.52 (d, J = 9.2 Hz, 2H), 7.34 (d, J = 9.2 Hz, 2H), 3.91 (d, J = 10.8 Hz, 1H), 3.86-3.81 (m, 2H), 3.79 (d, J = 10.8 Hz, 1H), 2.97 (br s, 1H), 2.06 (br s, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 140.3, 131.9, 127.5, 122.4, 75.9, 68.3, 40.9; HRMS Calcd for C₉H₁₀Br₂NaO₂ (M+Na): 330.8940; Found: 330.8942.

Y. Zhang, H. Xing, W. Xie, X. Wan, Y. Lai and D. Ma, Adv. Synth. Catal. 2013, 355, 68.

Table 2, entry 4

(X-ray structure)

White solid; mp. 111-113 °C; $[\alpha]_D^{20} = +17.8$ (*c* 0.93, CHCl₃) (93% ee); IR (film) 3366, 1076, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.57 (m, 4H), 7.56-7.50 (m, 2H), 7.48-7.42 (m, 2H), 7.39-7.33 (m, 1H), 3.97 (d, *J* = 10.8 Hz, 1H), 3.95-3.87 (m, 2H), 3.87 (d, *J* = 10.8 Hz, 1H), 3.03 (br s, 1H), 2.13 (dd, *J* = 7.2, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.6, 140.1, 129.0, 127.7, 127.5, 127.3, 126.2, 76.0, 68.6, 41.3; HRMS Calcd for C₁₅H₁₅BrNaO₂ (M+Na): 329.0148; Found: 329.0147.

Y. Zhang, H. Xing, W. Xie, X. Wan, Y. Lai and D. Ma, Adv. Synth. Catal. 2013, 355, 68.

Table 2, entry 5

Colorless oil; $[\alpha]_D{}^{20} = +12.8 (c \ 0.97, CHCl_3) (90\% \text{ ee});$ IR (film) 3433, 1075, 707 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.31-7.26 (m, 2H), 7.25-7.21 (m, 1H), 7.17-7.12 (m, 1H), 3.94 (d, J = 10.8 Hz, 1H), 3.91-3.84 (m, 2H), 3.82 (d, J = 10.8 Hz, 1H), 2.93 (br s, 1H), 2.38 (s, 3H), 2.01-1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 141.1, 138.5, 129.0, 128.7, 126.3, 122.7, 76.1, 68.6, 41.4, 21.8; HRMS Calcd for C₁₀H₁₃BrNaO₂ (M+Na): 266.9991; Found: 266.9991.

Y. Zhang, H. Xing, W. Xie, X. Wan, Y. Lai and D. Ma, Adv. Synth. Catal. 2013, 355, 68.

Table 2, entry 6

Colorless oil; $[\alpha]_D{}^{20} = +11.2$ (*c* 0.95, CHCl₃) (77% ee); IR (film) 3398, 1448, 1075, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.43 (m, 2H), 7.43-7.37 (m, 2H), 7.36-7.30 (m, 1H), 3.94 (d, *J* = 10.8 Hz, 1H), 3.91-3.83 (m, 2H), 3.83 (d, *J* = 10.8 Hz, 1H), 3.02 (br s, 1H), 2.18-2.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 128.8, 128.2, 125.7, 76.1, 68.5, 41.3; HRMS Calcd for C₉H₁₁BrNaO₂ (M+Na): 252.9835; Found: 252.9835.

- 1) W. Adam and M. Heil, J. Am. Chem. Soc. 1992, 114, 5591.
- 2) W. Adam, R. Stössel, A. Treiber, J. Org. Chem. 1995, 60, 2879.
- 3) S.-T. Chen and J.-M. Fang, J. Org. Chem. 1997, 62, 4349.
- Y. Zhang, H. Xing, W. Xie, X. Wan, Y. Lai and D. Ma, Adv. Synth. Catal. 2013, 355, 68.

Table 2, entry 7

Colorless oil; $[\alpha]_D^{20} = +11.3$ (*c* 0.91, CHCl₃) (93% ee); IR (film) 3398, 1508, 1076, 818 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.25 (m, 1H), 7.25-7.19 (m, 1H), 7.01 (t, *J* = 9.2 Hz, 1H), 3.90 (d, *J* = 10.8 Hz, 1H), 3.88-3.81 (m, 2H), 3.78 (d, *J* = 10.8 Hz, 1H), 3.00 (br s, 1H), 2.29 (d, *J* = 1.6 Hz, 3H), 2.17 (t, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 159.9, 136.6, 136.5, 129.0, 128.9, 125.3, 125.2, 124.75, 124.67, 115.4, 115.1, 75.7, 68.5, 41.3, 14.99, 14.96; HRMS Calcd for C₁₀H₁₂BrFNaO₂ (M+Na): 284.9897; Found: 284.9899.

Table 2, entry 8

Colorless oil; $[\alpha]_D^{20} = +12.3$ (*c* 0.95, CHCl₃) (96% ee); IR (film) 3398, 1076, 821 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.4 Hz, 1H), 7.32 (d, *J* = 2.0 Hz, 1H), 7.19 (dd, *J* = 8.4, 2.0 Hz, 1H), 3.89 (d, *J* = 10.8 Hz, 1H), 3.86-3.80 (m, 2H), 3.77 (d, *J* = 10.8 Hz, 1H), 3.05 (br s, 1H), 2.39 (s, 3H), 2.25 (t, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 136.5, 134.4, 129.4, 128.3, 124.5, 75.8, 68.4, 41.1, 20.5; HRMS Calcd for C₁₀H₁₂BrClNaO₂ (M+Na): 300.9601; Found: 300.9602.

Table 2, entry 9

Colorless oil; $[\alpha]_D{}^{20} = +11.2 (c \ 0.92, CHCl_3) (94\% \text{ ee});$ IR (film) 3398, 1076, 824 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.45 (d, J = 2.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.20 (dd, J = 8.0, 1.6 Hz, 1H), 3.88 (d, J = 10.8 Hz, 1H), 3.85-3.79 (m, 2H), 3.76 (d, J = 10.8 Hz, 1H), 3.10 (br s, 1H), 2.37 (s, 3H), 2.35-2.30 (m, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 140.6, 136.1, 135.0, 131.2, 126.6, 123.9, 75.8, 68.4, 41.0, 19.9; HRMS Calcd for $C_{10}H_{12}BrClNaO_2$ (M+Na): 300.9601; Found: 300.9601.

Table 2, entry 10

(X-ray structure)

White solid; mp. 90-92 °C; $[\alpha]_D^{20} = +11.3$ (*c* 0.97, CHCl₃) (83% ee); IR (film) 3433, 1491, 1076, 726 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 6.8 Hz, 2H), 3.90 (d, *J* = 10.8 Hz, 1H), 3.88-3.78 (m, 2H), 3.78 (d, *J* = 10.8 Hz, 1H), 2.89 (br s, 1H), 2.27 (d, *J* =

2.0 Hz, 6H), 1.95 (dd, J = 7.6, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 158.5, 135.9, 135.8, 126.22, 126.17, 124.9, 124.7, 75.7, 68.5, 41.4, 15.1, 15.0; HRMS Calcd for C₁₁H₁₄BrFNaO₂ (M+Na): 299.0053; Found: 299.0052.

Table 2, entry 11

Colorless oil; $[\alpha]_D{}^{20} = +11.5$ (*c* 0.99, CHCl₃) (90% ee); IR (film) 3433, 1508, 1075, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 1.6 Hz, 1H), 7.91-7.82 (m, 3H), 7.55-7.47 (m, 3H), 4.03 (d, J = 10.8 Hz, 1H), 4.01-3.91 (m, 2H), 3.95 (d, J = 10.8 Hz, 1H), 3.09 (br s, 1H), 2.10-2.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 133.3, 133.1, 128.7, 128.5, 127.8, 126.7, 126.6, 125.3, 123.2, 76.3, 68.6, 41.3; HRMS Calcd for C₁₃H₁₃BrNaO₂ (M+Na): 302.9991; Found: 302.9992.

Y. Zhang, H. Xing, W. Xie, X. Wan, Y. Lai and D. Ma, Adv. Synth. Catal. 2013, 355, 68.

Table 2, entry 12

Colorless oil; $[\alpha]_D{}^{20} = +8.7 (c \ 1.1, CHCl_3) (90\% ee);$ IR (film) 3466, 1491, 1090, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.41-7.31 (m, 4H), 4.00 (dd, J = 11.6, 5.2 Hz, 1H), 3.95 (dd, J = 11.6, 6.0 Hz, 1H), 3.86 (d, J = 11.2 Hz, 1H), 3.77 (d, J = 10.8 Hz, 1H), 3.19 (s, 3H), 1.80 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 137.4, 134.4, 129.0, 128.5, 79.9, 65.2, 51.2, 35.3; HRMS Calcd for C₁₀H₁₂BrClNaO₂ (M+Na): 300.9601; Found: 300.9600.

Table 2, entry 13

Colorless oil; $[\alpha]_D{}^{20} = +7.6 (c \ 0.95, CHCl_3) (91\% ee);$ IR (film) 3449, 1491, 1076, 831 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.41-7.31 (m, 4H), 3.99 (dd, J = 11.2, 5.6 Hz, 1H), 3.94 (dd, J = 11.2, 6.4 Hz, 1H), 3.86 (d, J = 10.8 Hz, 1H), 3.79 (d, J = 10.8 Hz, 1H), 3.43-3.34 (m, 1H), 3.33-3.24 (m, 1H), 1.75 (t, J = 6.4 Hz, 1H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 134.3, 129.0, 128.4, 79.7, 65.5, 58.9, 35.7, 15.7; HRMS Calcd for C₁₁H₁₄BrClNaO₂ (M+Na): 314.9758; Found: 314.9757.

Table 2, entry 14

Colorless oil; $[\alpha]_D{}^{20} = +0.22$ (*c* 0.90, CHCl₃) (86% ee); IR (film) 3366, 1491, 1093, 829 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.31 (m, 4H), 3.84 (br s, 1H), 3.79-3.67 (m, 3H), 3.65-3.55 (m, 1H), 2.39 (ddd, *J* = 14.4, 9.6, 4.4 Hz, 1H), 2.13-2.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 133.7, 128.8, 127.2, 76.5, 59.9, 44.7, 40.7; HRMS Calcd for C₁₀H₁₆BrClNO₂ (M+NH₄): 296.0047; Found: 296.0049.

