The Stability and reactivity of Tri-, Di- and Monofluoromethyl/Methoxy/Methylthio Groups on Arenes under Acidic or Basic Conditions

Lingfei Wang,^a Jun Wei,^a Ranran Wu,^a Gang Cheng,^a Xinjin Li,^b Jinbo Hu,^b Yongzhou Hu^a, Rong Sheng^{*,a}

^a College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China

*E-mail: shengr@zju.edu.cn

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

Table of Contents

1.Detailed Data of Experiments Results	S-3
2. ¹ H, ¹⁹ F and ¹³ C NMR Spectra of New Compounds	S-8

1. Detailed Data of Experiments Results

	CF ₃										
			Ŕ								
entry	R	Acid/ Base	T(°C)	<i>t</i> (h)	Solvent	Yield (%)	Recovery (%) ^b				
1	Н	TfOH	r.t.	24	PhMe	2a , 51%;					
						3a , 32%					
2	Н	TfOH	r.t.	24	HAc	-	88				
3	Н	TFA	r.t.	10	PhMe	-	100				
4	Н	TFA	60	10	PhMe	-	100				
5	Н	KHMDS	r.t.	10	THF	-	100				
6	OCH ₃	TfOH	r.t.	24	PhMe	2b , 41%;					
						3b , 26%					
7	OCH ₃	TFA	r.t.	10	PhMe	-	97				
8	OCH ₃	TFA	60	10	PhMe	-	97				
9	OCH ₃	KHMDS	r.t.	10	THF	-	100				
10	$PhSO_2$	TfOH	r.t.	10	PhMe		100				
11	$PhSO_2$	TfOH	80	10	PhMe	-	93				
12	$PhSO_2$	TfOH	r.t.	10	HAc	-	100				
13	$PhSO_2$	TfOH	80	10	HAc	-	100				
14	$PhSO_2$	KHMDS	r.t.	10	THF	-	76				
15	$PhSO_2$	^t BuOK	r.t.	10	THF	-	93				
16	$PhSO_2$	MeONa	r.t.	10	THF	-	100				

Table S1: The results of CF₃-containing substrates under acidic or basic conditions.

OCF3										
entry	R	acid/ base	<i>T</i> (°C)	<i>t</i> (h)	solvent	Yield (%)	Recovery (%) ^b			
1	Н	TfOH	r.t.	10	PhMe		100			
2	Н	TfOH	80	10	PhMe		98			
3	Н	TfOH	r.t.	10	HAc		87			
4	Н	TfOH	80	10	HAc		83			
5	Н	KHMDS	r.t.	10	THF		100			
6	Н	TfOH	r.t.	10	PhMe		100			

Table S2: The results of OCF₃-containing substrates under acidic or basic conditions.

Unless otherwise noted, all reactions were performed by mixing the substrates (0.2 mmol) and the acid (10.0 equiv) or the base (5.0 equiv) in 3.0 mL solvent and yields are of isolated products. a) The yield was determined by GC-MS. b) All the recovered rates were determined by ¹⁹F NMR spectroscopy.

7	OCH_3	TfOH	r.t.	10	HAc	100
8	OCH ₃	TfOH	80	10	HAc	100
9	OCH ₃	KHMDS	50	10	THF	98
10	PhSO ₂	TfOH	r.t.	10	PhMe	100
11	PhSO ₂	TfOH	80	10	PhMe	97
12	PhSO ₂	TfOH	r.t.	10	HAc	100
13	PhSO ₂	TfOH	80	10	HAc	100
14	$PhSO_2$	KHMDS	r.t.	10	THF	98

	SCF3									
			F	2						
entry	R	acid/ base	<i>T</i> (°C)	<i>t</i> (h)	solvent	Yield (%)	Recovery (%) ^b			
1	Н	TfOH	r.t.	10	PhMe		91			
2	Н	TfOH	80	10	PhMe	6a , 22% ^a	63			
						7 , 31% ^a				
3	Н	TfOH	r.t.	10	HAc		94			
4	Н	TfOH	80	10	HAc		94			
5	Н	KHMDS	r.t.	10	THF		100			
6	Н	'BuOK	r.t.	10	THF		93			
7	Н	'BuOK	50	10	THF		93			
8	OCH_3	TfOH	r.t.	10	PhMe		100			
9	OCH_3	TfOH	80	10	PhMe	6b , 52% ^a	35			
						7 , 40% ^a				
10	OCH_3	TfOH	r.t.	10	HAc		100			
11	OCH_3	TfOH	80	10	HAc		100			
12	OCH_3	KHMDS	r.t.	10	THF	8b , 8% ^a	88			
13	OCH_3	^t BuOK	r.t.	10	THF		65			
14	OCH_3	'BuOK	50	10	THF		45			
15	OCH_3	MeONa	r.t.	10	THF		95			
16	OCH_3	MeONa	60	10	THF		94			
17	PhSO ₂	TfOH	r.t.	10	PhMe		100			
18	PhSO ₂	TfOH	80	10	PhMe		97			
19	PhSO ₂	KHMDS	r.t.	10min	THF		0			
20	$PhSO_2$	'BuOK	r.t.	10min	THF		0			
21	PhSO ₂	MeONa	r.t.	10	THF		93			

Table S3: The results of SCF₃-containing substrates under acidic or basic conditions.

