Efficient Synthesis of (S,R)- Bn-Yanphos and Rh/ (S,R)- Bn-Yanphos

Catalyzed Asymmetric Hydroformylation of Vinyl Heteroarenes

Table of Contents

1.General Information	2
2. Procedures for the preparation of (<i>S</i> , <i>R</i>)- Bn-Yanphos	2
3. Procedures for the preparation of substrates	6
4. General procedure for asymmetric hydroformylation	10
5. Reduction of Aldehydes	11
6. Characterizations of compounds	11
7. Procedures for the preparation of (<i>S</i>)-IPA	15
8. References	17
9. NMR spectra of compound	17
10. HPLC spectra for ee determination	28

1. General Information

All reactions and manipulations that were sensitive to moisture or air were performed in a nitrogen-filled glovebox or using standard Schlenk techniques, unless otherwise noted. Solvents were dried with standard procedures, degassed with N₂ and transferred by syringe. NMR spectra were recorded on Bruker ADVANCE III (400 MHz) spectrometers for ¹H NMR and ¹³C NMR. CDCl₃ was the solvent used for the NMR analysis, with tetramethylsilane as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.3 ppm) for ¹³C NMR. Optical rotation was determined using a Perkin Elmer 343 polarimeter. HPLC analysis was conducted on an Agilent 1260 Series instrument. GC analysis was carried out on Angilent 1200 Series instrument using chiral capillary columns. Column Chromatography was performed with silica gel Merck 60 (300-400 mesh). Thin layer chromatography (TLC) was performed on EM reagents 0.25 mm silica 60-F plates. All new products were further characterized by HRMS. A positive ion mass spectrum of sample was acquired on a Thermo LTQ-FT mass spectrometer with an electrospray ionization source.

2. Procedures for the preparation of (S,R)- Bn-Yanphos

(S)-[1,1'-binaphthalene]-2,2'-diyl bis(trifluoromethanesulfonate) (2)

A single necked flask charged with a solution of (*S*)-BINOL (**1**) (14.3 g, 50 mmol) and Et₃N (15.2 g, 20.9 mL, 150 mmol) in CH₂Cl₂ (125 mL) was cooled to -78 °C, and Tf₂O (31.0 g, 18.5 mL, 110 mmol) was added dropwise. Then the resulting mixture was warmed to 0 °C for 2 h. After removal of the solvent under vacuum, the resulting thick residue was filtrated through a short silica gel column and flushed with petroleum ether/ethyl acetate (5:1, v/v). The filtrate was concentrated under reduce pressure, and the product **2** was obtained as a white solid (27.5 g, >99% yield) and used for the next step without further purification.^[1] ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.27(d, *J* = 8.5 Hz, 2H), 7.42(ddd, *J* = 1.1 Hz, 6.8 Hz, 8.2 Hz, 2H), 7.59(ddd, *J* = 1.0 Hz, 7.0 Hz, 8.1 Hz, 2H), 7.63(d, *J* = 9.1 Hz, 2H), 8.02(d, *J* = 8.2 Hz, 2H), 8.15(d, *J* = 9.1 Hz, 2H); ¹³C NMR(100 MHz, CDCl₃) δ : 118.3, 119.4, 123.6, 126.8, 127.4, 128.1, 132.1, 132.5, 133.2, 145.5.

(S)-2'-(diphenylphosphoryl)-[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate(3)

To a schlenk flask charged with **2** (1.10 g, 2.0 mmol), diphenylphosphine oxide (0.81 g, 4 mmol), Pd(OAc)₂ (22.4 mg, 0.1 mmol) and dppb (42.7 mg, 0.1 mmol) in DMSO (8.8 mL) was added DIEA (1.03 g, 1.4 mL, 8.0 mmol) under argon. The resulting mixture was stirred at 100 °C for 12 h. Then the mixture was cooled to room temperature, diluted with EtOAc (50 mL), washed with water (20 mL x 3), brine (20 mL), successively. The organic phase was dried over anhydrous Na₂SO₄, filtered, concentrated, and the crude residue was further purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 1:1, v/v) to afford the desired product **3** as a white solid (1.08 g, 90% yield).^[2] ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.59 (m, 6H), 7.67–7.72 (m, 4H), 8.07 (d, 1H). ¹³C NMR (100 MHz, CDCl₃): δ : 129.0 (d, *J_{C,P}* = 13.5 Hz), 130.8 (d, *J_{C,P}* = 11.5 Hz), 131.5 (d, *J_{C,P}* = 101.6 Hz), 132.7 (d, *J_{C,P}* = 2.9 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 21.5.

(S)-2'-(diphenylphosphino)-[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate(4)

To a dried sealed tube charged with 3 (0.48 g, 0.81 mmol) in dry toluene (20 mL), Et₃N (0.57 g, 0.79 mL, 5.67 mmol) and HSiCl₃ (0.54 g, 0.41 mL, 4.05 mmol)

were added successively under argon at 0 °C. The resulting mixture was stirring at 100 °C for 12 h. After cooled to 0 °C, diluted by Et₂O (10 mL), quenched with several drops of saturated Na₂CO₃, the mixture was filtered by a short celite column, and washed with Et₂O (10 mL x 3). The filtrate was dried over anhydrous Na₂SO₄, filtered, concentrated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) to afford the desired product **4** as a white solid (0.394 g, 83% yield).^[3] ¹H NMR (400 MHz, CDCl₃) δ : 6.96-8.11 (m, 22H); ³¹P NMR(162 MHz, CDCl₃) δ : -13.3.

(S)-(2'-(benzylamino)-[1,1'-binaphthalen]-2-yl)diphenylphosphine oxide (5)

Phosphine **4** (150 mg, 0.20 mmol) was added to a solution of benzyl azide (33 mg, 0.24 mmol) in toluene/THF 1:1 (0.1 M). The reaction was stirred at 115 °C. After 17 h the reaction mixture was concentrated in vacuo yielding the phosphonium salt. The remaining phosphonium salt was stirred for 2 h at 65 °C in a mixture of THF (2 mL), EtOH (2 mL) and aqueous 0.1 M NaOH (2 mL). After cooling the mixture, Et₂O was added and the organic phase was washed with H₂O (25 mL) and brine (25 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Purification by column chromatography (Et₂O: pentane = 4:1 \rightarrow 15:1) afforded **5** (0.11 g, 0.20 mmol, 99%) as a yellow foam. ^[4] ¹H NMR (400 MHz): δ 8.02 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.90 (dd, *J* = 9.0 Hz, 1H), 7.73 (d, *J* = 11.0 Hz, 1H), 7.72 (d, *J* = 11.5 Hz, 1H), 7.58 (t, *J* = 6.5 Hz, 1H), 7.42-7.50 (m, 3H), 7.25-7.36 (m, 10H), 7.22 (m, 1H), 7.03-7.08 (m, 2H), 6.97 (t, *J* = 6.5 Hz, 1H), 6.78-6.88 (m, 2H), 6.86 (d, *J* = 9.0 Hz, 1H), 6.60 (d, *J* = 8.5 Hz, 1H), 4.42 (s, 2H), 4.19 (br. s, 1H). ¹³C NMR (100 MHz, nonaromatic only): δ 48.2. ³¹P NMR (162 MHz): δ 28.4. IR (cm⁻¹): 3342, 1624, 1526, 1468. HRMS: calcd for C₃₉H₃₁NOP [M+H]⁺: 560.2143, found: 560.2139.

(S)-N-benzyl-2'-(diphenylphosphino)-[1,1'-binaphthalen]-2-amine (6)

To a dried sealed tube charged with **5** (0.45 g, 0.81 mmol) in dry toluene (20 mL), Et_3N (0.57 g, 0.79 mL, 5.67 mmol) and $HSiCl_3$ (0.55 g, 0.41 mL, 4.05 mmol) were added successively under argon at 0 °C. The resulting mixture was stirring at 100 °C for 12 h. After cooled to 0 °C, diluted by Et_2O (10 mL), quenched with several drops of saturated Na₂CO₃, the mixture was filtered by a short celite column, and

washed with Et₂O (10 mL x 3). The filtrate was dried over anhydrous Na₂SO₄, filtered, concentrated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) to afford the desired product **6** as a yellow foam. (0.39 g, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 2H), 7.82 (d, J = 8.9 Hz, 1H), 7.71 (d, J = 8.9 Hz, 1H), 7.65-7.53 (m, 2H), 7.51-7.49 (m, 2H), 7.47-7.03 (m, 17H), 7.00-6.97 (m, 1H), 6.62 (d, J = 8.4 Hz, 1H), 4.18 (dd, J = 6.1 Hz, 1H), 4.01 (dd, J = 5.8 Hz, 1H), 3.70 (br. s, 1H). ³¹P NMR (162 MHz): δ -13.9.

(11b*R*)-N-benzyl-N-((*S*)-2'-(diphenylphosphino)-[1,1'-binaphthalen]-2-yl)dinapht ho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine (Yanphos)

To a solution of 6 (0.27 g, 0.5 mmol) in THF (5 mL) at -78°C was added dropwise n-BuLi (0.65 mmol, 0.26mL of 2.5 M hexane solution). The reaction mixture was stirred for 4h to give a deep red solution, and 7 (262 mg, 0.75 mmol) in THF (5 mL) was added dropwise. After addition, the cooling bath was removed and the mixture was stirred at room temperature overnight. The volatiles were evaporated under reduced pressure. To the residue was added CH₂Cl₂(10 mL), and the mixture was filtered to remove the salt. The filtration was concentrated and subjected to chromatography on silica gel (eluted with hexane/EtOAc 10:1) to afford pure ligand (S,R)- Bn-Yanphos (145 mg) in 60% yield.^[5] ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 1 H), 8.15 (d, J= 8.0 Hz, 1 H), 7.97 (d, J = 8.0 Hz, 1 H), 7.92 (d, J = 8.0 Hz, 1 H), 7.74–7.60 (m, 5 H), 7.43–7.01 (m, 23 H), 6.87–6.83 (m, 2 H), 6.79–6.75 (m, 2 H), 6.45–6.42 (m, 1 H), 6.24 (d, J = 8.5 Hz, 1 H), 5.93 (d, J = 8.5 Hz, 1 H), 3.82 (d, J =14.5 Hz, 1 H), 3.21 (d, J =14.5 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 150.0, 149.8, 142., 141.9, 138.7, 128.2, 127.9, 137.8, 135.6, 135.4, 133.9, 133.5, 133.4, 132.0, 131.8, 131.7, 131.6, 130.7, 130.5, 130.3, 129.8, 129.8, 128.8, 128.7, 128.6, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.4, 127.2, 127.2, 127.0, 126.8, 126.7, 126.1, 126.0, 125.3, 124.8, 124.6, 122.7, 122.5, 122.1, 51.3 ppm; ³¹P NMR (162 MHz, CDCl₃) δ : 138.41 (d, J = 78.6 Hz), 11.86 ppm (d, J = 78.6 Hz).