Determination of the absolute configuration of bromohydrin 2a (Scheme 3)

To a mixture of **2a** (0.0648 g, 0.24 mmol) in acetone (2 mL) was added K₂CO₃ (0.1659 g, 1.2 mmol). Upon stirring at rt overnight, the reaction mixture was filtered through a silica gel plug and concentrated to give epoxide **4** as colorless oil (0.0359 g, 80% yield, 96% ee). $[\alpha]_D^{20} = +19.8$ (*c* 1.0, CHCl₃) (96% ee) {lit.¹ $[\alpha]_D^{20} = +26$ (*c* 0.92, CHCl₃) for (*R*)-**4**}; IR (film) 3423, 1495, 1014, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.29

(m, 4H), 4.08 (dd, J = 12.4, 4.4 Hz, 1H), 3.97 (dd, J = 12.4, 8.4 Hz, 1H), 3.26 (d, J = 5.2 Hz, 1H), 2.79 (d, J = 5.2 Hz, 1H), 1.95 (dd, J = 8.8, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.1, 134.2, 128.9, 127.6, 63.3, 60.1, 52.9. HRMS (EI) Calcd for C₉H₉O₂Cl (M): 184.0291; Found: 184.0293.

R. H. Prager, K. Schafer, D. P. G. Hamon and R. A. Massy-Westropp, *Tetrahedron* 1995, 51, 11465.

Table 3, entry 1

Yellow oil; $[\alpha]_D{}^{20} = +23.9 \ (c \ 1.2, \ CHCl_3) \ (98\% \ ee);$ IR (film) 3464, 1491, 1092, 834 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.44 (d, $J = 9.2 \ Hz, 2H$), 7.34 (d, $J = 9.2 \ Hz, 2H$), 3.78 (d, $J = 10.8 \ Hz, 1H$), 3.70 (d, $J = 10.8 \ Hz, 1H$), 3.69 (d, $J = 9.6 \ Hz, 1H$), 3.65 (d, $J = 9.6 \ Hz, 1H$), 3.40 (s, 3H), 2.99 (br s, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 140.1, 134.0, 128.7, 127.3, 77.4, 74.7, 59.7, 40.7; HRMS Calcd for C₁₀H₁₂BrClNaO₂ (M+Na): 300.9601; Found: 300.9600.

Table 3, entry 2

Colorless oil; $[\alpha]_D^{20} = +13.7$ (*c* 1.2, CHCl₃) (63% ee); IR (film) 3467, 1736, 1491, 1234, 829 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.8 Hz, 2H), 4.42 (d, *J* = 11.6 Hz, 1H), 4.38 (d, *J* = 11.6 Hz, 1H), 3.79 (d, *J* = 10.8 Hz, 1H), 3.73 (d, *J* = 10.8 Hz, 1H), 2.98 (br s, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 139.1, 134.4, 128.9, 127.3, 74.5, 68.8, 40.5, 21.0; HRMS Calcd for C₁₁H₁₂BrClNaO₃ (M+Na): 328.9551; Found: 328.9550.

Table 3, entry 3

Colorless oil; $[\alpha]_D^{20} = +19.4$ (*c* 1.0, CHCl₃) (83% ee); IR (film) 3483, 1745, 1492, 1260, 830 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 4.43 (s, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.82 (d, *J* = 10.8 Hz, 1H), 3.74 (d, *J* = 10.8 Hz, 1H), 3.01 (br s, 1H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 138.8, 134.5, 128.9, 127.3, 74.4, 71.5, 64.8, 40.2, 14.3; HRMS Calcd for C₁₂H₁₄BrClNaO₄ (M+Na): 358.9656; Found: 358.9658.

Table 3, entry 4

Colorless oil; $[\alpha]_D^{20} = +11.2$ (*c* 0.79, CHCl₃) (87% ee); IR (film) 3538, 1490, 1093, 829 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.41 (m, 2H), 7.41-7.35 (m, 2H), 3.95 (d, J = 11.6 Hz, 1H), 3.91 (d, J = 11.6 Hz, 1H), 3.86 (d, J = 10.8 Hz, 1H), 3.78 (d, J = 10.8 Hz, 1H), 2.89 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 134.7, 129.0, 127.4, 74.9, 51.2, 40.4; HRMS (EI) Calcd for C₉H₉BrCl₂O (M): 281.9214; Found: 281.9217.

Table 3, entry 5

Colorless oil; $[\alpha]_D{}^{20} = +36.4$ (*c* 0.88, CHCl₃) (90% ee); IR (film) 3464, 1492, 1094, 829 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 4.64 (dd, *J* = 38.4, 9.2 Hz, 1H), 4.52 (dd, *J* = 38.4, 9.6 Hz, 1H), 3.90 (dd, *J* = 11.2, 1.2 Hz, 1H), 3.76 (dd, *J* = 11.2, 2.0 Hz, 1H), 2.79 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 134.7, 129.0, 127.3, 87.1, 85.3, 74.3, 74.1, 39.83, 39.80; HRMS (EI) Calcd for C₉H₉BrClFO (M): 265.9509; Found: 265.9512. Table 3, entry 6

Colorless oil; $[\alpha]_D{}^{20} = +27.0$ (*c* 0.67, CHCl₃) (85% ee); IR (film) 3547, 1510, 1231, 836 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.44 (m, 2H), 7.13-7.04 (m, 2H), 4.65 (dd, J = 38.4, 9.6 Hz, 1H), 4.53 (dd, J = 38.0, 9.6 Hz, 1H), 3.90 (dd, J = 10.8, 1.2 Hz, 1H), 3.77 (dd, J = 11.2, 2.0 Hz, 1H), 2.79 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 161.6, 135.5, 127.8, 127.75, 127.66, 115.8, 115.6, 87.2, 85.4, 74.3, 74.1, 40.1, 40.0; HRMS (EI) Calcd for C₉H₉BrF₂O (M): 249.9805; Found: 249.9807.

Table 3, entry 7

Colorless oil; $[\alpha]_D^{20} = +35.0 \ (c \ 1.3, \text{CHCl}_3) \ (91\% \text{ ee});$ IR (film) 3547, 1490, 1015, 727 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.13 (d, J = 6.8 Hz, 2H), 4.63 (dd, J = 32.0, 9.6 Hz, 1H), 4.52 (dd, J = 31.6, 9.2 Hz, 1H), 3.89 (dd, J = 10.8, 0.8 Hz, 1H), 3.76 (dd, J = 11.2, 2.0 Hz, 1H), 2.76 (br s, 1H), 2.28 (d, J = 1.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl_3) δ 161.1, 158.7, 134.4, 126.4, 126.35, 126.30, 125.0, 124.8, 87.3, 85.6, 74.3, 74.1, 40.2, 40.1, 15.1, 15.0; HRMS (EI) Calcd for C₁₁H₁₃BrF₂O (M): 278.0118; Found: 278.0116.

Table 3, entry 8

Colorless oil; $[\alpha]_D^{20} = -22.7$ (*c* 0.96, CHCl₃) (92% ee); IR (film) 3538, 2106, 1491, 1093, 772 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.35 (m, 4H), 3.85 (d, *J* = 10.8 Hz, 1H), 3.75 (d, *J* = 11.2 Hz, 1H), 3.70 (d, *J* = 12.8 Hz, 1H), 3.60 (d, *J* = 12.4 Hz, 1H), 2.87

(br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 134.5, 129.0, 127.1, 75.6, 58.7, 41.1; HRMS Calcd for C₉H₉BrClN₃NaO (M+Na): 311.9510; Found: 311.9512.

Table 3, entry 9

Colorless oil; $[\alpha]_D{}^{20} = -13.1$ (*c* 0.94, CHCl₃) (87% ee); IR (film) 3539, 2108, 1510, 1232, 836 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.40 (m, 2H), 7.13-7.05 (m, 2H), 3.86 (d, *J* = 10.8 Hz, 1H), 3.76 (d, *J* = 10.8 Hz, 1H), 3.71 (d, *J* = 12.8 Hz, 1H), 3.61 (d, *J* = 12.4 Hz, 1H), 2.83 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 161.5, 136.60, 136.57, 127.6, 127.5, 115.9, 115.7, 75.5, 58.9, 41.3; HRMS Calcd for C₉H₉BrFN₃NaO (M+Na): 295.9805; Found: 295.9806.

Table 3, entry 10

Colorless oil; $[\alpha]_D{}^{20} = -16.9 (c \ 1.1, CHCl_3) (84\% ee);$ IR (film) 3538, 2105, 1489, 1297, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.33-7.27 (m, 2H), 7.23 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 3.88 (d, J = 10.8 Hz, 1H), 3.78 (d, J = 10.8 Hz, 1H), 3.73 (d, J = 12.4 Hz, 1H), 3.62 (d, J = 12.8 Hz, 1H), 2.81 (br s, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 140.7, 138.6, 129.3, 128.7, 126.2, 122.5, 75.8, 58.9, 41.5, 21.8; HRMS Calcd for C₁₀H₁₂BrN₃NaO (M+Na): 292.0056; Found: 292.0056.

Table 3, entry 11

Colorless oil; $[\alpha]_D{}^{20} = -29.3 (c \ 1.2, CHCl_3) (94\% ee);$ IR (film) 3539, 2106, 1484, 1048, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.36 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.20 (dd, J = 8.0, 2.0 Hz, 1H), 3.85 (d, J = 10.8 Hz, 1H), 3.74 (d, J = 10.8 Hz, 1H), 3.69 (d, J = 12.4 Hz, 1H), 3.60 (d, J = 12.4 Hz, 1H), 2.86 (br s, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 139.3, 136.6, 134.6, 129.4, 128.2, 124.3, 75.5, 58.8, 41.2, 20.5; HRMS Calcd for C₁₀H₁₁BrClN₃NaO (M+Na): 325.9666; Found: 325.9669.

