Supporting Information

Iridium Catalysts with Modular Axial-Unfixed Biphenyl Phosphine-
Oxazoline Ligands: Asymmetric Hydrogenation of α, β-Unsaturated
Carboxylic Acids
QianWang, ${ }^{\dagger}$ Zongpeng Zhang, ${ }^{\dagger *}$ Caiyou Chen, ${ }^{\star}$ Hailong Yang, ${ }^{\star}$ Zhengyu Han, ${ }^{\star}$Xiu-Qin Dong, ${ }^{*}$ and Xumu Zhang** ${ }^{* \$}$${ }^{\dagger}$ Qian Wang and Zongpeng Zhang contributed equally to this work.${ }^{7}$ College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China${ }^{\S}$ Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong, 518055,
P. R. China.
E-mail address: xumu@whu.edu.cn; xiuqindong@whu.edu.cn
Contents
I. General Remarks 2
II. General procedure for synthesis ligands 2
III. General procedure for asymmetric hydrogenation 7
IV. NMR Spectra 15
V. GC and HPLC spectra 48
VI. Reference 84

I. General Remarks

All reactions and manipulations which are sensitive to moisture or air were performed in an argon-filled glove box or using standard Schlenk techniques. Hydrogen gas (99.999\%) was purchased from Shanghai Regulator Factory Co., Ltd. α-alkyl cinnamic acid derivatives were synthesized according to the literature. ${ }^{1-2}$ Anhydrous THF, 1,4-dioxane and toluene was distilled from sodium benzophenone ketyl. Anhydrous i - $\mathrm{PrOH}, \mathrm{EA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were freshly distilled from calcium hydride. Anhydrous MeOH and EtOH were freshly distilled from Mg . Anhydrous $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ were purchased from Sigma-Aldrich. Solvents were transferred by syringe. $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ was prepared according to the literature. ${ }^{3-4}$ The synthesis of Ir complexs $\mathbf{6 a - 6 d}$ were based on the article. ${ }^{5} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded with a Bruker ADVANCE III ($400 \mathrm{MHz}, 500 \mathrm{MHz}$) spectrometer with CDCl_{3} as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts are reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl_{3} at 7.26 ppm (for ${ }^{1} \mathrm{H} \mathrm{NMR}$) or 77.3 ppm (for ${ }^{13} \mathrm{C}$ $\mathrm{NMR})$. Data are reported as: multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR analyses were run with decoupling. Optical rotations $[\alpha]_{\mathrm{D}}$ were determined using a PERKIN ELMER polarimeter 343 instrument. The absolute configuration was assigned by comparison of the corresponding chiral carboxylic acids ($\mathbf{8 a - 8 c}, \mathbf{8 e}-\mathbf{8 h}, \mathbf{8 l - 8 n}, \mathbf{8 p}-\mathbf{8 r})$ with the optical rotation datas that reported in the literature, ${ }^{6}$ the absolute configuration of others were assigned by analogy. GC analyses were performed using SHIMADZU Lab Solution instrument. HPLC analyses were performed using Daicel chiral column.

II. General procedure for synthesis of Ligands.

(S)-4-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-(3,5-di-tert-butylphenyl)-4,5-dihydrooxazole (4a)

2-(tert-Butyl-dimethyl-silanyloxy)-(1R)-(2-iodo-phenyl)-ethylamine $\mathbf{2}$ and various 2iodophenyl oxazole compounds $\mathbf{3}$ were prepared according to the procedure of literature. ${ }^{7}$ To a solution of (2-bromophenyl)boronic acid $(0.11 \mathrm{~g}, 0.6 \mathrm{mmol})$, (S)-2-(3,5-di-tert-butylphenyl)-4-(2-iodophenyl)-4,5-dihydrooxazole 3a ($0.23 \mathrm{~g}, 0.5 \mathrm{mmol}$), $\mathrm{PPh}_{3}(11.1 \mathrm{mg}, 0.0425 \mathrm{mmol})$ and 0.625 $\mathrm{mL} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$ (2 M in deionized water) in 0.6 mL DME (dimethoxyethane) was added $\mathrm{Pd}(\mathrm{OAc})_{2}(2.25$ mg). The resulting mixture was purged with argon and refluxed for overnight. The reaction was cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} / 10 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. After a flash chromatography on silica-gel column (Ethyl acetate/petroleum ether $=1 / 100$ to $1 / 50),(S)-4$-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-(3,5-di-tert-butyl
phenyl)-4,5-dihydrooxazole (4a) was obtained with 75% yield. 4b-4d were obtained in the procedure with moderate yields as white solid. $\mathbf{4 a}:[\alpha]_{\mathrm{D}}{ }^{25}=-9.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 0.7 \mathrm{H}), 4.27(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 0.3 \mathrm{H})$, $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.9,151.22,151.19,141.84,141.79$, $141.3,140.97,140.01,139.8,133.2,132.8,131.7,131.6,129.7,129.50,129.45,129.1,128.9,127.7$, $127.4,127.3,127.1,126.9,126.6,126.02,125.96,124.2,124.0,122.98,122.94,75.2,74.6,67.9$, 67.2, 35.2, 31.7. HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ON}^{81} \mathrm{Br}=492.17196$, Found: 492.17111.