3. Procedures for the preparation of substrates

General procedure 1 for the synthesis of styrenes via Wittig olefination of aldehydes

Synthesis of 2-methyl-5-vinylfurane (8c)

Methyl triphenyl phosphonium bromide (3.53 g, 9.894 mmol) was dissolved in dry THF (78.5 mL) under nitrogen atmosphere. At 23°C *n*-BuLi (3.95 mL, 9.894 mmol, 2.5 M in hexane) was added dropwise and the mixture was stirred for 15 min. Afterwards a solution of 5-methylfuran-2-carbaldehyde (1.03 g, 9.423 mmol) in dry THF (5 mL) was added. The reaction mixture was stirred at 23°C for 2 h, before it was quenched by addition of saturated aqueous ammonium chloride solution (50 mL) and extracted with methylene chloride (3x 30 mL). The combined organic layers were dried over sodium sulfate and the solvent was removed. The oily residue was purified by flash-chromatography through silica gel. 2-methyl-5-vinylfurane 8c was obtained as a colorless oil (356 mg, 35%). The analytical data were in complete agreement with the previously published data.^{[6]1}H-NMR (400 MHz, CDCl₃): δ 6.42 (dd, J = 17.5, 11.3 Hz, 1H), 6.12 (d, J = 3.2 Hz, 1H), 5.94 (ddd, J = 2.9 Hz, 1.9 Hz, 0.9 Hz, 1H), 5.56 (dd, J = 17.5 Hz, 1.3 Hz, 1H), 5.05 (dd, J = 11.3 Hz, 1.3 Hz, 1H), 2.29 (s, 3H).

Following the general procedure 1, 8d, 8i were obtained as a colorless oil.

General procedure 2 for the synthesis of 1-(Toluene-4-sulfonyl)-1Hpyrrole-2-carbaldehyde (**8a**)

Synthesis of 1-(Toluene-4-sulfonyl)-1H-pyrrole-2-carbaldehyde

A solution of pyrrole-2-carbaldehyde (1.0 g, 11 mmol, 1 equiv.) in THF (10 mL)

was added over 10 min to a suspension of NaH (0.30 g, 13 mmol, 1.2 equiv.) in THF (60 mL) at 23 °C under argon. After 1 h, tosyl chloride (2.2 g, 12 mmol, 1.1 equiv.) was added. After stirring for 13 h at 23 °C, the reaction mixture was quenched with sat. NH₄Cl (10 mL), diluted with water (200 mL) and extracted with Et₂O (3x100 mL). The combined organic layer were washed with brine (50 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (AcOEt/hexane 1:10) to give desired product (2.5 g, 9.9 mmol, 94%) as a colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ /ppm 9.96 (s, 1H, aldehyde H), 7.79 (d, *J* = 8.4 Hz, 2H, phenyl H), 7.61 (m, 1H, pyrrole H), 7.31 (d, *J* = 8.1 Hz, 2H, phenyl H), 7.14 (m, 1H, pyrrole H), 6.40 (m, 1H, pyrrole H), 2.40 (s, 3H, CH₃).

Synthesis of 1-(Toluene-4-sulfonyl)-2-vinyl-1H-pyrrole (8a)

n-BuLi (1.6M in hexane, 5.5 mL, 8.8 mmol, 1.1 equiv.) was added to a suspension of methyltriphenylphosphonium bromide (3.4 g, 9.5 mmol, 1.2 equiv.) in THF (70 mL) at 0 °C under argon. After stirring for 2 h, the reaction mixture was cooled to -78 °C and a solution of 1-(Toluene-4-sulfonyl)-1H-pyrrole-2-carbaldehyde (2.0 g, 8.0 mmol, 1.0 equiv.) in THF (10 mL) was added dropwise. The reaction was warm up to 23°C over 12 h, quenched with water (150 mL) and extracted with Et₂O (3x100 mL). The combined organic layer were washed with water (50 mL) and brine (50 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (AcOEt/hexane 1:15) to give **8a** (1.8 g, 7.3 mmol, 91%) as a colorless solid. ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, *J* = 8.4 Hz, 2H, phenyl H), 7.31-7.28 (m, 1H, pyrrole H), 7.27 (d, *J* = 8.1 Hz, 2H, phenyl H), 7.10 (dd, *J* = 17.4 Hz, 11.2 Hz, 1H, vinyl H), 6.44 (m, 1H, pyrrole H), 6.24 (m, 1H, pyrrole H), 5.48 (dd, *J* = 17.4 Hz, 1.2 Hz, 1H, vinyl H), 5.15 (dd, *J* = 11.2 Hz, 1.5 Hz, 1H, vinyl H), 2.39 (s, 3H, CH₃);

General procedure 3 for the synthesis of 2-Vinyl-pyrrole-1-carboxylic acid *tert*-butyl ester (**8b**)

2-Formyl-pyrrole-1-carboxylic acid tert-butyl ester

A solution of pyrrole-2-carbaldehyde (1.0 g, 11 mmol, 1.0 equiv) in THF (10 mL) was added over 10 min to a suspension of NaH (0.30 g, 13 mmol, 1.2 equiv.) in THF (60 mL) at 23 °C under argon. After 1 h, Boc anhydride (2.5 g, 12 mmol, 1.1 equiv) was added. After stirring for 13 h at 23 °C, the reaction mixture was quenched with sat. NH₄Cl (10 mL), diluted with water (200 mL) and extracted with Et₂O (3x100 mL). The combined organic layer were washed with brine (50 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (AcOEt/hexane 1:30) to give 2-Formyl-pyrrole-1-carboxylic acid *tert*-butyl ester (2.0 g, 10 mmol, 97%) as an oil. ¹H NMR (CDCl₃, 400 MHz): δ 10.29 (s, 1H, aldehyde H), 7.41 (m, 1H, pyrrole H), 7.14 (m, 1H, pyrrole H), 6.24 (m, 1H, pyrrole H), 1.61 (s, 9H, CH₃).

2-Vinyl-pyrrole-1-carboxylic acid tert-butyl ester (8b)

n-BuLi (1.6M in hexane, 5.5 mL, 8.8 mmol, 1.1 equiv.) was added to a suspension of methyltriphenylphosphonium bromide (3.4 g, 9.5 mmol, 1.2 equiv.) in THF (70 mL) at 0 °C under argon. After stirring for 2 h, the reaction mixture was cooled to -78 °C and a solution of 91 (1.6 g, 8.0 mmol, 1.0 equiv) in THF (10 mL) was added dropwise. The reaction was warm up to 23 °C over 12 h, quenched with water (150 mL) and extracted with Et₂O (3x100 mL). The combined organic layer were washed with water (50 mL) and brine (50 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (AcOEt/hexane 1:30) to give **8b** (1.22 g, 6.33 mmol, 79%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.25 (m, 1H, pyrrole H), 7.23 (dd, *J* = 17.4 Hz, 11.2 Hz, 1H, vinyl H), 6.43 (m, 1H, pyrrole H), 6.14 (m, 1H, pyrrole H), 5.53 (dd, *J* = 17.4 Hz, 1.6 Hz, 1H, vinyl H), 5.12 (dd, *J* = 11.2 Hz, 1.6 Hz, 1H, vinyl H), 1.61 (s, 9H, CH₃).

Following the general procedure 2, 8e was obtained as a colorless oil (1.04 g,

3.5 mmol, 85%). ¹H NMR (CDCl₃, 400 MHz) δ 7.94 (d, 2H), 7.74 (d, J = 8.7 Hz, 2H, phenyl H), 7.40 (d, 2H), 7.33 (dd, 1H, indole H), 6.87 (dd, 1H), 6.66 (1H, indole H), 6.63 (dd, 1H, vinyl H), 5.80 (d, J = 17.7 Hz, 1H, vinyl H), 5.35 (d, J = 11.2 Hz, 1H, vinyl H), 2.31 (s, 3H, CH₃) and **8g** was obtained as a colorless oil (0.98 g, 3.3 mmol, 85%). ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (m, J = 8.1 Hz, 1H, indole H), 7.82-7.73 (m, 1H, indole H), 7.78 (d, J = 8.7 Hz, 2H, phenyl H), 7.62 (s, 1H, indole H), 7.37-7.24 (m, 2H, indole H), 7.20 (d, J = 7.8 Hz, 2H, phenyl H), 6.77 (m, J = 17.7, 11.2 Hz, 1H, vinyl H), 5.80 (m, J = 18.0 Hz, 1H, vinyl H), 5.35 (m, J = 11.2 Hz, 1H, vinyl H), 2.31 (s, 3H, CH₃).

Following the general procedure 3, **8f** was obtained as a yellow oil (0.84g, 3.5 mmol, 80%). ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (d, J = 7.9 Hz, 1H, indole H), 7.93 (d, J = 7.6 Hz, 1H, indole H), 7.33 (s, 1H, indole H), 6.87 (1H, indole H), 6.66 (1H, indole H), 6.63 (vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 1.70 (s, 9H, CH₃); and **8h** was obtained as a yellow oil (0.72 g, 3.0 mmol, 80%). ¹H NMR (CDCl₃, 400 MHz) δ : 8.21 (d, J = 7.9 Hz, 1H, indole H), 7.81 (d, J = 7.6 Hz, 1H, indole H), 7.65 (s, 1H, indole H), 7.39-7.25 (m, 2H, indole H), 6.83 (dd, J = 17.8 Hz, 11.3 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, indole H), 7.65 (s, 1H, indole H), 7.81 (d, J = 17.8 Hz, 11.3 Hz, 1H, vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 5.84 (d, J = 17.8 Hz, 1H, vinyl H), 5.35 (d, J = 11.3 Hz, 1H, vinyl H), 1.70 (s, 9H, CH₃).