Table 3, entry 12

Colorless oil; $[\alpha]_D{}^{20} = -38.9 (c \ 1.1, CHCl_3) (96\% ee);$ IR (film) 3538, 2106, 1508, 1290, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 1.6 Hz, 1H), 7.92-7.82 (m, 3H), 7.56-7.47 (m, 3H), 3.99 (d, J = 10.8 Hz, 1H), 3.90 (d, J = 10.8 Hz, 1H), 3.83 (d, J = 12.4Hz, 1H), 3.72 (d, J = 12.8 Hz, 1H), 2.93 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 133.2, 133.1, 128.7, 128.5, 127.8, 126.8, 126.7, 125.2, 122.9, 76.1, 58.9, 41.4; HRMS Calcd for C₁₃H₁₂BrN₃NaO (M+Na): 328.0056; Found: 328.0058.

Table 4, entry 1

Pale yellow oil; $[\alpha]_D^{20} = +51.3$ (*c* 1.07, CHCl₃) (90% ee); IR (film) 3388, 1460, 1064 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.49 (m, 1H), 7.29-7.19 (m, 2H), 7.18-7.14 (m, 1H), 5.14 (dt, *J* = 9.6, 2.8 Hz, 1H), 3.60 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.49 (dd, *J* = 10.8, 9.6 Hz, 1H), 2.58 (d, *J* = 2.8 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 134.9, 130.8, 128.4, 126.7, 125.5, 70.9, 39.2, 19.2.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 2

Pale yellow oil; $[\alpha]_D{}^{20} = +40.6$ (*c* 0.86, CHCl₃) (76% ee) {lit.¹ $[\alpha]_D{}^{20} = +47.9$ (c 1.6, CHCl₃) for (*S*)-**8b**}; IR (film) 3388, 1453, 1060 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.31 (m, 5H), 4.92 (dd, J = 8.8, 3.2 Hz, 1H), 3.64 (dd, J = 10.8, 3.6 Hz, 1H), 3.54 (dd, J = 10.4, 9.2 Hz, 1H), 2.76 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 128.9, 128.7, 126.2, 74.0, 40.4.

- 1) S. Wei, R. Messerer and S. B. Tsogoeva, Chem. Eur. J. 2011, 17, 14380.
- 2) A. K. Macharla, R. C. Nappunni and N. Nama, Tetrahedron Lett. 2012, 53, 1401.
- 3) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 3

Pale yellow oil; $[\alpha]_D^{20} = +44.4$ (*c* 1.10, CHCl₃) (89% ee); IR (film) 3387, 1449, 1057 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.6 Hz, 1H), 7.33-7.26 (m, 2H), 7.26-7.18 (m, 1H), 5.25 (dd, J = 9.2, 3.2 Hz, 1H), 3.57 (dd, J = 10.4, 3.2 Hz, 1H), 3.52 (dd, J = 10.4, 9.2 Hz, 1H), 3.14 (septet, J = 6.8 Hz, 1H), 2.66 (br s, 1H), 1.27 (d, J = 7.2 Hz, 3H), 1.25 (d, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 137.0, 128.8, 126.4, 125.8, 125.7, 70.4, 40.0, 28.6, 24.8, 23.8.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 4

Me

Pale yellow oil; $[\alpha]_D^{20} = +38.3$ (*c* 1.05, CHCl₃) (82% ee); IR (film) 3397, 1488, 1067 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.6 Hz, 1H), 7.21-7.10 (m, 3H), 4.86 (dd, *J* = 9.2, 3.2 Hz, 1H), 3.61 (dd, *J* = 10.4, 3.2 Hz, 1H), 3.52 (dd, *J* = 10.4, 9.2 Hz, 1H),

2.73 (br s, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 138.6, 129.4, 128.7, 126.8, 123.2, 74.0, 40.4, 21.6.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 5

Pale yellow oil; $[\alpha]_D{}^{20} = +37.8 \ (c \ 0.95, \text{ CHCl}_3) \ (81\% \text{ ee}) \ \{\text{lit.}^1 \ [\alpha]_D{}^{20} = +34.7 \ (c \ 0.63, \text{CHCl}_3) \ \text{for} \ (S)-8e\};$ IR (film) 3388, 1438, 1067 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.25 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 4.87 (dd, J = 8.8, 3.2 Hz, 1H), 3.59 (dd, J = 10.4, 3.2 Hz, 1H), 3.52 (dd, J = 10.4, 8.8 Hz, 1H), 2.60 (br s, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 138.4, 137.6, 129.5, 126.1, 73.9, 40.4, 21.4.

- X.-F. Wu, C. Min, E. Nyamzundui, H.-B. Zhou and C. Dong, *Tetrahedron: Asymmetry* 2011, 22, 1640.
- 2) A. K. Macharla, R. C. Nappunni and N. Nama, Tetrahedron Lett. 2012, 53, 1401.
- 3) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 6

White solid; mp. 98-100 °C; $[\alpha]_D{}^{20} = +31.1 (c \ 1.05, CHCl_3) (83\% ee);$ IR (film) 3433, 1486, 1073 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.66-7.58 (m, 4H), 7.51-7.43 (m, 4H), 7.42-7.36 (m, 1H), 4.98 (dd, J = 8.8, 3.2 Hz, 1H), 3.69 (dd, J = 10.4, 3.2 Hz, 1H), 3.60 (dd, J = 10.4, 9.2 Hz, 1H), 2.71 (br s, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 141.5, 140.7, 139.4, 129.0, 127.7, 127.6, 127.2, 126.6, 73.7, 40.2.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 7

Pale yellow oil; $[\alpha]_D^{20} = +39.9 (c \ 0.95, CHCl_3) (86\% \text{ ee});$ IR (film) 3397, 1510, 1067 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.39-7.31 (m, 2H), 7.10-7.01 (m, 2H), 4.90 (dd, J = 8.8, 3.2 Hz, 1H), 3.60 (dd, J = 10.4, 3.2 Hz, 1H), 3.50 (dd, J = 10.4, 8.8 Hz, 1H), 2.78 (br s, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 164.1, 161.6, 136.29, 136.26, 128.0, 127.9, 115.9, 115.7, 73.3, 40.2.

- 1) J. Ren, W. Dong, B. Yu, Q. Wu and D. Zhu, Tetrahedron: Asymmetry 2012, 23, 497.
- 2) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 8

Pale yellow oil; $[\alpha]_D^{20} = +38.3$ (*c* 0.95, CHCl₃) (88% ee); IR (film) 3364, 1492, 1092 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.29 (m, 4H), 4.90 (dd, *J* = 8.8, 3.6 Hz, 1H), 3.60 (dd, *J* = 10.4, 3.6 Hz, 1H), 3.49 (dd, *J* = 10.4, 8.8 Hz, 1H), 2.75 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 134.4, 129.0, 127.6, 73.3, 40.1.

1) A. K. Macharla, R. C. Nappunni and N. Nama, Tetrahedron Lett. 2012, 53, 1401.

2) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 9

Yellow oil; $[\alpha]_D^{20} = +46.8 (c \ 1.01, CHCl_3) (88\% ee);$ IR (film) 3364, 1463, 1079 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.44-7.37 (m, 1H), 7.21-7.12 (m, 2H), 5.19 (dt, J = 9.6, 2.8Hz, 1H), 3.60 (dd, J = 10.8, 2.8 Hz, 1H), 3.47 (dd, J = 10.4, 9.6 Hz, 1H), 2.84 (d, J = 2.8Hz, 1H), 2.32 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 138.4, 137.3, 133.4, 130.0, 126.1, 123.3, 71.2, 39.3, 20.8, 14.9; HRMS (EI) Calcd for C₁₀H₁₃BrO (M): 228.0150; Found: 228.0151.

Table 4, entry 10

Yellow oil; $[\alpha]_D^{20} = +42.0 \ (c \ 1.08, \text{CHCl}_3) \ (96\% \text{ ee});$ IR (film) 3358, 1465, 1062 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.2 Hz, 1H), 7.44-7.15 (m, 7H), 5.21 (dd, J =9.2, 2.0 Hz, 1H), 3.63 (dd, J = 10.4, 2.8 Hz, 1H), 3.51 (dd, J = 10.4, 9.6 Hz, 1H), 2.77 (br s, 1H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 142.1, 139.1, 132.3, 130.2, 129.5, 128.3, 127.1, 126.2, 124.7, 71.2, 39.4, 16.4; HRMS (EI) Calcd for C₁₅H₁₅BrO (M): 290.0306; Found: 290.0310.

Table 4, entry 11

Colorless oil; $[\alpha]_D{}^{20} = +32.0 \ (c \ 0.92, \text{CHCl}_3) \ (90\% \text{ ee});$ IR (film) 3351, 1466, 1083 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.31 (d, J = 7.6 Hz, 1H), 7.25-7.17 (m, 1H), 6.99 (t, J = 8.8 Hz, 1H), 5.12 (dt, J = 9.2, 2.8 Hz, 1H), 3.57 (dd, J = 10.8, 3.2 Hz, 1H), 3.46 (dd, J = 10.4, 9.2 Hz, 1H), 2.75 (d, J = 2.8 Hz, 1H), 2.24 (d, J = 2.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 162.5, 160.1, 140.8, 140.7, 127.5, 127.4, 122.4, 122.2, 121.19, 121.16, 115.2, 114.9, 70.8, 70.7, 38.9, 10.4, 10.3; HRMS (EI) Calcd for C₉H₁₀BrFO (M): 231.9899; Found: 231.9896.

Table 4, entry 12

Yellow oil; $[\alpha]_D^{20} = +18.8 (c \ 1.07, CHCl_3) (93\% ee);$ IR (film) 3375, 1462, 1062 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ 7.61-7.45 (m, 2H), 7.11 (t, *J* = 8.0 Hz, 1H), 5.18 (dd, *J* = 9.2, 2.0 Hz, 1H), 3.59 (dd, *J* = 10.8, 2.8 Hz, 1H), 3.43 (t, *J* = 10.0 Hz, 1H), 2.64 (br s, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 134.5, 132.7, 127.7, 126.5, 124.9, 71.5, 38.9, 18.9; HRMS (EI) Calcd for C₉H₁₀Br₂O (M): 291.9098; Found: 291.9095.