(S)-4-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-phenyl-4,5-dihydrooxazole (4b)

This compound was produced by the same method used for $\mathbf{4 a}$ as white oil, 70% yield, $[\alpha]_{\mathrm{D}}{ }^{25}$ $=-18.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.54-$ $7.13(\mathrm{~m}, 11 \mathrm{H}), 5.28-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.52(\mathrm{~m}, 0.6 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 0.4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.2,165.1,141.8,141.7,141.1,140.8,140.1,139.8,133.1,132.7$, 131.7, 131.6, 129.71, 129.66, 129.52, 129.46, 129.2, 129.0, 128.9, 128.67, 128.64, 128.60, 128.58, $127.81,127.78,127.75,127.43,127.39,127.37,127.0,126.8,126.5,124.2,124.0,75.4,75.1,74.8$, 70.4, 67.8, 67.1.

(S)-4-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-(tert-butyl)-4,5-dihydrooxazole (4c)

This compound was produced by the same method used for $4 \mathbf{a}$ as a white oil, 72% yield, $[\alpha]_{\mathrm{D}}{ }^{25}$ $=5.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.26-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.30(\mathrm{~m}, 0.7 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 0.3 \mathrm{H}), 1.28$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.8,175.6,141.9,141.8,141.5,141.2,139.9,139.7,133.1$, $132.7,131.7,131.6,129.6,129.43,129.39,129.1,128.8,127.7,127.3,127.22,127.17,126.3,125.9$, 124.2, 123.9, 75.4, 74.8, 67.0, 66.4, 33.7, 33.6, 28.2
(S)-4-(2'-benzhydryl-[1,1'-biphenyl]-2-yl)-2-(3,5-di-tert-butylphenyl)-4,5-dihydrooxazole (5a)

To a suspension of (S)-4-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-(3,5-di-tert-butylphenyl)- 4,5-dihydrooxazole (4a) ($98 \mathrm{mg}, 0.2 \mathrm{mmol}$) and Tetramethylethylenediamine ($34.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $1.5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2 \mathrm{M}$ solution in hexane, 0.2 ml$)$ dropwise. The resulting deep blue solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 hour before $\mathrm{ClPPh}_{2}(88 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added at the same temperature. The reaction mixture was allowed to warm to rt naturally and stirred overnight. After removing the solvent under reduced pressure, the product 5a was isolated by flash column chromatography (hexane: $\mathrm{EtOAc}=100: 1)$ as a white solid $(71.8 \mathrm{mg}, 60 \%) .5 \mathrm{a}:[\alpha]_{\mathrm{D}}{ }^{25}=-37.0(\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.26(\mathrm{~m}$, $11 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.41(\mathrm{~m}, 0.3 \mathrm{H}), 5.30-5.25(\mathrm{~m}, 0.7 \mathrm{H}), 4.33-4.23$ $(\mathrm{m}, 1.7 \mathrm{H}), 4.04-4.00(\mathrm{~m}, 0.3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7$, $151.2,146.6,140.9,137.4,137.1,134.4,134.3,134.2,134.1,133.9,130.9,130.8,129.2,129.0$, $128.83,128.79,128.7,128.64,128.57,128.5,128.3,128.0,127.3,126.6,126.5,125.9,123.03$, 122.95, 67.1, 35.2, 31.7. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-14.1,-14.9$. HRMS (ESI) Calcd for C ${ }_{41} \mathrm{H}_{43} \mathrm{ONP}=596.30768$, Found: 596.30634.
(S)-4-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-2-yl)-2-phenyl-4,5-dihydrooxazole (5b)