Synthesis of N-vinylindole (8j)

N-vinylindole was obtained by the N-alkylation of indole. Under the nitrogen atmosphere, indole (5.0 g, 38 mmol) was added to anintensely stirred mixture of 1,2-dichloroethane (100 g, 1.0 mol), tetrabutylammonium bromide (0.25 g, 0.8 mmol), KOH (14 g,250 mmol), and K_2CO_3 (11 g, 80 mmol) at room temperature. The stirring was continued at 50 °C for 72 h. After cooling, the inorganic material was filtered off, and the organic solvent was removed by evaporation. A mixture of the condensate, which corresponds to crude 3-chloroethylindole (5.0 g, 26 mmol), KOH (2.2 g, 240 mmol), and hydroquinone (30 mg, 0.27 mmol), was placed in toluene (100 mL) and refluxed for 3 h. After the toluene solution was evaporated under reduced pressure, the organic material was extracted from the reaction mixture by means of methylene

chloride (30 mL) with water (50 mL). The extract was then dried over anhydrous MgSO₄ and filtered, and the solvent was evaporated to give a dark red liquid. The crude product was purification by silica gel chromatography eluted with n-hexane/ethyl acetate 5/1 (volume ratio) to give N-vinylindole as a pale yellow liquid (2.8 g, yield 73%).

Synthesis of allyl-1H-indole (8k)

Allyl-1H-indole (8k): A mixture of indole (0.59 g, 5.0 mmol), allyl chloride (0.38 g, 5.0 mmol), NaOH (0.40 g, 10.0 mmol) in DMSO (10 mL) was vigorously stirred at room temperature under nitrogen atmosphere for 2.5 h. The reaction mixture was diluted with EtOAc (40 mL) and washed with H₂O (2×30 mL). The aqueous phase was extracted with EtOAc (2×30 mL), and the combined organic phase was dried over Na₂SO₄. After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc= 30/1) to give 8k (0.78 g, 99%) as a brown oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.67 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 7.35 (dd, *J* = 8.0 Hz, 3.0 Hz, 1H), 7.25-7.22 (m, 1H), 7.16-7.12 (m, 2H), 6.55 (s, 1H), 6.06-5.98 (m, 1H), 5.24-5.21 (m, 1H), 5.13-5.09 (m, 1H), 4.76-4.75 (m, 2H).

4. General procedure for asymmetric hydroformylation

In a glovebox filled with nitrogen, to a 5 ml vial equipped with a magnetic bar was added ligand (*S*,*R*)- Bn-Yanphos (0.005 mmol) and Rh(acac)(CO)₂ (0.0025 mmol in 0.20 mL solvent). After stirring for 10 min, substrate (0.5 mmol) and additional solvent was charged to bring the total volume of the reaction mixture to 1.0 mL. The vial was transferred into an autoclave and taken out of the glovebox. Carbon monoxide (10 bar) and hydrogen (10 bar) were charged in sequence. The reaction mixture was stirred at 70 °C (oil bath) for 24 h. The reaction was cooled and the pressure was carefully released in a well-ventilated hood. The conversion and b/l were

determined by ¹H NMR spectroscopy from the crude reaction mixture. The enantiomeric excesses of **9a-9k** were determined by HPLC.

5. General procedure for reduction of aldehydes

The crude mixture of **9** was treated with NaBH₄ (40 mg) in MeOH (2 mL) at 0°C. After stirring at 0°C for 2h, the reaction mixture was quenched with saturated aqueous H₂O (5 mL) and extracted 2 times with ethyl acetate (5 mL). The combined organic layers were washed with brine and dried over Na₂SO₄, the solvents were removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, v/v) to afford the desired alcohols **11**.

6. Characterizations of compounds

(S)-2-(1-tosyl-1*H*-pyrrol-2-yl)propan-1-ol (11a)

CH₂OH

^NTs White solid, 114 mg, 82% yield; 94% *ee*; $[\alpha]_{25}D = 14.3$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, 2H), 7.33 (d, 2H), 6.29 (s, 1H), 6.15 (s, 1H), 3.67-3.63 (m, 1H), 3.59-3.55 (m, 1H), 3.49-3.40 (m, 1H) 2.43 (s, 3H), 1.15 (d, 3H). Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AD-H, hexane/i-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} = 32.2 min, t_{minor} = 40.2 min;

(S)-tert-butyl 2-(1-hydroxypropan-2-yl)-1H-pyrrole-1-carboxylate (11b)

^NBoc White solid, 90 mg, 80% yield, 91% *ee*, $[\alpha]^{25}_{D} = 3.3$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (q, 1H), 6.16-6.11 (m, 2H), 3.82-3.67(m, 3H), 1.62 (s, 9H), 1.31 (d, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 149.7, 137.8, 121.6, 110.2, 110.1, 83.7, 67.7, 34.7, 28.0, 17.2. Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AD-H, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} = 5.1 min, t_{minor} = 5.5 min; HRMS calculated [M+H]⁺ for C₁₂H₂₀NO₃: 226.1437, found: 226.1435.

(*R*)-2-(5-methylfuran-2-yl)propan-1-ol (11c)

CH₂OH

White solid, 54 mg, 78% yield, 94% *ee*, $[\alpha]^{25}_{D} = -3.3$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 5.99 (s, 1H), 5.91 (s, 1H), 3.74 (d, 2H), 3.06-2.97 (m, 1H), 2.29 (s, 3H), 1.28 (d, 3H). Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AS-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, $\lambda = 220$ nm, t_{major} = 7.2 min, t_{minor} = 7.6 min.

(R)-2-(3-methylthiophen-2-yl)propan-1-ol (11d)

CH₂OH

I White solid, 64 mg, 82% yield, 94% *ee*, $[\alpha]^{25}_{D} = -3.3$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, 1H), 6.85 (d, 1H), 3.72-3.65 (m, 2H), 3.41-3.33 (m, 1H), 2.24 (s, 3H), 1.34 (d, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 140.6, 133.6, 130.1, 121.9, 68.9, 36.1, 18.9, 13.8. Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AS-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} = 7.2 min, t_{minor} = 8.2 min. HRMS calculated [M+H]⁺ for C₉H₁₃OS: 157.0681, found: 157.0680.

(S)-2-(1-tosyl-1H-indol-2-yl)propan-1-ol (11e)

Ts White solid, 130 mg, 79% yield, 95% *ee*, $[\alpha]^{25}_{D} = -98.7$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, 1H), 7.63 (d, 2H), 7.47 (d, 1H), 7.33-7.19 (m, 4H), 6.55 (s, 1H), 3.92-3.84 (m, 2H), 3.81-3.77 (q, 1H), 2.35 (s, 3H), 1.39 (d, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.8, 144.1, 137.4, 135.8, 129.8, 129.7, 126.1, 124.3, 123.7, 120.3, 115.3, 108.8, 67.7, 35.5, 21.6, 17.5. Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AD-H, hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} = 13.8 min, t_{minor} = 29.3 min; HRMS calculated [M+H]⁺ for C₁₈H₂₀NO₃S: 330.1158, found: 330.1152.

(S)-tert-butyl 2-(1-hydroxypropan-2-yl)-1H-indole-1-carboxylate (11f)

Boc White solid, 110 mg, 80% yield, 95% *ee*, $[\alpha]^{25}_{D} = 1.0$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, 1H), 7.52 (d, 1H), 7.28-7.21 (m, 2H), 6.53 (s, 1H), 4.01-3.84 (m, 2H), 3.82 (q, 1H), 1.73 (s, 9H), 1.41 (d, 3H).Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel IB-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, $\lambda = 220$ nm, t_{minor} = 6.9 min, t_{major} = 7.3 min.

(S)-2-(1-tosyl-1H-indol-3-yl)propan-1-ol (11g)

Ts White solid, 123 mg, 75% yield, 93% *ee*, $[\alpha]^{25}_{D} = 14.7$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, 1H), 7.80 (d, 2H), 7.58 (d, 1H), 7.43 (s, 1H), 7.37 (t, 1H), 7.25 (m, 3H), 3.83-3.76 (m, 2H), 3.18-3.26 (m, 1H), 2.35 (s, 3H), 1.41 (d, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.9, 135.4, 135.1, 130.3, 129.8, 126.8, 124.9, 124.8, 123.1, 122.7, 119.7, 113.8, 67.2, 33.5, 21.6, 16.7. Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel IB -H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} = 22.7 min, t_{minor} = 25.3 min; HRMS calculated [M+H]⁺ for C₁₈H₂₀NO₃S: 330.1158, found: 330.1152.

(S)-tert-butyl 3-(1-hydroxypropan-2-yl)-1H-indole-1-carboxylate (11h)

Boc White solid, 105 mg, 76% yield, 96% *ee*, $[\alpha]^{25}_{D} = 1.0$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.63 (d, 1H), 7.47 (s, 1H), 7.38-7.34 (t, 1H), 7.27-7.25 (m, 1H), 3.91-3.79 (m, 2H), 3.28 (m, 1H), 1.71 (s, 9H), 1.43 (d, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 149.7, 136.6, 129.9, 124.6, 124.5, 122.6, 122.4, 119.2, 115.4, 83.6, 67.3, 33.5, 28.2, 16.8. Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel IB-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, $\lambda = 220$ nm, t_{major} = 7.4 min, t_{minor} = 8.2 min; HRMS calculated [M+H]⁺ for C₁₆H₂₂NO₃:267.1594, found: 267.1591.

(R)-2-(benzo[b]thiophen-2-yl)propan-1-ol (11i)

 $G_{\rm S}$ White solid, 78 mg, 82% yield, 92% *ee*. $[\alpha]^{25}{}_{\rm D}$ = -4.0 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, 1H), 7.75 (d, 1H), 7.38-7.32 (m, 2H), 7.16 (s, 1H), 3.82 (m, 2H), 3.37 (m, 1H), 1.46 (d, 3H). Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AS-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{minor} = 11.5 min, t_{major} = 12.4 min.