Table 4, entry 13

Yellow oil; $[\alpha]_D^{20} = +42.5$ (*c* 1.22, CHCl₃) (95% ee); IR (film) 3365, 1496, 1066 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, *J* = 8.4, 6.0 Hz, 1H), 6.92 (td, *J* = 8.4, 2.8 Hz, 1H), 6.88 (dd, *J* = 9.6, 2.4 Hz, 1H), 5.07 (dt, *J* = 9.2, 2.8 Hz, 1H), 3.54 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.44 (dd, *J* = 10.4, 9.6 Hz, 1H), 2.81 (d, *J* = 2.8 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 161.2, 137.43, 137.35, 134.31, 134.28, 127.5, 127.4, 117.5, 117.3, 113.5, 113.3, 70.4, 39.1, 19.2; HRMS (EI) Calcd for C₉H₁₀BrFO (M): 231.9899; Found: 231.9901.

Table 4, entry 14

Yellow oil; $[\alpha]_D{}^{20} = +37.1 \ (c \ 1.12, \text{CHCl}_3) \ (98\% \text{ ee});$ IR (film) 3386, 1483, 1064 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 1H), 7.20 (dd, J = 8.4, 1.6 Hz, 1H), 7.14 (s, 1H), 5.06 (dd, J = 9.2, 2.8 Hz, 1H), 3.53 (dd, J = 10.4, 2.8 Hz, 1H), 3.42 (dd, J = 10.4, 9.6 Hz, 1H), 2.85 (br s, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 136.7, 133.9, 130.5, 127.1, 126.7, 70.4, 38.8, 19.0; HRMS (EI) Calcd for C₉H₁₀BrClO (M): 247.9604; Found: 247.9606.

Table 4, entry 15

White solid; mp. 64-66 °C; $[\alpha]_D^{20} = +37.3$ (*c* 1.17, CHCl₃) (98% ee); IR (film) 3366, 1480, 1066 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.33 (m, 2H), 7.33-7.27 (m, 1H), 5.04 (dt, *J* = 9.2, 3.2 Hz, 1H), 3.53 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.42 (dd, *J* = 10.4, 9.2 Hz, 1H), 2.83 (d, *J* = 3.2 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 137.0, 133.5, 129.7, 127.4, 122.2, 70.4, 38.7, 19.0; HRMS (EI) Calcd for C₉H₁₀Br₂O (M): 291.9098; Found: 291.9096.

Table 4, entry 16

White solid; mp. 79-81 °C; $[\alpha]_D^{20} = +46.7 (c \ 0.98, \text{CHCl}_3) (94\% \text{ ee});$ IR (film) 3347 1499, 1065 cm⁻¹; ¹H NMR (400 MHz, CDCl}3) δ 7.34 (s, 1H), 7.08-7.01 (m, 2H), 5.11 (dd, J = 9.6, 2.8 Hz, 1H), 3.58 (dd, J = 10.8, 2.8 Hz, 1H), 3.48 (dd, J = 10.4, 9.6 Hz, 1H), 2.66 (br s, 1H), 2.34 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl}3) δ 138.2, 136.2, 131.7, 130.7, 129.1, 126.1, 71.0, 39.4, 21.3, 18.8.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 17

Colorless oil; $[\alpha]_D{}^{20} = +66.8$ (*c* 0.95, CHCl₃) (97% ee); IR (film) 1481, 1119, 1103 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 1H), 7.17 (s, 1H), 4.60 (dd, *J* = 8.0, 4.0 Hz, 1H), 3.45 (dd, *J* = 10.8, 8.4 Hz, 1H), 3.40 (dd, *J* = 10.8, 4.4 Hz, 1H), 3.29 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 135.8, 133.9, 130.7, 127.6, 126.8, 79.8, 57.4, 35.1, 19.1; HRMS (EI) Calcd for

C₁₀H₁₂BrClO (M): 261.9760; Found: 261.9763.

Table 4, entry 18

White solid; mp. 80-82 °C; $[\alpha]_D^{20} = +36.6 (c \ 1.01, \text{CHCl}_3) (72\% \text{ ee}), [\alpha]_D^{20} = +17.6 (c \ 1.01, \text{EtOH}) (72\% \text{ ee}) {lit.}^1 [\alpha]_D^{20} = -22.3 (c \ 1.0, \text{EtOH}) for ($ *R*)-**8q** $}; IR (film) 3396, 1067 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) & 7.89-7.81 (m, 4H), 7.55-7.43 (m, 3H), 5.09 (dd, <math>J = 8.8, 2.8 \text{ Hz}, 1\text{H}), 3.72 (dd, <math>J = 10.4, 3.2 \text{ Hz}, 1\text{H}), 3.63 (dd, J = 10.4, 8.8 \text{ Hz}, 1\text{H}), 2.73 (br s, 1\text{H}); ¹³C NMR (100 MHz, CDCl_3) & 137.8, 133.5, 133.4, 128.7, 128.2, 127.9, 126.6, 126.5, 125.4, 123.8, 74.1, 40.2.$

- 1) S. Wei, R. Messerer and S. B. Tsogoeva, Chem. Eur. J. 2011, 17, 14380.
- 2) Y. Wang, J. Wang, Y. Xiong and Z. Liu, Tetrahedron Lett. 2014, 55, 2734.
- 3) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 19

Pale yellow oil; $[\alpha]_D{}^{20} = +31.8 (c \ 1.02, CHCl_3) (74\% \text{ ee});$ IR (film) 3386, 1420, 1079 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.99 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.59-7.47 (m, 3H), 5.70 (dd, J = 9.2, 2.0 Hz, 1H), 3.84 (dd, J = 10.4, 2.8 Hz, 1H), 3.63 (t, J = 10.0 Hz, 1H), 2.91 (br s, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 135.9, 133.9, 130.3, 129.3, 129.1, 126.8, 126.0, 125.7, 123.7, 122.5, 71.3, 39.9.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 20

Pale yellow oil; $[\alpha]_D{}^{20} = +21.9 (c \ 0.98, CHCl_3) (64\% \text{ ee}) \{\text{lit.}^1 \ [\alpha]_D{}^{20} = +15.3 (c \ 1.15, CHCl_3) \text{ for } (S)-8s\};$ IR (film) 3453, 1447, 1068 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.50-7.42 (m, 2H), 7.41-7.33 (m, 2H), 7.32-7.26 (m 1H), 3.76 (d, J = 10.4 Hz, 1H), 3.70 (d, J = 10.4 Hz, 1H), 2.59 (br s, 1H), 1.68 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 144.4, 128.6, 127.7, 125.1, 73.4, 46.5, 28.2.

- 1) V. J. Forrat, D. J. Ramón and M. Yus, Tetrahedron: Asymmetry 2007, 18, 400.
- 2) A. K. Macharla, R. C. Nappunni and N. Nama, Tetrahedron Lett. 2012, 53, 1401.
- 3) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 21

Pale yellow oil; $[\alpha]_D^{20} = +30.7$ (*c* 0.98, CHCl₃) (87% ee); IR (film) 3448, 1491, 1095 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.37 (m, 2H), 7.36-7.30 (m, 2H), 3.72 (d, *J* = 10.4 Hz, 1H), 3.67 (d, *J* = 10.4 Hz, 1H), 2.61 (br s, 1H), 1.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 133.6, 128.8, 126.6, 73.1, 46.0, 28.2.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 22

Pale yellow oil; $[\alpha]_D^{20} = +26.6 (c \ 1.07, CHCl_3) (89\% \text{ ee});$ IR (film) 3456, 1488, 1075 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.52-7.46 (m, 2H), 7.36-7.30 (m, 2H), 3.72 (d, J = 10.4 Hz, 1H), 3.67 (d, J = 10.4 Hz, 1H), 2.58 (br s, 1H), 1.65 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 143.5, 131.7, 127.0, 121.8, 73.2, 45.9, 28.2.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 23

White solid; mp. 99-101 °C; $[\alpha]_D^{20} = -34.7$ (*c* 1.06, CHCl₃) (71% ee) {lit.¹ $[\alpha]_D^{20} = +23.3$ (c 0.41, CHCl₃) for (1*R*, 2*R*)-**8v**}; IR (film) 3232, 1492, 1213 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.44 (m, 1H), 7.30-7.17 (m, 2H), 7.13-7.04 (m, 1H), 4.86 (d, *J* = 6.4 Hz, 1H), 4.31 (ddd, *J* = 9.6, 6.8, 2.8 Hz, 1H), 3.03-2.82 (m, 2H), 2.73 (br s, 1H), 2.55-2.42 (m, 1H), 2.32-2.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 135.2, 128.7, 128.5 128.2, 126.8, 74.2, 56.2, 29.8, 28.2.

- 1) M. Kasai, K.-i. Kawai, M. Imuta and H. Ziffer, J. Org. Chem. 1984, 49, 675.
- 2) L. Li, C. Su, X. Liu, H. Tian and Y. Shi, Org. Lett. 2014, 16, 3728.
- 3) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 24

White solid; mp. 111-113 °C; $[\alpha]_D^{20} = -18.1$ (*c* 1.03, CHCl₃) (78% ee); IR (film) 3299, 1484, 1221 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.61 (d, *J* = 7.2 Hz, 2H), 7.54-7.40 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 4.94 (d, *J* = 6.8 Hz, 1H), 4.38 (ddd, *J* = 9.2, 6.8, 2.8 Hz, 1H), 3.08-2.88 (m, 2H), 2.79 (br s, 1H), 2.59-2.48 (m, 1H), 2.36-2.23 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 139.9, 136.0, 134.3, 129.2, 128.9, 127.4, 127.2, 127.0, 74.2, 56.2, 29.8, 27.9.

X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 25

Pale yellow oil; $[\alpha]_D^{20} = -5.9$ (*c* 0.80, CHCl₃) (52% ee); IR (film) 3425, 1451 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.28 (m, 5H), 5.01 (d, *J* = 3.6 Hz, 1H), 4.43 (qd, *J* = 6.8, 3.6 Hz, 1H), 2.53 (br s, 1H), 1.55 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 128.6, 128.3, 126.6, 77.5, 56.4, 19.0.