White solid, 65% yield, $[\alpha]_{\mathrm{D}}{ }^{25}=-40.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-$ $7.98(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 14 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 6 \mathrm{H}), 6.80-6.70(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.40(\mathrm{~m}, 0.3 \mathrm{H}), 5.29-$ $5.23(\mathrm{~m}, 0.7 \mathrm{H}), 4.32-4.23(\mathrm{~m}, 1.7 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 0.3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.9$, $146.8,146.5,140.8,140.7,140.0,139.9,137.4,137.3,137.2,137.0,136.0,134.5,134.4,134.3$, $134.2,134.12,134.06,133.92,133.87,131.7,131.6,130.9,130.8,129.2,129.0,128.9,128.8$, $128.73,128.66,128.59,128.57,128.5,128.4,128.1,128.0,127.9,126.6,126.5,126.2,100.2,75.2$,
75.1, 75.0, 68.3, 67.1. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-13.9$, -14.8. HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{ONP}=484.18248$, Found: 484.18137.

(S)-2-(tert-butyl)-4-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-2-yl)-4,5-dihydrooxazole (5c)

White solid, 60% yield, $[\alpha]_{\mathrm{D}}{ }^{25}=-7.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-$ $7.20(\mathrm{~m}, 11 \mathrm{H}), 7.20-7.03(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.60(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.16-$ $4.07(\mathrm{~m}, 1.8 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 0.2 \mathrm{H}), 1.29-1.28(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,146.9$, $146.5,141.2,141.0,139.8,139.7,137.6,137.5,137.1,137.0,136.9,134.4,134.3,134.2,134.1,134.0$, $133.9,133.8,130.8,130.8,130.7,130.6,129.1,129.0,128.8,128.75,128.7,128.66,128.6,128.5,128.42$, $128.35,128.3,128.0,127.94,126.3,126.0,125.7,75.2,75.1,75.0,67.5,66.4,33.7,33.6,28.3 .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) $\delta-14.2$, -14.9 . HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{ONP}=464.21378$, Found: 464.21285.

(S)-2-(3,5-di-tert-butylphenyl)-4-(2'-(dicyclohexylphosphanyl)-[1,1'-biphenyl]-2-yl)-4,5-

dihydrooxazole (5d)

White solid, 64% yield, $[\alpha]_{\mathrm{D}}{ }^{25}=-21.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-$ $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.28-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.18-$ $3.93(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 10 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~m}, 9 \mathrm{H}), 1.26-0.86(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,165.0,151.1,148.5,141.2,135.2,135.0,133.1,133.0,132.8,131.8,130.7$, $129.3,129.24,129.17,128.7,128.6,128.4,128.1,127.5,127.3,127.1,126.9,126.4,126.3,126.2$, $125.9,125.7,123.01,122.97,68.3,68.2,66.9,35.9,35.7,35.6,35.4,35.2,33.8,33.7,33.3,33.2$, 31.7, 30.4, 29.8, 27.9, 27.8, 27.5, 26.8, 26.7. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-12.2,-12.9$. HRMS (ESI) Calcd for $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{ONP}=608.40158$, Found: 608.40021.

Synthesis of [$\operatorname{Ir}(\mathrm{L}) \mathbf{C O D}]$ BArF complex 6a-6d

Under N_{2} atmosphere, ligand 5a $(110.8 \mathrm{mg}, 0.186 \mathrm{mmol})$ and $[\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(62.5 \mathrm{mg}, 0.093$ mmol) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring at rt for 1 h , when TLC indicated that ligand was consumed completely, $\mathrm{NaBArF}(247.3 \mathrm{mg}, 0.279 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ were added successively. After vigorously stirring at the same temperature for 30 minutes, the mixture was diluted with DCM $(30 \mathrm{~mL})$ and washed with brine. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford the crude product. After chromatography on silica-gel column (hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$), the corresponding Ir complex $\mathbf{6 a - 6 d}$ were obtained.

[$\operatorname{Ir}(\mathrm{L}) \mathrm{COD}]$ BArF complex 6a

Orange solid, 50% yield, $[\alpha]_{\mathrm{D}}{ }^{25}=-104.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90$ $(\mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 7 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 6 \mathrm{H}), 7.45-7.00(\mathrm{~m}, 12 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.44-6.40$ $(\mathrm{m}, 2 \mathrm{H}), 5.75-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.43-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.45-$ $4.42(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.23-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}$, $1 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,162.6,162.2,161.8$, $161.4,152.4,143.6,143.5,139.6,136.1,136.0,135.1,135.0,134.5,133.6,133.5,132.6,132.5$, $131.8,131.7,131.6,131.5,131.4,130.4,130.2,130.0,129.5,129.3,129.2,129.1,128.8,128.7$, $128.6,128.1,127.5,127.1,125.9,124.6,123.8,123.6,121.6,117.7,91.4,91.3,83.1,83.0,75.2$, 73.6, 73.1, 61.8, 35.4, 33.3, 31.6, 31.5, 30.4, 29.6, 28.6. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.0$. HRMS (ESI) Calcd for $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{ONIrP}[\mathrm{M}-\mathrm{BArF}]^{+}=896.35668$, Found: 896.35588 .