(R)-2-(1H-indol-1-yl)propan-1-ol (11j)

CH₂OH White solid, 76 mg, 87% yield, 95% *ee*, $[\alpha]^{25}_{D} = 47.0$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, 1H), 7.46 (d, 1H), 7.27-7.23 (m, 2H), 7.17 (t, 1H), 6.60 (d, 1H), 4.74 (m, 1H), 3.92 (t, 2H), 1.60 (d, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.1, 128.5, 124.2, 121.6, 121.6, 121.1, 119.6, 109.5, 102.1, 66.5, 53.1, 16.9. Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AS-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} = 13.0 min,

 $t_{minor} = 15.3 \text{ min}; \text{ HRMS} \text{ calculated } [M+H]^+ \text{ for } C_{11}H_{14}NO:176.1069, \text{ found:} 176.1067.$

(S)-3-(1H-indol-1-yl)-2-methylpropan-1-ol (11k)

White solid, 63 mg, 67% yield, 90% *ee*, $[\alpha]^{25}_{D} = 2.0$ (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, 1H), 7.43 (d, 1H), 7.26 (t, 1H), 7.15-7.11 (m, 2H), 6.54 (d, 1H), 4.31 (q, 1H), 4.06 (q, 1H), 3.54 (d, 2H), 2.34 (m, 1H), 1.01 (d, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.2, 128.6, 128.4, 121.4, 120.9, 119.2, 109.5, 101.1, 65.0, 48.9, 36.7, 14.9. Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel OD-H, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{minor} = 26.6 min, t_{major} = 32.9 min; HRMS calculated [M+H]⁺ for C₁₂H₁₆NO:190.1226, found: 190.1223.

7. Procedures for the preparation of (S)- α-Methyl-3-indolylacetic acid

In a glovebox filled with nitrogen, to a 5 ml vial equipped with a magnetic bar was added ligand (*S*,*R*)- Bn-Yanphos (0.01 mmol in 1 mL solvent) and Rh(acac)(CO)₂ (0.005 mmol in 0.25 mL solvent) After stirring for 10 min, substrate **8h** (1 mmol) and additional solvent was charged to bring the total volume of the reaction mixture to 2 mL. The vial was transferred into an autoclave and taken out of the glovebox. Carbon

monoxide (10 bar) and hydrogen (10 bar) were charged in sequence. The reaction mixture was stirred at 70 °C (oil bath) for 12 h. The reaction was cooled and the pressure was carefully released in a well-ventilated hood. The reaction mixture was transferred into a 20 mL Schlenk tube, then *t*-BuOH (10 mL), 2-methyl-2-butene (2.0 M in THF, 5.5 mL, 11 mmol), and NaH₂PO₄ (276 mg, 1.77 mmol) in H₂O (2.0 mL) were added. The mixture was cooled to 0°C, then NaOClO (994 mg, 11.0 mmol) in 2 mL of H₂O was added. After being stirred for 30 min at room temperature. The reaction mixture was poured into saturated aq NH₄Cl (5 mL), and whole was extracted with EtOAc (5 mL).The combined organic layers were washed with brine (5 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation in vacuo furnished the crude product, the crude product was used directly in next step.

The crude product was transferred into a 50 mL bottom flask, then EtOAc (10 mL), silica gel (300 mg) were added, evaporation in vacuo, then the reaction mixture was stirred at 70 °C in vacuo (oil bath) for 4 h. The crude product was purified by column chromatography (silica gel, 1:1 hexane/EtOAc) to provide **12** (0.11 g, 77%) as a dark yellow oil: $\{[\alpha]^{25}_{D} = +37.0 \ (c = 0.1, CHCl_3) \ for 99\% \ ee\}$ was the same as that reported in the literature $\{lit.7 \ [\alpha]^{25}_{D} = +41.5 \ (c = 0.13, CH_2Cl_2) \ for >99\% \ ee\}$.¹H NMR (400 MHz, CDCl_3) : 1.63 (d, *J* = 7.3 Hz, 3H, CH_3CHAr), 4.05 (q, *J* = 7.3 Hz, 1H, CH_3CHAr), 7.13 (dd, *J* = 7.3 Hz, 8.0 Hz, 1H, Ar), 7.15 (s, 1H, Ar), 7.20 (dd, *J* = 7.3 Hz, 7.3 Hz, 1H, Ar), 7.36 (d, *J* = 8.0 Hz, 1H, Ar), 7.69 (d, *J* = 7.6 Hz, 1H, Ar), 8.07 (br s, 1H, NH). Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel IC, hexane/*i*-PrOH = 90:10, flow rate = 0.5 mL/min, $\lambda = 220$ nm, 40°C, t_{major} = 18.3 min, t_{minor} = 26.7 min

8. References

- [1] T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139.
- [2] Y. Uozumi, A. Tanahashi, S.Y. Lee, T. Hayashi, J. Org. Chem. 1993, 58, 1945.
- [3] Y. Uozumi, A. Tanahashi, S.Y. Lee, T. Hayashi, J. Org. Chem. 1993, 58, 1945.
- [4] P. N. M. Botman, O. David, A. Amore, J. Dinkelaar, M. T. Vlaar, K. Goubitz, J. Fraanje, H. Schenk, H. Hiemstra, J. H. van Maarseveen, *Angew. Chem. Int. Ed.* 2004, 43, 3471–3473.
- [5] Y. Yan, X. Zhang, J. Am. Chem. Soc. 2006, 128, 7198-7202.
- [6] T. Mitsudome, A. Noujima, Y. Mikami, T. Mizugaki, K. Jitsukawa, K. Kaneda, *Chem. Eur. J.* 2010, **16**, 11818.
- [7] M. Richter, W. Whitefield, J. Maimone, W. Lin, P. Castroviejo, S. Baran, J. Am. Chem. Soc. 2007, 129, 12857–12869.

9. NMR spectra of compound

10. HPLC spectra for ee determination

Chiralcel AD-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} =

$32.2 \text{ min}, t_{\text{minor}} = 40.2 \text{ min}$

Data File E:\DATA\WB\WB-20150912\VWD-AD-95-5-WB-20150912 2015-09-12 18-01-03\011-0201.D Sample Name: weib-20150912-1

```
_____
Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
Injection Date : 9/12/2015 6:12:38 PM
                                                  Seq. Line : 2
Location : Vial 11
              Acg. Method
Acq. Method : E:\DATA\WB\WB-20150912\WB_AD-95-5-WB-20150912 2015-09-12 18-01-03\WBD-
ADH(1-2)-95-5-IML-220NM-50MIN.M
Last changed : 9/12/2015 6:01:03 PM by SYSTEM
Analysis Method : E:\DATA\WB\WB-20150912\WD_AD-95-5-WB-20150912 2015-09-12 18-01-03\WBD-
ADH(1-2)-95-5-IML-20SUND-50WIN.M (Sequence Method)
Last changed : 3/27/2016 2:18:06 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated

        VWD1A,Wavelength=220 nm (E:DATAWB...20160912:WWD-AD-95.5-WB-20160912:2015-09-12:18-01-03/011-0201.D)

    mAU
                                                                         Ŕ
    800
                                                                                         40.030
    600
    400
    200
      0
                                                'n
                                                          25
                                                                    зò
                                                                              35
                                                                                         40
                                                                                                 min
   .....
                           Area Percent Report
Sorted By
                        :
                               Signal
Multiplier
                               1.0000
                        :
Dilution
                               1.0000
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                                          Height
                               Area
                                                      Area
                             [mAU*s]
   #
                                                        ÷
                                                     49.9533
                                                     50.0467
Totals :
                            8.09382e4 1473.42523
-----
                                        *** End of Report ***
```

1260HPLC-DAD 3/27/2016 2:18:12 PM SYSTEM

Data File E:\DATA\WB\WB-20150915\VWD-AD-95-5-WB-20150914 2015-09-15 20-26-38\011-0201.D Sample Name: weib-20150915-1

-----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 2 Location : Vial 11 Injection Date : 9/15/2015 8:38:14 PM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\WB\WB-20150915\VWD-AD-95-5-WB-20150914 2015-09-15 20-26-38\VWD-Acg. Method ADH(1-2)-95-5-1ML-220NM-50MIN.M Last changed : 9/15/2015 8:26:39 PM by SYSTEM Analysis Method : E:\DATA\WB\WB-20150915\VWD-AD-95-5-WB-20150914 2015-09-15 20-26-38\VWD-ADH(1-2)-95-5-1ML-220NM-50MIN.M (Sequence Method) Last changed : 3/27/2016 2:20:07 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATAW/B...20150915\WD-AD-95-5\WB-201509142015-09-1520-26-380011-0201.D) mAU R ġ 350 -300 -250 -200 150 -100 50 · **8**18 ο 35 40 20 30 min Area Percent Report Sorted By Signal : : Multiplier 1.0000 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] ÷ # [min] ----|-----|----|-----|-----|-----| 1 32.178 BB 0.7444 1.74604e4 355.87524 96.8814 2 40.196 BB 0.8831 562.05292 9.52958 3.1186 Totals : 1.80225e4 365.40483 *** End of Report ***

1260HPLC-DAD 3/27/2016 2:20:13 PM SYSTEM

Chiralcel AD-H, hexane/*i*PrOH = 90:10, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} =

5.1 min, $t_{minor} = 5.5 min$

Data File E:\DATA\WB\WB-20160303\VWD-AD-90-10-WB-20160303 2016-03-03 08-45-25\049-0201.D Sample Name: weib-20160303-1