- 1) K. Kikushima, T. Moriuchi and T. Hirao, *Chem. Asian J.* 2009, 4, 1213.
- 2) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

Table 4, entry 26

White solid; mp. 44-46 °C; $[\alpha]_D^{20} = -15.8$ (*c* 0.65, CHCl₃) (56% ee); IR (film) 3425, 1447, 1008 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 1H), 4.49-4.43 (m, 1H), 2.71-2.59 (m, 1H), 2.53-2.41 (m, 1H), 2.14-2.04 (m, 1H), 1.96 (br s, 1H), 1.88-1.78 (m, 3H), 1.76-1.66 (m, 1H), 1.65-1.55 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 128.3, 127.9, 125.8, 74.5, 60.2, 31.5, 31.4, 21.1, 20.5.

- 1) L. Li, P. Cai, Q. Guo and S. Xue, J. Org. Chem. 2008, 73, 3516.
- M. Ceylan, E. Findik, E. Sahin and Z. Kazaz, Russ. Chem. Bull., Int. Ed. 2009, 58, 2299.
- 3) X. Zhang, J. Li, H. Tian and Y. Shi, Chem. Eur. J. 2015, 21, 11658.

The X-ray structure of compound $\mathbf{2d}$

Table 1. Crystal data and structure refinement for	2 u .	
Identification code	2d	
Empirical formula	$C_{15}H_{15}BrO_2$	
Formula weight	307.18	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 7.813(4) Å	a = 90°.
	b = 5.321(3) Å	b=91.594(8)°.
	c = 15.394(8) Å	$g = 90^{\circ}$.
Volume	639.7(6) Å ³	
Ζ	2	
Density (calculated)	1.595 Mg/m ³	
Absorption coefficient	3.204 mm ⁻¹	
F(000)	312	
Crystal size	0.25 x 0.22 x 0.05 mm ³	
Theta range for data collection	2.608 to 27.498°.	
Index ranges	-10<=h<=10, -6<=k<=6, -19<=	=1<=19
Reflections collected	7124	
Independent reflections	2875 [R(int) = 0.0430]	
Completeness to theta = 26.000°	98.8 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	1.0000 and 0.4523	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2875 / 1 / 169	
Goodness-of-fit on F ²	1.071	
Final R indices [I>2sigma(I)]	R1 = 0.0575, wR2 = 0.1494	
R indices (all data)	R1 = 0.0582, wR2 = 0.1501	
Absolute structure parameter	0.04(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	2.433 and -0.770 e.Å ⁻³	

Table 1. Crystal data and structure refinement for 2d.

	Х	у	Z	U(eq)
Br1	-6192(1)	-3721(3)	-3873(1)	50(1)
01	-2498(8)	-965(9)	-3913(4)	35(1)
O2	-484(8)	-4808(11)	-4744(3)	37(1)
C1	-2494(7)	-3496(15)	-3624(4)	24(1)
C2	-3906(9)	-5009(15)	-4085(5)	31(1)
C3	-770(9)	-4747(14)	-3831(4)	29(1)
C4	-2598(7)	-3473(13)	-2637(3)	20(1)
C5	-3377(9)	-5391(13)	-2177(4)	27(1)
C6	-3344(9)	-5386(13)	-1272(4)	28(1)
C7	-2541(6)	-3489(13)	-796(3)	19(1)
C8	-1742(10)	-1607(12)	-1258(5)	29(1)
C9	-1778(10)	-1586(13)	-2158(4)	31(2)
C10	-2503(6)	-3529(15)	178(3)	21(1)
C11	-3346(9)	-5366(13)	639(4)	28(1)
C12	-3308(10)	-5378(14)	1546(4)	32(2)
C13	-2448(8)	-3515(16)	2006(4)	28(1)
C14	-1589(12)	-1655(16)	1552(5)	39(2)
C15	-1634(10)	-1651(13)	655(5)	31(2)

Table 2.Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for 2d.U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br1-C2	1.949(7)	
O1-C1	1.418(9)	
O1-H1	0.71(9)	
O2-H2	0.8200	
O2-C3	1.430(8)	
C1-C2	1.525(9)	
C1-C3	1.543(9)	
C1-C4	1.524(7)	
C2-H2A	0.9700	
C2-H2B	0.9700	
С3-НЗА	0.9700	
С3-Н3В	0.9700	
C4-C5	1.392(9)	
C4-C9	1.391(9)	
С5-Н5	0.9300	
C5-C6	1.392(9)	
С6-Н6	0.9300	
C6-C7	1.387(9)	
C7-C8	1.387(9)	
C7-C10	1.499(7)	
С8-Н8	0.9300	
C8-C9	1.386(10)	
С9-Н9	0.9300	
C10-C11	1.386(9)	
C10-C15	1.404(9)	
C11-H11	0.9300	
C11-C12	1.395(9)	
C12-H12	0.9300	
C12-C13	1.382(10)	
С13-Н13	0.9300	
C13-C14	1.394(11)	
C14-H14	0.9300	
C14-C15	1.381(10)	
С15-Н15	0.9300	
C1-O1-H1	114(7)	

Table 3. Bond lengths [Å] and angles $[\circ]$ for **2d**.

С3-О2-Н2	109.5
O1-C1-C2	111.1(6)
01-C1-C3	109.8(5)
O1-C1-C4	107.8(6)
C2-C1-C3	107.5(6)
C4-C1-C2	114.2(6)
C4-C1-C3	106.3(5)
Br1-C2-H2A	109.0
Br1-C2-H2B	109.0
C1-C2-Br1	113.0(5)
C1-C2-H2A	109.0
С1-С2-Н2В	109.0
Н2А-С2-Н2В	107.8
O2-C3-C1	112.0(6)
О2-С3-НЗА	109.2
О2-С3-Н3В	109.2
С1-С3-НЗА	109.2
С1-С3-Н3В	109.2
НЗА-СЗ-НЗВ	107.9
C5-C4-C1	122.5(6)
C9-C4-C1	119.8(6)
C9-C4-C5	117.5(5)
С4-С5-Н5	119.6
C4-C5-C6	120.7(6)
С6-С5-Н5	119.6
С5-С6-Н6	119.2
C7-C6-C5	121.7(6)
С7-С6-Н6	119.2
C6-C7-C8	117.3(5)
C6-C7-C10	120.9(6)
C8-C7-C10	121.7(6)
С7-С8-Н8	119.3
C9-C8-C7	121.4(6)
С9-С8-Н8	119.3
С4-С9-Н9	119.3
C8-C9-C4	121.4(6)
С8-С9-Н9	119.3
C11-C10-C7	121.7(6)

C11-C10-C15	117.7(5)
C15-C10-C7	120.6(6)
C10-C11-H11	119.4
C10-C11-C12	121.2(6)
C12-C11-H11	119.4
С11-С12-Н12	119.8
C13-C12-C11	120.4(6)
С13-С12-Н12	119.8
С12-С13-Н13	120.4
C12-C13-C14	119.1(6)
С14-С13-Н13	120.4
C13-C14-H14	119.9
C15-C14-C13	120.2(7)
C15-C14-H14	119.9
С10-С15-Н15	119.3
C14-C15-C10	121.4(6)
С14-С15-Н15	119.3

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br1	27(1)	88(1)	33(1)	13(1)	1(1)	9(1)
01	61(4)	26(2)	19(2)	6(2)	4(2)	-1(2)
02	36(3)	52(3)	23(2)	-2(2)	11(2)	2(2)
C1	25(3)	27(3)	22(3)	-5(3)	5(2)	2(3)
C2	27(3)	44(4)	22(3)	-5(3)	-1(2)	-1(3)
C3	21(3)	46(4)	22(3)	0(3)	7(2)	2(3)
C4	20(2)	22(3)	17(2)	1(3)	2(2)	2(3)
C5	33(3)	24(3)	26(3)	-3(2)	2(2)	-9(2)
C6	37(3)	23(3)	24(3)	-1(2)	4(3)	-10(3)
C7	17(2)	20(3)	19(2)	0(2)	2(2)	2(2)
C8	37(4)	23(3)	27(3)	-1(2)	0(3)	-13(3)
C9	40(4)	27(3)	25(3)	3(2)	4(3)	-12(3)
C10	20(2)	24(3)	19(2)	1(3)	1(2)	3(3)
C11	36(4)	27(3)	22(3)	-1(2)	1(3)	-8(3)
C12	40(4)	34(3)	22(3)	6(3)	4(3)	-8(3)
C13	34(3)	34(3)	17(2)	-1(3)	0(2)	3(3)
C14	55(5)	37(4)	24(3)	-5(3)	-2(3)	-8(3)
C15	38(4)	31(3)	24(3)	-1(3)	-1(3)	-11(3)

Table 4. Anisotropic displacement parameters (Å2x103) for 2d. The anisotropic displacement factorexponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hk a^* b^* U^{12}].$

	X	у	Z	U(eq)
H2	-215	-3401	-4910	56
H2A	-3838	-6741	-3890	37
H2B	-3718	-4990	-4705	37
H3A	153	-3827	-3541	35
H3B	-758	-6451	-3606	35
Н5	-3926	-6691	-2477	33
Н6	-3874	-6688	-979	34
Н8	-1169	-330	-957	35
Н9	-1242	-285	-2449	37
H11	-3949	-6615	339	34
H12	-3865	-6647	1842	38
H13	-2441	-3502	2610	34
H14	-984	-413	1855	46
H15	-1077	-378	360	37
H1	-2560(100)	-840(160)	-4370(60)	20(20)

Table 5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for **2d**.

Table 6. Torsion angles [°] for **2d**.