	CF ₂ H										
R											
entry	R	acid/ base	<i>T</i> (°C)	<i>t</i> (h)	solvent	Yield (%)	Recovery (%) ^b				
1	Н	TfOH	r.t.	10min	PhMe		0				
2	Н	TFA	r.t.	10	PhMe	10a , 12% ^a	92				
3	Н	TFA	60	10	PhMe		92				
4	Н	KHMDS	r.t.	10	THF		98				
5	OCH ₃	TfOH	r.t.	10min	PhMe		0				
6	OCH_3	TFA	r.t.	5	<i>p</i> -Xylene	10b , 61%	0				
7	OCH ₃	HAc	r.t.	10	PhMe		94				
8	OCH_3	HAc	50	10	PhMe		91				
9	OCH_3	KHMDS	r.t.	10	THF		100				
10	PhSO ₂	TfOH	70	10	PhMe	11, 89%	0				
11	PhSO ₂	TFA	r.t	10	PhMe		93				
12	PhSO ₂	TFA	60	10	PhMe		93				
13	PhSO ₂	KHMDS	r.t.	10min	THF		0				
14	PhSO ₂	'BuOK	r.t.	10	THF		100				
15	PhSO ₂	'BuOK	r.t.	10	THF		100				

Table S4: The results of CF₂H-containing substrates under acidic or basic conditions.

R OCF ₂ H									
entry	R	acid/ base	<i>T</i> (°C)	<i>t</i> (h)	solvent	Yield (%)	Recovery (%) ^b		
1	Н	TfOH	r.t.	1	<i>p</i> -Xylene	13a , 19% ^a	0		
						14 , 41%			
2	Н	TFA	r.t.	10	PhMe		100		
3	Н	TFA	60	10	PhMe		100		
4	Н	KHMDS	r.t.	1	THF		0		
5	Н	'BuOK	r.t.	1	THF	13a , 32%	0		

Table S5: The results of OCF₂H-containing substrates under acidic or basic conditions.

6	Н	MeONa	r.t	10	THF		93
7	OCH_3	TfOH	r.t.	1	<i>p</i> -Xylene	13b , 35%	0
						14, 29%	
8	OCH_3	TFA	r.t.	10	PhMe		100
9	OCH ₃	TFA	60	10	PhMe		100
10	OCH_3	KHMDS	r.t.	10	THF		0
11	OCH ₃	'BuOK	r.t.	1	THF	13b , 60%	0
12	OCH_3	MeONa	r.t.	10	THF		76
13	PhSO ₂	TfOH	r.t.	1	<i>p</i> -Xylene	13c , 87%	0
						14 ,74%	
14	PhSO ₂	TFA	r.t.	10	PhMe		100
15	PhSO ₂	TFA	60	10	PhMe		100
16	PhSO ₂	KHMDS	r.t.	10	THF		0
17	PhSO ₂	'BuOK	r.t.	1	THF	13c, 89%	0
18	PhSO ₂	MeONa	r.t.	10	THF		43

	SCF ₂ H										
	R										
entry	R	acid/ base	<i>T</i> (°C)	<i>t</i> (h)	solvent	Yield (%)	Recovery (%) ^b				
1	Н	TfOH	r.t.	1	<i>p</i> -Xylene	6a ,12% ^a	0				
						14 , 38% ^c					
2	Н	TFA	r.t.	10	PhMe		90				
3	Н	TFA	60	10	PhMe		90				
4	Н	KHMDS	r.t.	10min	THF		0				
5	Н	'BuOK	r.t.	1	THF	8a , 12% ^a	0				
6	Н	MeONa	r.t.	10	THF	8a , 9% ^a	82				
7	OCH ₃	TfOH	r.t.	1	<i>p</i> -Xylene	6a , trace ^a	0				
						14 , 30% ^c					
8	OCH ₃	TFA	r.t.	10	PhMe		100				
9	OCH ₃	TFA	60	10	PhMe		100				
10	OCH_3	KHMDS	r.t.	10	THF		0				
11	OCH_3	'BuOK	r.t.	1	THF	8b , 36%	0				
12	OCH_3	MeONa	r.t.	10	THF		100				
13	OCH ₃	MeONa	50	10	THF		100				

Table S6: The results of SCF₂H-containing substrates under acidic or basic conditions.