Acq. Operator :	SYSTEM	Seq. Line : 2
Acq. Instrument :	1260HPLC-VWD	Location : Vial 49
Injection Date :	3/3/2016 8:57:05 AM	Inj: l
	I	inj Volume : 5.000 μl
Acq. Method :	E:\DATA\WB\WB-20160303\VWD-AD-9	0-10-WB-20160303 2016-03-03 08-45-25\VWD
-	ADH(1-6)-90-10-1ML-220NM-50MIN.	М
Last changed :	3/3/2016 8:45:25 AM by SYSTEM	
Analysis Method :	E:\DATA\WB\WB-20160303\VWD-AD-9	00-10-WB-20160303 2016-03-03 08-45-25\VWD-
	ADH(1-6)-90-10-1ML-220NM-50MTN.	M (Sequence Method)
Last changed :	3/27/2016 2:00:52 PM by SYSTEM	,1,
	(modified after loading)	
Additional Info :	Peak(s) manually integrated	
VM/D1A W/arel	ep.atb=220.pm (ENDATAW/A 201603033/A//D-AD-90	D-10-10/8-20160303 2016-03-03 08-45-25/049-0201 D)
		10 10 10 10 10 10 10 10 10 10 10 10 10 1
1 10-00 1		9 N
1 1		Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Υ
) vi
500 -		
· ··· ·		
1 1		
400-		
l		
300]		
200-		
1		
100-		$\{\{\}\}$
1		
o 	<u>+</u>	<u>/ </u>
	Area Percent Report	
Sorted By	• Signel	
Norteu by Weltiglige	· Junai	
muitipiler Délaction	: 1.0000	
Dilution	: 1.0000	
Do not use Multip.	ier & Dilution Factor with ISTD.	3
Signal 1: VWD1 A.	Wavelength=220 nm	
······································	······································	
Peak RetTime Type	Width Area Height	Area
# Freeze Type	widdi Alea Helynd	ALCU (
# [min]	[min] [maus] [mau] .	2
		·
1 5.095 VV	0.1210 4373.16553 554.48450	49.9110
2 5.482 VB	0.1274 4388.75342 525.80615	50.0890
Totals :	8761.91895 1080.29065	
	*** End of Report ***	
HPLC-DAD 3/27/2014	2.01.05 PM SVSTEM	Page 1 of 1
(FEC-DAD 3/27/201)	/ Z:UI:US PM SISTEM	rage 1 OF 1

Data File E:\DATA\WB\WB-20160303\VWD-AD-90-10-WB-20160303 2016-03-03 08-45-25\050-0301.D Sample Name: weib-20160303-1

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 3 Location : Vial 50 Injection Date : 3/3/2016 9:47:52 AM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\WB\WB-20160303\VWD-AD-90-10-WB-20160303 2016-03-03 08-45-25\VWD-Acq. Method ADH(1-6)-90-10-1ML-220NM-50MIN.M Last changed : 3/3/2016 10:08:01 AM by SYSTEM (modified after loading) Analysis Method : E:\DATA\WB\WB-20160303\VWD-AD-90-10-WB-20160303 2016-03-03 08-45-25\VWD-ADH(1-6)-90-10-1ML-220NM-50MIN.M (Sequence Method) Last changed : 3/27/2016 2:04:11 PM by SYSTEM (modified after loading) Additional Info : Peak (s) manually integrated \VWD1A, Wavelength=220 nm (E\DATAWB..20160303\WD-AD-90-10-WB-20160303 2016-03-03 08-45-25'050-0301.D) mALL Sheet light in 800 600 400 200 fron 249,180 8 0 min Area Percent Report _____ Sorted By Signal : Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] [mAU*s] [mAU] # [min] ÷ 1 5.089 MF 0.1324 5534.52783 696.87225 95.6916 2 5.496 FM 0.1478 249.18770 28.09358 4.3084 5783.71553 724.96583 Totals :

1260HPLC-DAD 3/27/2016 2:04:17 PM SYSTEM

CH₂OH

Enantiomeric excess was determined by HPLC analysis: Daicel

Chiralcel AS-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} =

$7.2 \text{ min}, t_{\text{minor}} = 7.6 \text{ min}$

Data File E:\DATA\WB\WB-20151216-4\VWD-AD-95-5-WB-201512165 2015-12-16 18-34-07\096-0501.D Sample Name: weib-20151216-za-5

1260HPLC-DAD 3/27/2016 2:33:23 PM SYSTEM

Data File E:\DATA\WB\WB-20151222-1\VWD-AS-95-5-WB-20151222 2015-12-22 12-27-32\066-0201.D Sample Name: weib-20151222-6

Acq. Operator	: SYSTEM		Seq. Line : 2	
Acq. Instrument	: 1260HPLC-V0	D	Location : Vial	. 66
Injection Date	: 12/22/2015	12:40:02 PM	Inj : l	
			Inj Volume : 5.00	0 μl
Acq. Method	: E:\DATA\WB\	\WB-20151222-1\VWD-	AS-95-5-WB-2015122	2 2015-12-22 12-27-32\VWD
	-AS(1-6)-95	5-5-1ML-5U-220NM-15	MIN.M	
Last changed	: 12/22/2015	12:27:32 PM by SYS	TEM	
Analysis Method	: E:\DATA\WB\	\WB-20151222-1\VWD-	AS-95-5-WB-2015122	2 2015–12–22 12–27–32\VWD
	-AS(1-6)-95	5-5-1ML-5U-220NM-15	MIN.M (Sequence Me	thod)
Last changed	: 3/27/2016 2	2:35:05 PM by SYSTE	M	
	(modified a	after loading)		
Additional Info	: Peak(s) mar	nually integrated		
V00D1 A, 007	avelength≓220 nm (E:\l	DATAWE	3-95-5-WB-201512222015-12	-22 12-27-321066-0201.D)
mAU				
			01	
400 -			¥.	
			5	
			1	
300 -				
			J	
			1	
			J (
200 -				
100				
1 1			J {	
			\	ω
			\	\ <u>8</u>
				\$
			<u> </u>	
0			<u> </u>	
0		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
0 4		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
0 4	5	e e e e e e e e e e e e e e e e e e e	<u> </u>	89
	5	a Percent Report	<u> </u>	
	5	a Percent Report	<u> </u>	
o 4	5	a Percent Report	<u> </u>	8
o 4 Sorted By Multiplier	5 Area ;	a Percent Report Sigmal 1.0000	<u> </u>	8 min 8 min
o 4 Sorted By Multiplier Dilution	5 Area : :	6 a Percent Report Signal 1.0000 1.0000	<u> </u>	**************************************
o 4 Sorted By Multiplier Dilution Do not use Mult:	5 Area : : : : : : :	a Percent Report Signal 1.0000 1.0000 cion Factor with IS		**************************************
o 4 Sorted By Multiplier Dilution Do not use Mult:	Area Area : : : : : : :	a Percent Report Signal 1.0000 2.0000 cion Factor with IS		**************************************
o 4 Sorted By Multiplier Dilution Do not use Mult:	Area Area : : : : : : : : : :	a Percent Report Signal 1.0000 1.0000 cion Factor with IS		8 min 8 min
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J		A Percent Report Signal 1.0000 Cion Factor with IS		8
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A	Area Area : : iplier & Dilut A, Wavelength=	A Percent Report Signal 1.0000 L.0000 Cion Factor with IS		8
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ	Area 	A Percent Report Signal 1.0000 Lion Factor with IS -220 nm Area Height	TDs Area	**************************************
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Tyj # [min]	Area : : iplier & Dilut A, Wavelength pe Width [min] [m	A Percent Report Signal 1.0000 tion Factor with IS 220 nm Area Height AV*s] [mAU]	TDs Area	
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ # [min]	Area : : iplier & Dilut A, Wavelength= pe Width [min] [n	a Percent Report Signal 1.0000 tion Factor with IS =220 nm Area Height nAU*s] [mAU]	TDs	
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Tyj # [min] 		a Percent Report Signal 1.0000 1.0000 tion Factor with IS =220 nm Area Height nAU*s] [mAU] 	TDs Area * 11 96.9673	8 min 8 min
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Tyj # [min] 		A Percent Report Signal 1.0000 1.0000 cion Factor with IS =220 nm Area Height nAU*s] [mAU] =	TDs Area * 11 96.9673 3.0327	**************************************
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ # [min] 	Ares Ares : : : iplier & Dilut A, Wavelength= pe Width [min] [m 	a Percent Report Signal 1.0000 1.0000 cion Factor with IS =220 nm Area Height nAU*s] [mAU] 	TD s Area * 1	**************************************
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Typ # [min] 		A Percent Report Signal 1.0000 1.0000 cion Factor with IS =220 nm Area Height AV*s] [mAU] =	TDs Area * 1	**************************************
sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Typ # [min] 	Area Area : : iplier & Dilut A, Wavelength= oe Width [min] [m 	A Percent Report Signal 1.0000 1.0000 Cion Factor with IS =220 nm Area Height nAU*s] [mAU] =41.74219 374.91458 42.04477 9.83837 33.78696 384.75295	TDs Area * 11 96.9673 3.0327	
sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 J Peak RetTime Typ # [min] 1 7.182 BV 2 7.636 VV Totals :		A Percent Report Signal 1.0000 1.0000 cion Factor with IS =220 nm Area Height AV*s] [mAU] 41.74219 374.91458 42.04477 9.83837 33.78696 384.75295	TDs Area * 11 96.9673 3.0327	
o 4 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 A Peak RetTime Typ # [min] 		a Percent Report Signal 1.0000 1.0000 tion Factor with IS =220 nm Area Height AAU*s] [mAU] 	TDs Area * 	

1260HPLC-DAD 3/27/2016 2:35:27 PM SYSTEM

Enantiomeric excess was determined by HPLC analysis: Daicel Chiralcel AS-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{maior} =