01-C1-C2-Br1	-61.0(6)
01-C1-C3-O2	-61.6(7)
01-C1-C4-C5	149.9(6)
01-C1-C4-C9	-35.4(8)
C1-C4-C5-C6	175.6(6)
C1-C4-C9-C8	-175.3(7)
C2-C1-C3-O2	59.3(8)
C2-C1-C4-C5	25.9(9)
C2-C1-C4-C9	-159.3(6)
C3-C1-C2-Br1	178.8(4)
C3-C1-C4-C5	-92.4(7)
C3-C1-C4-C9	82.3(8)
C4-C1-C2-Br1	61.2(8)
C4-C1-C3-O2	-177.9(6)
C4-C5-C6-C7	0.0(11)
C5-C4-C9-C8	-0.3(11)
C5-C6-C7-C8	-1.1(10)
C5-C6-C7-C10	-179.4(6)
C6-C7-C8-C9	1.5(11)
C6-C7-C10-C11	-3.8(9)
C6-C7-C10-C15	177.7(7)
C7-C8-C9-C4	-0.9(12)
C7-C10-C11-C12	-179.7(6)
C7-C10-C15-C14	179.8(7)
C8-C7-C10-C11	178.0(7)
C8-C7-C10-C15	-0.6(9)
C9-C4-C5-C6	0.7(10)
C10-C7-C8-C9	179.8(6)
C10-C11-C12-C13	1.2(11)
C11-C10-C15-C14	1.3(11)
C11-C12-C13-C14	-1.3(12)
C12-C13-C14-C15	1.4(12)
C13-C14-C15-C10	-1.4(13)
C15-C10-C11-C12	-1.2(11)

Symmetry transformations used to generate equivalent atoms:

Table 7.	Hydrogen bonds for 2d [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O2-H2O2#1	0.82	2.06	2.881(4)	176.9
O1-H1Br1#2	0.71(9)	3.06(9)	3.727(6)	157(8)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y+1/2,-z-1 #2 -x-1,y+1/2,-z-1

The X-ray structure of compound 2j

Table 1. Crystal data and structure refinement for	2 J.			
Identification code	2j			
Empirical formula	$C_{11}H_{14}BrFO_2$			
Formula weight	277.13			
Temperature	173.1500 K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P 21 21 21			
Unit cell dimensions	a = 5.651(2) Å	a = 90°.		
	b = 16.364(7) Å	b=90°.		
	c = 38.4918(16) Å	g = 90°.		
Volume	3559(2) Å ³			
Ζ	12			
Density (calculated)	1.551 Mg/m ³			
Absorption coefficient	3.456 mm ⁻¹			
F(000)	1680			
Crystal size	0.34 x 0.03 x 0.03 mm ³			
Theta range for data collection	1.352 to 27.400°.			
Index ranges	-7<=h<=7, -21<=k<=20, -49<=l<=49			
Reflections collected	34787			
Independent reflections	7939 [R(int) = 0.0853]			
Completeness to theta = 26.000°	99.8 %			
Absorption correction	Semi-empirical from equivaler	ıts		
Max. and min. transmission	1.0000 and 0.5903			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	7939 / 0 / 418			
Goodness-of-fit on F ²	1.159			
Final R indices [I>2sigma(I)]	R1 = 0.0694, wR2 = 0.1075			
R indices (all data)	R1 = 0.0824, wR2 = 0.1135			
Absolute structure parameter	0.008(8)			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.602 and -0.839 e.Å ⁻³			
	X	у	Z	U(eq)
------	-----------	---------	---------	-------
	0720(2)	7720(1)	1074(1)	
Brl	8728(2)	7738(1)	4374(1)	41(1)
FI	8201(11)	9018(3)	2838(1)	54(2)
01	10369(10)	6131(3)	3901(2)	27(1)
02	15303(10)	6108(3)	4019(2)	30(1)
C1	11660(14)	6879(4)	3876(2)	22(2)
C2	11777(14)	7290(5)	4231(2)	26(2)
C3	14174(15)	6623(5)	3771(2)	27(2)
C4	10727(15)	7442(5)	3594(2)	24(2)
C5	9044(14)	7187(5)	3352(2)	27(2)
C6	8137(15)	7711(6)	3094(2)	34(2)
C7	9049(18)	8487(5)	3089(2)	37(2)
C8	10755(18)	8786(5)	3313(2)	37(2)
C9	11566(16)	8250(5)	3567(2)	28(2)
C10	6150(16)	7450(6)	2855(2)	45(3)
C11	11710(20)	9641(5)	3287(2)	51(3)
Br1B	5637(2)	4814(1)	2678(1)	44(1)
F1B	5611(12)	957(3)	3130(2)	56(2)
O1B	7254(10)	4708(3)	3494(1)	24(1)
O2B	12206(10)	4968(3)	3438(1)	28(1)
C1B	8581(13)	4244(5)	3244(2)	22(2)
C2B	8695(14)	4720(5)	2900(2)	25(2)
C3B	11093(15)	4191(5)	3392(2)	26(2)
C4B	7685(15)	3371(5)	3203(2)	25(2)
C5B	6068(16)	3043(5)	3437(2)	31(2)
C6B	5303(15)	2233(6)	3412(2)	32(2)
C7B	6302(19)	1753(5)	3152(2)	38(2)
C8B	7950(16)	2043(5)	2915(2)	32(2)
C9B	8628(16)	2853(5)	2947(2)	32(2)
C10B	3410(20)	1882(6)	3652(3)	53(3)
C11B	9003(18)	1478(5)	2646(2)	47(3)
Br1A	1787(2)	2810(1)	4597(1)	40(1)
F1A	520(11)	5506(4)	5743(1)	55(2)
O1A	3518(10)	4510(3)	4215(1)	25(1)

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for **2j**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O2A	8492(11)	4290(4)	4185(1)	32(1)
C1A	4743(14)	4252(5)	4524(2)	24(2)
C2A	4896(14)	3308(5)	4531(2)	29(2)
C3A	7265(14)	4587(5)	4483(2)	27(2)
C4A	3680(14)	4618(5)	4854(2)	25(2)
C5A	1996(15)	5242(5)	4836(2)	28(2)
C6A	917(16)	5547(5)	5134(2)	33(2)
C7A	1659(16)	5226(6)	5448(2)	34(2)
C8A	3351(19)	4639(6)	5483(2)	41(2)
C9A	4361(17)	4336(5)	5180(2)	33(2)
C10A	-1016(18)	6192(6)	5118(3)	50(3)
C11A	4120(30)	4349(8)	5841(2)	79(4)

Br1-C2	1.952(8)
F1-C7	1.386(9)
O1-H1	0.8200
01-C1	1.428(9)
O2-H2	0.8200
O2-C3	1.424(9)
C1-C2	1.524(10)
C1-C3	1.536(11)
C1-C4	1.520(10)
C2-H2A	0.9700
C2-H2B	0.9700
СЗ-НЗА	0.9700
С3-Н3В	0.9700
C4-C5	1.395(11)
C4-C9	1.408(11)
С5-Н5	0.9300
C5-C6	1.409(11)
C6-C7	1.371(12)
C6-C10	1.513(12)
C7-C8	1.383(13)
C8-C9	1.391(11)
C8-C11	1.503(12)
С9-Н9	0.9300
C10-H10A	0.9600
C10-H10B	0.9600
C10-H10C	0.9600
C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
Br1B-C2B	1.933(8)
F1B-C7B	1.362(10)
O1B-H1B	0.8200
O1B-C1B	1.436(9)
O2B-H2BA	0.8200
O2B-C3B	1.430(9)
C1B-C2B	1.539(10)

Table 3. Bond lengths [Å] and angles [°] for **2j**.

C1B-C3B	1.531(11)
C1B-C4B	1.524(10)
C2B-H2BB	0.9700
C2B-H2BC	0.9700
СЗВ-НЗВА	0.9700
C3B-H3BB	0.9700
C4B-C5B	1.392(11)
C4B-C9B	1.402(10)
C5B-H5B	0.9300
C5B-C6B	1.397(12)
C6B-C7B	1.393(12)
C6B-C10B	1.525(12)
C7B-C8B	1.385(12)
C8B-C9B	1.386(11)
C8B-C11B	1.512(11)
С9В-Н9В	0.9300
C10B-H10D	0.9600
C10B-H10E	0.9600
C10B-H10F	0.9600
C11B-H11D	0.9600
C11B-H11E	0.9600
C11B-H11F	0.9600
Br1A-C2A	1.954(8)
F1A-C7A	1.386(9)
O1A-H1A	0.8200
O1A-C1A	1.438(8)
O2A-H2AA	0.8200
O2A-C3A	1.426(9)
C1A-C2A	1.547(11)
C1A-C3A	1.536(11)
C1A-C4A	1.529(10)
C2A-H2AB	0.9700
C2A-H2AC	0.9700
СЗА-НЗАА	0.9700
СЗА-НЗАВ	0.9700
C4A-C5A	1.396(11)
C4A-C9A	1.393(11)
С5А-Н5А	0.9300

C5A-C6A	1.392(11)
C6A-C7A	1.380(12)
C6A-C10A	1.520(13)
C7A-C8A	1.363(13)
C8A-C9A	1.389(11)
C8A-C11A	1.522(12)
С9А-Н9А	0.9300
C10A-H10G	0.9600
С10А-Н10Н	0.9600
C10A-H10I	0.9600
C11A-H11G	0.9600
С11А-Н11Н	0.9600
C11A-H11I	0.9600
С1-О1-Н1	109.5
С3-О2-Н2	109.5
O1-C1-C2	109.9(6)
01-C1-C3	104.9(6)
O1-C1-C4	113.0(6)
C2-C1-C3	108.5(6)
C4-C1-C2	112.8(6)
C4-C1-C3	107.3(6)
Br1-C2-H2A	109.1
Br1-C2-H2B	109.1
C1-C2-Br1	112.4(5)
C1-C2-H2A	109.1
C1-C2-H2B	109.1
H2A-C2-H2B	107.9
O2-C3-C1	113.5(6)
O2-C3-H3A	108.9
O2-C3-H3B	108.9
С1-С3-НЗА	108.9
С1-С3-Н3В	108.9
НЗА-СЗ-НЗВ	107.7
C5-C4-C1	122.2(7)
C5-C4-C9	117.4(7)
C9-C4-C1	120.4(7)
С4-С5-Н5	118.7