	R CH ₂ F										
entry	R	acid/ base	<i>T</i> (°C)	t(h)	solvent	Yield (%)	Recover (%) ^b				
1	$PhSO_2$	TfOH	70	10	p-Xylene	17 , 69%	0				
2	$PhSO_2$	TFA	r.t.	10	Toluene		100				
3	$PhSO_2$	TFA	60	10	Toluene		94				
4	$PhSO_2$	KHMDS	r.t.	10min	THF		0				
5	$PhSO_2$	'BuOK	r.t.	10min	THF		48				
6	$PhSO_2$	MeONa	r.t.	10	THF		100				
7	$PhSO_2$	MeONa	50	10	THF		91				
8	PhSO ₂	morpholine	70	10	H ₂ O/ <i>i</i> -PrOH	18 , 38%	40				

Table S7: The results of CH₂F-containing substrates under acidic or basic conditions.

			/	~_0	CH ₂ F						
			ļ								
R											
entry	R	acid/ base	<i>T</i> (°C)	t(h)	solvent	Yield (%)	Recovery (%) ^b				
1	Н	TFA	r.t.	1	p-Xylene	20a, 13%	0				
						13a, trace ^a					
2	Н	HAc	r.t.	10	Toluene		100				
3	Н	HAc	50	10	Toluene		100				
4	Н	KHMDS	r.t	10	THF		93				
5	Н	'BuOK	r.t	10	THF		88				
6	Н	'BuOK	50	10	THF		88				
7	Н	morpholine	70	10	H ₂ O/ <i>i</i> -PrOH	13a , trace ^a	85				
8	OCH ₃	TFA	r.t.	1	<i>p</i> -Xylene	20b, 11%	0				
						13b , 12% ^a					
9	OCH ₃	HAc	r.t.	10	Toluene		100				
10	OCH_3	HAc	50	10	Toluene		100				
11	OCH ₃	KHMDS	r.t	10	THF		100				

Table S8: The results of OCH₂F-containing substrates under acidic or basic conditions.

12	OCH ₃	KHMDS	50	10	THF		100
13	OCH ₃	morpholine	70	10	H ₂ O/ <i>i</i> -PrOH	13b, trace ^a	81
14	PhSO ₂	TfOH	r.t.	1	<i>p</i> -Xylene	13c, 85%	0
						21 , 53%	
15	PhSO ₂	TFA	r.t.	10	Toluene		93
16	PhSO ₂	TFA	60	10	Toluene		93
17	PhSO ₂	KHMDS	r.t	10	THF		100
18	PhSO ₂	KHMDS	50	10	THF		100
19	PhSO ₂	morpholine	70	10	H ₂ O/ <i>i</i> -PrOH	13c, 40%	42

R SCH ₂ F							
entry	R	acid/ base	<i>T</i> (°C)	t(h)	solvent	Yield (%)	Recovery (%) ^b
1	PhSO ₂	TFA	r.t.	1	p-Xylene	23 , 73%	0
2	PhSO ₂	HAc	r.t.	10	Toluene		100
3	PhSO ₂	HAc	50	10	Toluene		100
4	$PhSO_2$	KHMDS	r.t.	10min	THF		0
5	PhSO ₂	'BuOK	r.t.	1	THF	24 , 71%	0
6	$PhSO_2$	MeONa	r.t.	10	THF		100
7	PhSO ₂	MeONa	50	10	THF		91
8	PhSO ₂	morpholine	70	10	H ₂ O/ <i>i</i> -PrOH		87

Table S9: The results of OCH₂F-containing substrates under acidic or basic conditions.

2. ¹H, ¹⁹F and ¹³C NMR spectra of new compounds.

¹⁹F NMR spectra of **4c** (400 MHz, CDCl₃)

¹H NMR spectra of **5c** (400 MHz, CDCl₃)

 13 C NMR spectra of **5c** (400 MHz, CDCl₃)

¹⁹F NMR spectra of **9c** (400 MHz, CDCl₃)

¹³C NMR spectra of **12c** (400 MHz, CDCl₃)

¹⁹F NMR spectra of **16** (400 MHz, CDCl₃)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) 1 H NMR spectra of **19c** (400 MHz, CDCl₃)

inini

150.980 151.122 151.264

-90 fl (ppm) 30 20 10 0 -10 -30 -70 -110 -130 -150 -170 -190 -50

¹⁹F NMR spectra of **19c** (400 MHz, CDCl₃)

¹³C NMR spectra of **19c** (400 MHz, CDCl₃)

-100 f1 (ppm) -20 -40 -60 -80 -120 -140 -160 -180 -200

¹⁹F NMR spectra of **22** (400 MHz, CDCl₃)