7.2 min, $t_{minor} = 8.2 min$

Data File E:\DATA\WB\WB-20151216-4\VWD-AD-95-5-WB-20151216S 2015-12-16 18-34-07\097-0601.D Sample Name: weib-20151216-za-6 _____ Acq. Operator : SYSTEM Seq. Line : 6 Acq. Instrument : 1260HPLC-VWD Location : Vial 97 Inj : 1 Inj Volume : 5.000 μl Injection Date : 12/16/2015 9:28:46 PM : E:\DATA\WB\WB-20151216-4\VWD-AD-95-5-WB-20151216S 2015-12-16 18-34-07 Acg. Method \VWD-AS(1-6)-95-5-1ML-5U-220MM-40MIN.M Last changed : 12/16/2015 6:34:08 PM by SYSTEM Analysis Method : E:\DATA\WB\WB-20151216-4\VWD-AD-95-5-WB-201512165 2015-12-16 18-34-07 \VWD-AS(1-6)-95-5-1ML-5U-220NM-40MIN.M (Sequence Method) : 3/27/2016 2:12:48 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1 A, Wavelength=220 nm (E:\DATAWB...151216-4\VWD-AD-95-5-WB20151216S2015-12-16 18-3407/097-0601.D) m411 [–] 8 8257 2000 1500 1000 500 0 8 min Area Percent Report Sorted By Signal : 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 0.1920 2.47679e4 2006.74084 47.6247 1 7.222 BV 2 8.257 VB 0.2204 2.72385e4 1921.49268 52.3753 Totals : 5.20065e4 3928.23352 ------*** End of Report ***

1260HPLC-DAD 3/27/2016 2:13:05 PM SYSTEM

Data File E:\DATA\WB\WB-20151226\VWD-AS-95-5-WB-20151226 2015-12-26 09-31-41\097-0201.D Sample Name: weib-20151226-1

1260HPLC-DAD 3/27/2016 2:15:37 PM SYSTEM

Chiralcel AD-H, hexane/*i*PrOH = 80:20, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} =

13.8 min, $t_{minor} = 29.3 min$

```
Data File E:\DATA\WB\WB-20160127\VWD-AD-95-5-WB-20160127-2 2016-01-27 20-17-00\009-0201.D Sample Name: weib-20160127-9
```

Acq. Operator : STSTEM Seq. Line : 2 Acq. Instrument : 1260HPLC-VD Location : Vial 9 Injection Date : 1/27/2016 8:28:35 PM Inj : 1 Inj Volume : 5.000 µl Acq. Method : E:\DATA\MEV.WD=20160127/VWD=AD=95-5-WD=20160127-2 2016-01-27 20-17-0 -A0(1-6)-80-20-1ML-5U-220MM-40NIN. M (Sequence Method) Last changed : 1/27/2016 3:42:30 PM by SYSTEM Additional Info : Peak (s) manually integrated W01/A.W.wedengH=220m(EDATAWD=D-05-5-WD=20160127-2 2016-01-27 20-17-0 -A0(1-6)-80-20-1ML-5U-220MM-40NIN. M (Sequence Method) Last changed : 3/27/2016 3:42:30 PM by SYSTEM Additional Info : Peak (s) manually integrated W01/A.W.wedengH=220m(EDATAWD=D-05-5WD=20100127-2 2016-01-27 20-17-000000201D) M01 200 -0 -0 -0 -0 -0 -0 -0 -0 -0	Acq. Operator		
Acq. Instrument : 1260BPLC-VWD Location : Vial 9 Injection Date : 1/27/2016 8:28:35 PH In : 1 In Yolume : 5.000 µl Acq. Method : F:\DATA\WB\WB-20160127\WD-AD-95-5-WB-20160127-2 2016-01-27 20-17-0 -AD(1-6)-80-20-1H5U-220MF-40WIN.M Last changed : 1/27/2016 8:17:100 PH by 373TEM Analysis Method : F:\DATA\WB.WB-20160127\WD-AD-95-5-WB-20160127-2 2016-01-27 20-17-0 -AD(1-6)-80-20-1H5U-220MF-40WIN.M (Sequence Method) Last changed : 3/27/2016 2:42:38 PH by 373TEM (modified after loading) Additional Info : Peak(s) manually integrated Modified after loading) Additional Info : Peak(s) manually integrated Medified after loading Additional Info : Peak(s) manually integrated Medified after loading Atrea Percent Report Area Percent Report Area Percent Report Signal I: WD1 A, Wavelength-220 nm Peak RetTime Type Width Area Height Area # (ini) [Imin]	wod. obcracor	: SYSTEM	Seq. Line : 2
<pre>Injection Date : 1/27/2016 8:28:35 PM In Yolume : 5.000 µl Acq. Method :: F:YDATA\WB\WB-20160127/WUD-An-95-5-WB-20160127-2 2016-01-27 20-17-0</pre>	Acq. Instrument	: 1260HPLC-VWD	Location : Vial 9
In Yolume : 5.000 µl Acq. Method : E:\DATA\WB\WB-20160127\WD-AD-95-5-WB-20160127-2 2016-01-27 20-17-0 -AD(1-6)-80-20-1ML-SU-220NM-40HIN.M Analysis Method : E:\DATA\WB\WB-20160127\WD-AD-95-5-WB-20160127-2 2016-01-27 20-17-0 -AD(1-6)-80-20-1ML-SU-220NM-40HIN.M (Sequence) to aD(1-6)-80-20-1ML-SU-220NM-40HIN.M (Sequence) (additional Info : Peak(3) manually integrated WW01A.WawdeegH=200m(EUAATAWB.0.00027NWD-AD-96-6 WB-20100127-2 2016-01-27 20-17-00 (additional Info : Peak(3) manually integrated WW01A.WawdeegH=200m(EUAATAWB.0.00027NWD-AD-96-6 WB-20100127-2 2018-01-27 20-17-000090201.D) Additional Info : Peak(3) manually integrated WW01A.WawdeegH=200m(EUAATAWB.0.00027NWD-AD-96-6 WB-20100127-2 2018-01-27 20-17-000090201.D) Additional Info : Peak(3) manually integrated Acca Percent Report Area Percent Report Area Percent Report Sotted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 na Peak RetTime Type Width Area Height Area # [min] [min] [mAU]=] [mAU] & 	Injection Date	: 1/27/2016 8:28:35 PM	Inj: l
Acq. Hethod : E:\DATA\WE\WE\P20160127\WU\PacAb-95-5-WE\P20160127-2 2016-01-27 20-17-0 -AD(1-6)-90-20-1NL-SU-220NK-40HIB. M Last changed : 1/27/2016 8:17:00 PM by SYSTEM Analysis Method : E:\DATAWE\WE\P20160127\W20-AD-95-5-WE\P20160127-2 2016-01-27 20-17-0 -AD(1-6)-90-20-1NL-SU-220NK-40HIB. M (Sequence Method) Last changed : 3/27/2016 2:42:48 PM by SYSTEM Additional Three Percent Report *** Page 1 of Report *** Page 1 of Report *** Page 1 of Report ***			Inj Volume : 5.000 µl
	Acq. Method	: E:\DATA\WB\WB-20160127	?\VWD-AD-95-5-WB-20160127-2 2016-01-27 20-17-00\VW
Last changed : 1/27/2016 817:00 PM by SYSTEM Analysis Method : E: (DATANENUE - 20160127: 2016-01-27 20-17-0 _AD (1-6) =00-20-1ML-SU-220NM-40HIN. M (Sequence Method) Last changed : 3/27/2016 2:42:48 PM SYSTEM (modified after loading) Additional fno : Peek (s) manually integrated W001A.Wawdengt=220 nm (E:DATAWB.0.00027/W00-AD-66.6 WB-20100127:22016-01:27 20.17.000000.02010) meU 200 0 0 0 0 0 0 0 0 0 0 0 0		-AD(1-6)-80-20-1ML-5U-	-220NM-40MIN.M
Analysis Rechod : E: DATA/MB/NB-20160127/WD-AD-35-36-20160127/-2 2016-01-27 20-17-0 -A0(11-6)-80-20-115U-220NM-40HIN.M (Sequence Method) Last changed : 3/27/2016 2:42:38 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated WOULA Wardength=20 nm (ENALAWWB.0.00027WWD-AD-96-6 WB-20160127-2:2016-01-27 20-17-00009-0201.D) mAU 200 0 0 0 0 0 0 0 0 0 0 0 0	Last changed	: 1/27/2016 8:17:00 PM b	DY SYSTEM
Last changed :: 3/27/2016 2:42:48 PM SYSTEM (modified 2: 10000 - 20 mm - 400 mm - 40	Analysis Method	: E:\DATA\WB\WB-20160127	?\VWD-AD-95-5-WB-20160127-2 2016-01-27 20-17-00\VWD
Last changed : 3/2//2016 2:42:38 PH BY STSIEN (anditional Info : Peak(s) manually integrated WOULA Wavdengh=20 nm (ED0ATAWUB.DE002/WD-AD-05-6 WE-20160127.2:2016:01:27:2017:00009:0201.D) mAU 200 100 100 100 00 00 00 00 00 0		-AD(1-6)-80-20-1ML-50-	-220NM-40MIN.M (Sequence Method)
Additional Info : Peak (s) manually integrated yubi A, Wardength 220 nm (ExbAlaWB.D 00027/WD-AD-36-5 WB-20160127:22016-01-27 20.17.0000040201.D) mAU 200 00 00 00 00 00 00 00 00 0	Last changed	: 3/2//2016 2:42:38 PM b	DY SISIEM
Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU"s] [mAU"s] 1 13.796 BB 0.7866 5688.29297 110.98508 49.7356 Totals : 1.14371e4 358.43990 	Additional Info	(modified after loadin	ig) reted
mail	VM/D1A W/a	elenate=220 pm (ENDATAW/B, 016012	27\\M/D-AD-95-5-\WB-20160127-2.2016-01-27.20-17-00\009-0201.D\
200 0	mAU]		
200 0			
200 200 200 200 400 400 400 400	-	e e e e e e e e e e e e e e e e e e e	
200 100 100 100 100 100 100 100		13.1	
200 0	250 7		
200 0			
200 100 100 100 100 100 100 100]	1	
 	200 -		
100 0			
<pre> 100</pre>			
100 0		n n	
100 0	150 -		8
100 0			E E
100 100 100 100 100 100 100 100			3
a a	100 -		Δ
add a	-		
60 6 10 15 20 25 30 36 Area Percent Report Area Percent Report Sorted By :: Signal Multiplier :: 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %		11	
Area Percent Report Area Percent Report Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier « Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 			(}
Area Percent Report Area Percent Report Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 	50 -		{ {
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU [*] s] [mAU [*]] 1 13.796 BB 0.3530 5748.76221 247.45462 2 29.130 BB 0.7869 5688.29297 110.98508 Totals : 1.14371e4 358.43990 **** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	1		
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU*s]	-		
Area Percent Report Area Percent Report Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU] %	│		/ \
0 6 10 16 20 25 30 36 Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [mAU] %			· · · · · · · · · · · · · · · · · · ·
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU]	1 1		
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU*s] [mAV]		<u>5</u> 1015	5 20 25 30 35
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU] '	0		; 20 25 30 35
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 		5 10 15	<u> </u>
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 		5 10 15	5 20 25 30 35
Subtract Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU*s]	<u>_</u>	5 10 16 Area Percent Re	5 20 25 30 35
Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [min] [mAU*s] 1 13.796 BB 0.3530 5748.76221 2 29.130 BB 0.7869 5688.29297 Totals : 1.14371e4 358.43990 *** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM	0	5 10 16	5 20 25 30 35
Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	Jorted By	5 10 16 Area Percent Re : Signal	s 20 25 30 35
Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] % 	o Sorted By Multiplier	5 10 16 Area Percent Re : Signal : 1.0000	3 20 25 30 35
Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] % 	o Sorted By Multiplier Dilution	5 10 16 Area Percent Re : Signal : 1.0000 : 1.0000	3 20 25 30 35
Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	o Sorted By Multiplier Dilution Do not use Multi	5 10 16 Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor	3 20 25 30 35
Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	o Sorted By Multiplier Dilution Do not use Multi	5 10 16 Area Percent Re : Signal : 1.0000 : 1.0000 plier « Dilution Factor	3 20 28 30 38
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] *	o Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A	5 10 16	3 20 28 30 38
# [min] [mAU*s] [mAU] %	o Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A	Area Percent Re : Signal : 1.0000 : 1.0000 plier « Dilution Factor , Wavelength=220 nm	3 20 25 30 35
1 13.796 BB 0.3530 5748.76221 247.45482 50.2644 2 29.130 BB 0.7869 5688.29297 110.98508 49.7356 Totals : 1.14371e4 358.43990 *** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM	o Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ	5 10 16 Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H	s 20 28 30 36
1 13.796 BB 0.3530 5748.76221 247.45482 50.2644 2 29.130 BB 0.7869 5688.29297 110.98508 49.7356 Totals : 1.14371e4 358.43990 **** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	o Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min]	5 10 14 Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [s 20 28 30 36
2 29.130 BB 0.7869 5688.29297 110.98508 49.7356 Totals : 1.14371e4 358.43990 **** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	o Sorted By Multiplier Dilution Do not use Multi Sigmal 1: VWD1 A Peak RetTime Typ # [min]	Area Percent Re . Signal . 1.0000 . 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [-	s 20 28 30 36
Totals : 1.1437le4 358.43990 **** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 1 13.796 BB	Area Percent Re . Signal . 1.0000 . 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [-	s 20 28 30 36 port with ISTDs leight Area [mAU] %
I.14371e4 358.43990 **** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM	o Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	Area Percent Re 	20 25 30 35
*** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	o Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 1 13.796 BB 2 29.130 BB	Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [- 0.3530 5748.76221 24 0.7869 5688.29297 11	20 25 30 35
*** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [-1	20 28 30 36
*** End of Report *** HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [-1]	20 28 30 36
HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [-1	20 28 30 36
HPLC-DAD 3/27/2016 2:42:48 PM SYSTEM Page 1 of	Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [-	20 28 30 36 port with ISTDs Height Area mAU] %
	Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 1 13.796 BB 2 29.130 BB Fotals :	Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor , Wavelength=220 nm e Width Area H [min] [mAU*s] [-1	20 28 30 36
	Sorted By Multiplier Dilution Do not use Multi Sigmal 1: VWD1 A Peak RetTime Typ # [min] 1 13.796 BB 2 29.130 BB Fotals : 	Area Percent Re : Signal : 1.0000 : 1.0000 plier & Dilution Factor Wavelength=220 nm e Width Area H [min] [mAU*s] [-	20 28 30 36