C4-C5-C6	122.5(8)
С6-С5-Н5	118.7
C5-C6-C10	121.8(8)
C7-C6-C5	115.8(8)
C7-C6-C10	122.2(8)
C6-C7-F1	117.4(8)
C6-C7-C8	125.6(8)
C8-C7-F1	117.0(8)
С7-С8-С9	116.4(8)
C7-C8-C11	122.6(8)
C9-C8-C11	121.1(9)
С4-С9-Н9	118.9
C8-C9-C4	122.2(8)
С8-С9-Н9	118.9
С6-С10-Н10А	109.5
С6-С10-Н10В	109.5
С6-С10-Н10С	109.5
H10A-C10-H10B	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C8-C11-H11A	109.5
C8-C11-H11B	109.5
C8-C11-H11C	109.5
H11A-C11-H11B	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C1B-O1B-H1B	109.5
C3B-O2B-H2BA	109.5
O1B-C1B-C2B	109.4(6)
O1B-C1B-C3B	105.4(6)
O1B-C1B-C4B	113.0(6)
C3B-C1B-C2B	108.1(6)
C4B-C1B-C2B	113.4(6)
C4B-C1B-C3B	107.0(6)
Br1B-C2B-H2BB	109.1
Br1B-C2B-H2BC	109.1
C1B-C2B-Br1B	112.5(5)
C1B-C2B-H2BB	109.1

C1B-C2B-H2BC	109.1
H2BB-C2B-H2BC	107.8
O2B-C3B-C1B	113.7(6)
O2B-C3B-H3BA	108.8
O2B-C3B-H3BB	108.8
С1В-С3В-Н3ВА	108.8
C1B-C3B-H3BB	108.8
НЗВА-СЗВ-НЗВВ	107.7
C5B-C4B-C1B	120.8(7)
C5B-C4B-C9B	118.1(7)
C9B-C4B-C1B	120.9(7)
С4В-С5В-Н5В	119.2
C4B-C5B-C6B	121.6(8)
С6В-С5В-Н5В	119.2
C5B-C6B-C10B	122.1(8)
C7B-C6B-C5B	117.3(8)
C7B-C6B-C10B	120.6(8)
F1B-C7B-C6B	117.8(8)
F1B-C7B-C8B	118.7(8)
C8B-C7B-C6B	123.5(8)
С7В-С8В-С9В	117.0(8)
C7B-C8B-C11B	120.4(8)
C9B-C8B-C11B	122.5(8)
С4В-С9В-Н9В	118.8
C8B-C9B-C4B	122.4(8)
С8В-С9В-Н9В	118.8
C6B-C10B-H10D	109.5
C6B-C10B-H10E	109.5
C6B-C10B-H10F	109.5
H10D-C10B-H10E	109.5
H10D-C10B-H10F	109.5
H10E-C10B-H10F	109.5
C8B-C11B-H11D	109.5
C8B-C11B-H11E	109.5
C8B-C11B-H11F	109.5
H11D-C11B-H11E	109.5
H11D-C11B-H11F	109.5
H11E-C11B-H11F	109.5

C1A-O1A-H1A	109.5
СЗА-О2А-Н2АА	109.5
01A-C1A-C2A	109.6(6)
O1A-C1A-C3A	104.9(6)
O1A-C1A-C4A	112.5(6)
C3A-C1A-C2A	107.9(7)
C4A-C1A-C2A	113.5(6)
C4A-C1A-C3A	108.0(6)
Br1A-C2A-H2AB	109.3
Br1A-C2A-H2AC	109.3
C1A-C2A-Br1A	111.6(6)
C1A-C2A-H2AB	109.3
C1A-C2A-H2AC	109.3
H2AB-C2A-H2AC	108.0
O2A-C3A-C1A	114.3(7)
О2А-СЗА-НЗАА	108.7
О2А-С3А-НЗАВ	108.7
С1А-С3А-НЗАА	108.7
С1А-С3А-НЗАВ	108.7
НЗАА-СЗА-НЗАВ	107.6
C5A-C4A-C1A	120.9(7)
C9A-C4A-C1A	120.7(7)
C9A-C4A-C5A	118.3(7)
С4А-С5А-Н5А	119.3
C6A-C5A-C4A	121.4(7)
С6А-С5А-Н5А	119.3
C5A-C6A-C10A	122.1(8)
C7A-C6A-C5A	116.7(8)
C7A-C6A-C10A	121.2(8)
C6A-C7A-F1A	116.8(8)
C8A-C7A-F1A	118.4(7)
C8A-C7A-C6A	124.7(8)
С7А-С8А-С9А	117.1(8)
C7A-C8A-C11A	120.8(8)
C9A-C8A-C11A	122.1(9)
С4А-С9А-Н9А	119.2
C8A-C9A-C4A	121.6(8)
С8А-С9А-Н9А	119.2

C6A-C10A-H10G	109.5
С6А-С10А-Н10Н	109.5
C6A-C10A-H10I	109.5
H10G-C10A-H10H	109.5
H10G-C10A-H10I	109.5
H10H-C10A-H10I	109.5
C8A-C11A-H11G	109.5
С8А-С11А-Н11Н	109.5
C8A-C11A-H11I	109.5
H11G-C11A-H11H	109.5
H11G-C11A-H11I	109.5
H11H-C11A-H11I	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br1	34(1)	46(1)	44(1)	-14(1)	4(1)	7(1)
F1	62(4)	57(4)	43(3)	20(3)	-6(3)	11(3)
01	18(3)	26(3)	36(3)	2(2)	5(3)	-1(3)
02	22(3)	25(3)	43(3)	2(3)	-4(3)	0(3)
C1	18(4)	19(4)	28(4)	-1(3)	-4(3)	-2(3)
C2	24(4)	24(4)	31(4)	-2(3)	-6(3)	1(4)
C3	23(5)	24(4)	32(4)	6(3)	1(4)	-1(4)
C4	24(4)	26(4)	22(4)	2(3)	1(3)	2(4)
C5	19(4)	30(4)	32(4)	-2(4)	5(3)	-5(4)
C6	29(5)	45(5)	28(4)	1(4)	-1(3)	4(5)
C7	43(6)	36(5)	31(4)	11(4)	-2(4)	4(5)
C8	50(6)	34(5)	28(4)	7(4)	4(4)	-5(5)
C9	24(5)	26(4)	35(4)	1(3)	-1(4)	-7(4)
C10	28(5)	69(7)	37(5)	1(4)	-8(4)	1(5)
C11	81(8)	34(5)	38(5)	13(4)	-8(5)	-17(6)
Br1B	33(1)	64(1)	36(1)	11(1)	-7(1)	0(1)
F1B	64(4)	32(3)	70(4)	-9(3)	20(3)	-22(3)
O1B	22(3)	25(3)	27(3)	-8(2)	1(2)	4(3)
O2B	19(3)	29(3)	35(3)	-7(2)	-1(2)	-6(3)
C1B	11(4)	28(4)	27(4)	-5(3)	1(3)	-3(3)
C2B	24(4)	23(4)	29(4)	1(3)	0(3)	-4(4)
C3B	25(5)	23(4)	32(4)	-3(3)	3(4)	-3(4)
C4B	24(4)	21(4)	31(4)	-2(3)	1(3)	-4(4)
C5B	34(5)	27(5)	33(4)	-6(3)	1(4)	-2(4)
C6B	27(5)	31(5)	37(4)	0(4)	4(4)	-7(4)
C7B	47(6)	25(4)	42(5)	-3(4)	9(5)	-13(5)
C8B	33(5)	29(5)	35(4)	-7(4)	-1(4)	0(4)
C9B	35(5)	25(4)	35(4)	-5(4)	4(4)	-3(5)
C10B	51(7)	48(6)	59(6)	-2(5)	21(6)	-20(6)
C11B	55(7)	34(5)	51(6)	-17(4)	19(5)	-7(5)
Br1A	37(1)	32(1)	50(1)	7(1)	4(1)	-8(1)
F1A	58(4)	68(4)	39(3)	-15(3)	18(3)	1(3)
01A	14(3)	33(3)	27(3)	4(2)	-4(2)	0(3)

Table 4. Anisotropic displacement parameters (Å2x103) for 2j. The anisotropic displacement factorexponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}].$

O2A	22(3)	45(4)	28(3)	5(3)	7(3)	1(3)
C1A	18(4)	31(5)	25(4)	3(3)	-5(3)	6(4)
C2A	21(4)	40(5)	25(4)	5(4)	1(3)	1(4)
C3A	23(4)	35(5)	24(4)	0(3)	0(3)	-3(4)
C4A	15(4)	32(5)	28(4)	0(3)	2(3)	-1(4)
C5A	26(5)	30(5)	28(4)	4(3)	1(3)	0(4)
C6A	24(5)	38(5)	36(4)	-5(4)	1(4)	-4(4)
C7A	34(5)	46(5)	21(4)	-13(4)	4(4)	-2(5)
C8A	55(7)	39(5)	27(4)	-6(4)	-6(4)	3(5)
C9A	36(5)	38(5)	25(4)	6(4)	2(4)	9(4)
C10A	39(6)	54(7)	56(6)	-22(5)	3(5)	13(5)
C11A	117(12)	94(10)	26(5)	9(5)	-5(7)	26(9)

	x	у	Z	U(eq)
H1	8996	6229	3956	40
H2	14613	5667	4027	45
H2A	12935	7727	4223	31
H2B	12300	6894	4402	31
H3A	14102	6339	3550	32
H3B	15127	7110	3739	32
Н5	8499	6652	3362	33
Н9	12700	8431	3724	34
H10A	6078	6864	2846	67
H10B	6435	7659	2625	67
H10C	4676	7660	2940	67
H11A	10444	10025	3315	76
H11B	12429	9717	3063	76
H11C	12875	9726	3465	76
H1B	5876	4745	3430	37
H2BA	11349	5264	3555	42
H2BB	9778	4445	2743	30
H2BC	9315	5263	2944	30
H3BA	11033	3913	3614	32
H3BB	12054	3862	3237	32
H5B	5483	3370	3615	37
H9B	9748	3062	2794	38
H10D	3109	2261	3838	79
H10E	3958	1374	3748	79
H10F	1984	1791	3523	79
H11D	9298	1779	2436	70
H11E	7916	1041	2598	70
H11F	10464	1257	2731	70
H1A	2091	4441	4241	37
H2AA	7988	4518	4011	48
H2AB	5937	3139	4718	35
H2AC	5571	3116	4314	35
НЗАА	7188	5178	4470	33
НЗАВ	8168	4447	4689	33

Table 5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for **2j**.

H5A	1587	5457	4621	33
H9A	5520	3934	5196	40
H10G	-2433	5981	5223	74
H10H	-1324	6330	4880	74
H10I	-512	6671	5242	74
H11G	4654	4808	5976	118
H11H	5389	3962	5818	118
H11I	2809	4094	5957	118

F1-C7-C8-C9	179.1(8)
F1-C7-C8-C11	-1.2(14)
O1-C1-C2-Br1	-71.4(7)
01-C1-C3-O2	-61.3(8)
01-C1-C4-C5	-9.7(10)
01-C1-C4-C9	170.7(7)
C1-C4-C5-C6	178.8(7)
C1-C4-C9-C8	-179.8(8)
C2-C1-C3-O2	56.1(8)
C2-C1-C4-C5	-135.1(8)
C2-C1-C4-C9	45.3(10)
C3-C1-C2-Br1	174.5(5)
C3-C1-C4-C5	105.4(8)
C3-C1-C4-C9	-74.1(9)
C4-C1-C2-Br1	55.7(8)
C4-C1-C3-O2	178.3(6)
C4-C5-C6-C7	1.3(12)
C4-C5-C6-C10	-174.2(8)
C5-C4-C9-C8	0.6(12)
C5-C6-C7-F1	179.9(7)
C5-C6-C7-C8	0.2(14)
C6-C7-C8-C9	-1.2(15)
C6-C7-C8-C11	178.5(10)
C7-C8-C9-C4	0.7(13)
C9-C4-C5-C6	-1.7(12)
C10-C6-C7-F1	-4.6(13)
C10-C6-C7-C8	175.7(9)
C11-C8-C9-C4	-178.9(9)
F1B-C7B-C8B-C9B	-179.4(8)
F1B-C7B-C8B-C11B	-1.6(14)
O1B-C1B-C2B-Br1B	-67.0(7)
O1B-C1B-C3B-O2B	-60.9(8)
O1B-C1B-C4B-C5B	-11.8(11)
O1B-C1B-C4B-C9B	174.1(7)
C1B-C4B-C5B-C6B	-177.2(8)
C1B-C4B-C9B-C8B	176.3(8)

C2B-C1B-C3B-O2B	56.0(8)
C2B-C1B-C4B-C5B	-137.1(8)
C2B-C1B-C4B-C9B	48.8(10)
C3B-C1B-C2B-Br1B	178.7(5)
C3B-C1B-C4B-C5B	103.8(9)
C3B-C1B-C4B-C9B	-70.3(9)
C4B-C1B-C2B-Br1B	60.2(8)
C4B-C1B-C3B-O2B	178.5(6)
C4B-C5B-C6B-C7B	2.8(13)
C4B-C5B-C6B-C10B	-175.9(9)
C5B-C4B-C9B-C8B	2.1(13)
C5B-C6B-C7B-F1B	178.5(8)
C5B-C6B-C7B-C8B	-1.5(14)
C6B-C7B-C8B-C9B	0.6(14)
C6B-C7B-C8B-C11B	178.4(9)
C7B-C8B-C9B-C4B	-0.9(13)
C9B-C4B-C5B-C6B	-3.0(13)
C10B-C6B-C7B-F1B	-2.8(14)
C10B-C6B-C7B-C8B	177.2(9)
C11B-C8B-C9B-C4B	-178.6(9)
F1A-C7A-C8A-C9A	176.2(8)
F1A-C7A-C8A-C11A	-5.2(15)
O1A-C1A-C2A-Br1A	-68.1(7)
01A-C1A-C3A-O2A	-60.4(8)
01A-C1A-C4A-C5A	-10.6(11)
O1A-C1A-C4A-C9A	169.1(8)
C1A-C4A-C5A-C6A	176.3(8)
C1A-C4A-C9A-C8A	-177.5(9)
C2A-C1A-C3A-O2A	56.4(8)
C2A-C1A-C4A-C5A	-135.7(8)
C2A-C1A-C4A-C9A	44.0(11)
C3A-C1A-C2A-Br1A	178.2(5)
C3A-C1A-C4A-C5A	104.7(8)
C3A-C1A-C4A-C9A	-75.6(10)
C4A-C1A-C2A-Br1A	58.5(8)
C4A-C1A-C3A-O2A	179.5(6)
C4A-C5A-C6A-C7A	2.4(13)
C4A-C5A-C6A-C10A	-176.5(8)

C5A-C4A-C9A-C8A	2.2(13)
C5A-C6A-C7A-F1A	-177.5(8)
C5A-C6A-C7A-C8A	0.0(14)
C6A-C7A-C8A-C9A	-1.2(15)
C6A-C7A-C8A-C11A	177.4(10)
C7A-C8A-C9A-C4A	0.0(14)
C9A-C4A-C5A-C6A	-3.5(12)
C10A-C6A-C7A-F1A	1.5(13)
C10A-C6A-C7A-C8A	178.9(9)
C11A-C8A-C9A-C4A	-178.5(10)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O1-H1O2#1	0.82	2.11	2.898(8)	161.2
O2-H2O1A#2	0.82	2.12	2.903(8)	159.6
O1B-H1BBr1B	0.82	2.90	3.276(5)	110.4
O1B-H1BO2B#1	0.82	2.11	2.893(8)	160.8
O2B-H2BAO1	0.82	2.02	2.808(8)	159.7
O2B-H2BAO1B	0.82	2.50	2.839(8)	106.3
O1A-H1AO2A#1	0.82	2.06	2.865(8)	167.0
O2A-H2AAO1B	0.82	2.05	2.834(8)	158.6

Table 7. Hydrogen bonds for 2j [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 x+1,y,z

The determination of enantiomeric excess

Table 2, entry 1

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV225 nm.

Racemic standard

Enantio-enriched product

Table 2, entry 2

HPLC Condition: Column: Chiralpak OJ-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV215 nm.

Racemic standard

Enantio-enriched product

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV225 nm.

Table 2, entry 4

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV252 nm.

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Racemic standard

Enantio-enriched product

Table 2, entry 6

HPLC Condition:Column:Chiralpak AS-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV215 nm.

Racemic standard

Enantio-enriched product

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Racemic standard

Enantio-enriched product

Table 2, entry 8

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV225 nm.

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Racemic standard

Enantio-enriched product

Table 2, entry 10

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV215 nm.

Enantio-enriched product

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV230 nm.

Table 2, entry 12

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV215 nm.

HPLC Condition:Column:ChiralpakOD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (95/5);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

Table 2, entry 14

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

Scheme 3, epoxide 4

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

Table 3, entry 1

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (95/5);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

HPLC Condition:Column:Chiralpak AS-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

Table 3, entry 3

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV225 nm. Basemia standard Enontia envished product

HPLC Condition:Column:ChiralpakOJ-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (95/5);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

Table 3, entry 5

 HPLC Condition:
 Column:
 Chiralpak AD-H, Daicel Chemical Industries, Ltd.;

 Eluent:
 Hexanes/IPA (95/5);
 Flow rate:
 1.0 mL/min;
 Detection:
 UV225 nm.

 Racemic standard
 Enantio-enriched product

 ¹⁴⁰
 100
 70
 60
 50

Table 3, entry 6 Br OH F 6f

HPLC Condition:Column:Chiralpak AD-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV210 nm.Racemic standardEnantio-enriched product

Table 3, entry 7

HPLC Condition:Column:ChiralpakOJ-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV220 nm.Racemic standardEnantio-enriched product

HPLC Condition:Column:ChiralpakOD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (95/5);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

Table 3, entry 9

HPLC Condition:Column:Chiralpak OD-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV210 nm.Racemic standardEnantio-enriched product

HPLC Condition:Column:Chiralpak OD-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV210 nm.Racemic standardEnantio-enriched product

HPLC Condition:Column:ChiralpakOD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (95/5);Flow rate:1.0 mL/min;Detection:UV225 nm.Racemic standardEnantio-enriched product

HPLC Condition:Column:ChiralpakOJ-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV230 nm.Racemic standardEnantio-enriched product

Table 4, entry 1

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV210 nm.

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV210 nm. **Eluent:**

Table 4, entry 3

Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **HPLC Condition:** Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV210 nm.

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV210 nm.

Table 4, entry 5

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV210 nm.

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

HPLC Condition: Column: Chiralpak OB-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV210 nm.

HPLC Condition: Column: Chiralpak OB-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Table 4, entry 9

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Table 4, entry 11

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Table 4, entry 13

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Table 4, entry 15

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.;Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV220 nm.

Table 4, entry 17

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.;Eluent: Hexanes/IPA (98/2); Flow rate: 1.0 mL/min; Detection: UV220 nm.

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

Racemic standard

Enantio-enriched product

Table 4, entry 19

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV210 nm.

HPLC Condition: Column: Chiralpak OJ-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV210 nm.

Table 4, entry 21

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV220 nm.

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: **Eluent:** UV220 nm.

Table 4, entry 23

Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **HPLC Condition:** Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV210 nm.

Enantio-enriched product

HPLC Condition: Eluent: Hexanes/IPA (95/5); Flow rate: 1.0 mL/min; Detection: UV210 nm.

Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.;

Table 4, entry 25

HPLC Condition: Eluent: Hexanes/IPA (98/2); Flow rate: 1.0 mL/min; Detection: UV210 nm.

Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.;

HPLC Condition: Eluent: Hexanes/IPA (98/2); Flow rate: 1.0 mL/min; Detection: UV210 nm.

Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.;

mdd -

ž

S-105

658.82----

44.102.97 722.77 201.97 722.77

122.855 125.235 125.235 126.735 126.735 128.503 128.503 128.235 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.2555 128.25555 128.25555 128.2555555 128.2555555 128.255555555555555555555555555555555

S-139

S-141

S-145

S-146

S-169

S-170