Data File E:\DATA\WB\WB-20160127\VWD-AD-95-5-WB-20160127-2 2016-01-27 20-17-00\010-0301.D Sample Name: weib-20160127-10

```
_____
   Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
                                              Seq. Line : 3
                                               Location : Vial 10
   Injection Date : 1/27/2016 9:09:24 PM
                                                   Inj: 1
                                             Inj Volume : 5.000 µl
                 : E:\DATA\WB\WB-20160127\VWD-AD-95-5-WB-20160127-2 2016-01-27 20-17-00\VWD
   Acq. Method
   -AD(1-6)-80-20-1ML-5U-220NM-40MIN.M
Last changed : 1/27/2016 8:17:00 PM by SYSTEM
   Analysis Method : E:\DATA\WB\WB-20160127\VWD-AD-95-5-WB-20160127-2 2016-01-27 20-17-00\VWD
                   -AD(1-6)-80-20-1ML-5U-220NM-40MIN.M (Sequence Method)
                 : 3/27/2016 2:44:25 PM by SYSTEM
   Last changed
                   (modified after loading)
   Additional Info : Peak(s) manually integrated

VWD1A, Wavelength=220 nm (E:\DATAWB..0160127\WD-AD-95-5 WB-20160127-2 2016-01-27 20-17-000010-0301.D)
      mAU
                                   13.777
       300
       250 -
       200 -
       150
       100
       50
                                                                 29.341
        0
                                                                            35
                            10
                                               20
                                                         25
                                      15
                                                                  зо
                                                                                    min
   Area Percent Report
   Sorted By
                       :
                             Signal
   Multiplier
                             1.0000
                       :
   Dilution
                            1.0000
   Do not use Multiplier & Dilution Factor with ISTDs
   Signal 1: VWD1 A, Wavelength=220 nm
   Peak RetTime Type Width
                                     Height
                             Area
                                                Area
                          [mAU*s]
   # [min] [min] [mAU*s] [mAU] %
     1 13.777 BB 0.3542 6893.48730 296.52197 97.5910
2 29.341 BB 0.7313 170.16338 3.45696 2.4090
                          7063.65068 299.97893
   Totals :
   *** End of Report ***
1260HPLC-DAD 3/27/2016 2:44:30 PM SYSTEM
                                                                       Page 1 of 1
```


Chiralcel IB-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{minor} =

```
6.9 \text{ min}, t_{\text{major}} = 7.3 \text{ min}
```

```
Data File E:\DATA\WB\WB-20160106\VWD-IB-95-5-WB-20160106 2016-01-06 10-17-43\010-0301.D Sample Name: weib-20160106-2
```

```
Acq. Operator : SYSTEM
                                             Seq. Line :
                                                          3
Acq. Instrument : 1260HPLC-VWD
                                              Location : Vial 10
Injection Date : 1/6/2016 11:10:40 AM
                                                   Inj :
                                            Inj Volume : 5.000 µl
              : E:\DATA\WB\WB-20160106\VWD-IB-95-5-WB-20160106 2016-01-06 10-17-43\VWD-
Acq. Method
              IB(1-6)-95-5-1ML-220NM-40MIN.M
: 1/6/2016 10:17:44 AM by SYSTEM
Last changed
Analysis Method : E:\DATA\WB\WB-20160106\VWD-IB-95-5-WB-20160106 2016-01-06 10-17-43\VWD-
                IB(1-6)-95-5-1ML-220NM-40MIN.M (Sequence Method)
Last changed
              : 3/27/2016 1:47:44 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated
       VWD1 A, Wavelength=220 nm (E:\DATAW/B...20160106\VW/D-IB-95-5-W/B-201601062016-01-0610-17-43\010-0301.D)
   mAU
                                  8
   1400
                                                     8
   1200
   1000
   800
   600
   400
   200
     0
                                                                         8.5
                                                   75
                                                                                    min
                       Area Percent Report
    _____
Sorted By
                           Signal
                    :
Multiplier
                    :
                           1.0000
Dilution
                           1.0000
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                           Area
                                    Height
                                              Area
    [min]
                 [min]
                        [mAU*s]
                                   [mAU]
                                                *
  #
 - | - - - - - - -
      6.738 VB
                 0.1641 1.36225e4 1290.94263
  1
                                             49.2567
      7.567 BV
                 0.1804 1.36274e4 1173.98914
                                             49.2743
     17.822 BB
                 0.3877
                          59.50492
                                     2.33989
                                              0.2152
  3
  4
    19.271 BB
                 0.5792 182.17918
                                     4.87208
                                              0.6587
  5
     21.465 BB
                 0.3794
                          54.21317
                                     2.16345
                                              0.1960
     26.824 BB
                 0.6550 110.35899
                                              0.3990
  6
                                     2.45699
Totals :
                        2.76562e4 2476.76417
```

1260HPLC-DAD 3/27/2016 1:47:52 PM SYSTEM

Data File E:\DATA\WB\WB-20160107\VWD-AD-95-5-WB-20160107 2016-01-07 12-29-31\019-0501.D Sample Name: weib-20160107-4

1260HPLC-DAD 3/27/2016 1:44:57 PM SYSTEM

Chiralcel IB -H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} =

```
22.7 min, t_{minor} = 25.3 min
```

```
Data File E:\DATA\WB\WB-20151102\VWD-IB-95-5-WB-20151102 2015-11-02 20-28-45\003-0201.D Sample Name: weib-20151102-3
```

```
_____
Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
                                         Seq. Line :
                                                     2
                                           Location : Vial 3
Injection Date : 11/2/2015 8:40:18 PM
                                        Inj : l
Inj Volume : 5.000 µl
Acq. Method
             : E:\DATA\WB\WB-20151102\VWD-IB-95-5-WB-20151102 2015-11-02 20-28-45\VWD-
              IB(1-6)-95-5-1ML-220NM-40MIN.M
Last changed : 11/2/2015 8:28:45 PM by SYSTEM
Analysis Method : E:\DATA\WB\WB-20151102\VWD-IB-95-5-WB-20151102 2015-11-02 20-28-45\VWD-
               IB(1-6)-95-5-1ML-220NM-40MIN.M (Sequence Method)
Last changed
             : 3/27/2016 2:30:49 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated
WWD1A, Wavelength=220 nm (E:\DATAWB...20151102\VWD-IB-955-WB-20151102_2015-11-02_20-28-465003-0201.D)
   mAU
                                                     R
                                                            24,888
   400
   300
   200
   100
     0
                                                                     27.5
                                          20
                                                   225
                                                            25
              12.5
                        15
                                17.5
                                                                             min
Area Percent Report
Sorted By
                         Sional
                   :
                         1.0000
Multiplier
                   .
                         1.0000
Dilution
                   :
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                        Area
                                 Height
                                           Area
 # [min]
                [min]
                      [mAU*s]
                                 [mAU]
                                           *
----|-----|-----|------|
  1 22.980 BV 0.5831 1.66978e4 427.14056 49.0558
  2 24.888 VB
               0.6662 1.73406e4
                                387.38220 50.9442
Totals :
                      3.40385e4 814.52277
*** End of Report ***
```

1260HPLC-DAD 3/27/2016 2:30:56 PM SYSTEM

Data File E:\DATA\WB\WEIB-20151119\VWD-IB-95-5-WB-20151119 2015-11-19 11-10-33\023-0401.D Sample Name: WEIB-20151119-3

-----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 4 Location : Vial 23 Injection Date : 11/19/2015 12:43:54 PM Inj: 1 Inj Volume : 5.000 μl : E:\DATA\WB\WEIB-20151119\VWD-IB-95-5-WB-20151119 2015-11-19 11-10-33\VWD Acg. Method -IB(1-6)-95-5-1ML-220NM-40MIN.M Last changed : 11/19/2015 11:10:33 AM by SYSTEM Analysis Method : E:\DATA\WB\WEIB-20151119\VWD-IB-95-5-WB-20151119 2015-11-19 11-10-33\VWD -IB(1-6)-95-5-1ML-220NM-40MIN.M (Sequence Method) Last changed : 3/27/2016 2:28:54 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=220 nm (E:DATAWB...20151119:WWD-IB-955-WB-20151119:2015-11-19:11-10-33:023-0401.D) mAU 8 1200 1000 800 600 -400 200 220 없 Ο. 16 28 18 24 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] ----|-----|----|-----|-----|-----| 1 22.663 BV 0.6340 5.55000e4 1287.30933 96.4829 2 25.250 VB 0.6953 2023.12036 43.28545 3.5171 Totals : 5.75231e4 1330.59478 *** End of Report ***

1260HPLC-DAD 3/27/2016 2:29:02 PM SYSTEM

Chiralcel IB-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} =

7.4 min, $t_{minor} = 8.2 min$

Data File E:\DATA\WB\WB-20151102\VWD-IB-95-5-WB-20151102 2015-11-02 20-28-45\004-0301.D Sample Name: weib-20151102-4

1260HPLC-DAD 3/27/2016 2:23:09 PM SYSTEM

Data File E:\DATA\WB\WEIB-20151119\VWD-IB-95-5-WB-20151119 2015-11-19 11-10-33\024-0501.D Sample Name: WEIB-20151119-4

1260HPLC-DAD 3/27/2016 2:25:41 PM SYSTEM

Chiralcel AS-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{minor} =

$11.5 \text{ min}, t_{\text{major}} = 12.4 \text{ min}$

Data File E:\DATA\WB\WB-20151208-3\VWD-AS-95-5-WB-20151208 2015-12-08 17-26-05\094-0201.D Sample Name: weib-20151208za-1

1260HPLC-DAD 3/27/2016 2:38:01 PM SYSTEM

Data File E:\DATA\WB...20151215-2\VWD-AS-95-5-WB-20151215-2 2015-12-15 19-34-16\095-0201.D Sample Name: weib-20151215-za-1

-----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 2 Location : Vial 95 Injection Date : 12/15/2015 7:45:49 PM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\WB\WB-20151215-2\VWD-AS-95-5-WB-20151215-2 2015-12-15 19-34-16 Acg. Method \VWD-AS(1-6)-95-5-1ML-5U-220NM-40MIN.M Last changed : 12/15/2015 7:34:17 PM by SYSTEM Analysis Method : E:\DATA\WB\WB-20151215-2\VWD-AS-95-5-WB-20151215-2 2015-12-15 19-34-16 \VWD-AS(1-6)-95-5-1ML-5U-220NM-40MIN.M (Sequence Method) Last changed : 3/27/2016 2:39:57 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATAWB..51215-2\WWD-AS-95-5-WB-20151215-22015-12-15 19-34 16\095-0201.D) mAU 12.40 500 -400 300 200 100 11.525 0 10 14 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] ----|-----|----|-----|-----|-----| 1 11.525 BV 0.2849 423.10434 22.86581 3.9524 2 12.401 VV 0.3138 1.02819e4 506.55368 96.0476 Totals : 1.07050e4 529.41949 *** End of Report ***

1260HPLC-DAD 3/27/2016 2:40:07 PM SYSTEM

Chiralcel AS-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{major} =

13.0 min, tminor=15.3min

Data File E:\DATA\WB\WB-20160506\DAD-AS-95-5-WB-20160506 2016-05-06 13-05-45\020-0201.D Sample Name: weib-20160506-6

Acq. Operator	: SYSTEM Seq. Line : 2	
Acq. Instrument	: 1260HPLC-DAD Location : Vial 20	
Injection Date	: 5/6/2016 1:17:48 PM Inj : 1	
	Inj Volume : 8.000 µl	
Acq. Method	: E:\DATA\WB\WB-20160506\DAD-AS-95-5-WB-20160506 2016-05-06 13-05-45\DAD	1-
Lest cherged	AS(1-6)-95-5-1ML-254-80-40MIN.M	
base chanyeu	(modified after loading)	
Analysis Method	(modified after foading) : E:\DATA\WB\WB-20160506\DAD-AS-95-5-WB-20160506 2016-05-06 13-05-45\DAD) —
	AS(1-6)-95-5-1ML-254-8U-40MIN.M (Sequence Method)	
Last changed	: 5/7/2016 10:55:53 AM by SYSTEM	
-	(modified after loading)	
Additional Info	: Peak(s) manually integrated	
DAD1 A, Sig	=205,4 Re⊨off (E∆DATAW/B20160506\DAD-AS-95-5-WB-20160506 2016-05-06 13-05-45\020-0201.D)	
mAU		
20-		
]		
15 -		
	N	
	8	
1	12 12	
10-	A matrix and a matrix and a matrix	
°]		
-		
0+		
11	<u> </u>	
	Area Percent Report	
Sorted Bw	· Simel	
Jorteu by Multinlier	· 1 0000	
Dilution	· 1 0000	
Do not yee Multi	. 1.0000 Inlier & Dilution Factor with ISTDs	
Do not use Muits	CPITEL « DITUCTOR FACCOL WICH ISIDS	
Signal 1: DAD1 4	A. Sig=205.4 Ref=off	
	-,,	
Peak RetTime Tvr	oe Width Area Height Area	
# [min]	[min] [mAU*s] [mAU] %	
1 12.992 BB	0.3334 239.86397 10.54427 53.5207	
2 15.415 BB	0.3145 208.30688 9.05233 46.4793	
Totals :	448.17085 19.59660	
HPLC-DAD 5/7/201	l6 10:56:01 AM SYSTEM Page 1 of 1	

Data File E:\DATA\WB\WB-20160506\DAD-AS-95-5-WB-20160506 2016-05-06 13-38-58\020-0201.D Sample Name: weib-20160506-8

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-DAD Seq. Line : 2 Location : Vial 20 Injection Date : 5/6/2016 1:51:00 PM Inj: 1 Inj Volume : 8.000 µl Acq. Method : E:\DATA\WB\WB-20160506\DAD-AS-95-5-WB-20160506 2016-05-06 13-38-58\DAD-AS(1-6)-95-5-1ML-254-8U-40MIN.M Last changed : 5/6/2016 1:38:59 PM by SYSTEM Analysis Method : E:\DATA\WB\WB-20160506\DAD-AS-95-5-WB-20160506 2016-05-06 13-38-58\DAD-AS(1-6)-95-5-1ML-254-8U-40MIN.M (Sequence Method) : 5/7/2016 10:47:22 AM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated DAD1A Sig=205.4 Re≑of (EADATAWB... 20160506/DAD-AS95.5 WB 20160506 2016 05 06 1338-58020-0201.D) mAU 80 12.944 60 40 20 15.309 0 13 14 17 11 12 16 min Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=205,4 Ref=off Peak RetTime Type Width Height Area Area [min] [mAU*s] # [min] [min] [mAU*s] [mAU] % 1 12.944 BB 2 15.309 BB 0.3205 1408.20715 67.19543 97.4761 0.2303 36.46145 2.00360 2.5239 1444.66860 69.19904 Totals : *** End of Report ***

1260HPLC-DAD 5/7/2016 10:47:40 AM SYSTEM

Chiralcel OD-H, hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, λ = 220 nm, t_{minor} =

$26.6 \text{ min}, t_{\text{major}} = 32.9 \text{ min}$

Data File E:\DATA\WE...20160302\DAD-AD1-2-90-10-WB-20160302 2016-03-02 11-48-14\039-0501.D Sample Name: weib-20160302-3

1260HPLC-DAD 3/27/2016 2:08:16 PM SYSTEM

Data File E:\DATA\WB...20160302\DAD-AD1-2-90-10-WB-20160302 2016-03-02 11-48-14\040-0601.D Sample Name: weib-20160302-4

1260HPLC-DAD 3/27/2016 2:10:05 PM SYSTEM

Chiralcel IC, hexane/*i*-PrOH = 90:10, flow rate = 0.5 mL/min, λ = 220 nm, 40 °C, t_{major}

 $= 18.3 \text{ min}, t_{\text{minor}} = 26.7 \text{ min}$

Data File E:\DATA\WB\WB-20160525\VWD-IC-90-10-WB-20160525 2016-05-25 11-33-20\029-0201.D Sample Name: weib-20160525-3

1260HPLC-DAD 5/28/2016 11:16:10 AM SYSTEM

Data File E:\DATA\WB\WB-20160525\VWD-IC-90-10-WB-20160525 2016-05-25 16-38-14\030-0201.D Sample Name: weib-20160525-6

1260HPLC-DAD 5/28/2016 11:10:12 AM SYSTEM