[$\operatorname{Ir}(\mathrm{L}) \mathrm{COD}]$ BArF complex 6b

Orange solid, 45% yield, $[\alpha]_{D}{ }^{25}=-62.1\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40$ -8.25 (m, 2H), $7.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 7 \mathrm{H}), 7.60-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.62(\mathrm{~m}$, $3 \mathrm{H}), 5.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.40$ $(\mathrm{m}, 1 \mathrm{H}), 4.39-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.82$ $(\mathrm{m}, 3 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.6,162.2,161.7,161.2,143.2,139.2$, $136.0,135.9,135.1,134.8,134.1,133.8,133.7,132.0,131.6,131.5,131.3,130.3,129.9,129.4$, $129.3,129.0,128.9,128.8,128.3,127.8,126.2,124.0,123.5,120.9,117.7,91.5,91.4,84.2,77.6$, $75.5,74.3,73.3,60.8,33.96,32.0,30.3,30.0,28.1,27.2,23.0,14.4 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
δ 17.7. HRMS (ESI) Calcd for $\mathrm{C}_{41} \mathrm{H}_{38} \mathrm{ONIrP}[\mathrm{M}-\mathrm{BArF}]^{+}=784.23257$, Found: 784.23046.

[$\operatorname{Ir}(\mathrm{L}) \mathrm{COD}]$ BArF complex 6c

Orange solid, 47% yield, $[\alpha]_{D}{ }^{25}=-13.9\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74$ $(\mathrm{s}, 7 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.38(\mathrm{~m}, 9 \mathrm{H}), 7.36-7.06(\mathrm{~m}, 9 \mathrm{H}), 6.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J$ $=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.46(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,162.6,162.2,161.8,138.6,135.7$, $135.6,135.1,134.9,134.1,134.0,133.3,132.2,131.8,131.6,131.4,130.9,130.5,130.1,129.9$, $129.4,129.3,129.0,128.7,128.5,126.9,126.5,125.9,123.8,121.6,117.7,92.2,83.8,75.2,74.2$, 71.9, 59.9, 34.6, 32.9, 32.2, 30.7, 30.0, 28.7, 28.0. ${ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) $\delta 17.2 . \mathrm{HRMS}(\mathrm{ESI})$ Calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{ONIrP}[\mathrm{M}-\mathrm{BArF}]^{+}=764.26387$, Found: 764.26172.

[$\operatorname{Ir}(\mathrm{L}) \mathrm{COD}]$ BArF complex 6d

Orange solid, 43% yield, $[\alpha]_{\mathrm{D}}{ }^{25}=-50.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-$ $7.70(\mathrm{~m}, 8 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}$, $3 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.59-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{brs}, 1 \mathrm{H})$, $2.22(\mathrm{brs}, 1 \mathrm{H}), 2.19-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.48(\mathrm{~m}, 14 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 18 \mathrm{H}), 1.27-0.75(\mathrm{~m}, 10 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 172.2,171.5,162.6,162.2,161.8,161.4,152.2,135.1,133.1,133.0$, $132.6,132.3,131.3,130.5,130.0,129.6,129.3,129.0,128.7,128.3,128.2,128.1,125.9,124.5$, $123.9,123.8,117.7,86.7,74.2,73.1,66.0,60.7,58.9,53.7,39.3,35.4,33.1,31.6,31.5,31.1,31.05$, 30.0, 29.6, 29.1, 29.0, 28.0, 27.95, 27.9, 27.8, 27.5, 27.1, 26.0, 21.3, 14.5. ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 15.6. $\mathrm{HRMS}(\mathrm{ESI})$ Calcd for $\mathrm{C}_{49} \mathrm{H}_{66} \mathrm{ONIrP}[\mathrm{M}-\mathrm{BArF}]^{+}=908.45167$, Found: 908.45001.

III. General procedure for asymmetric hydrogenation.

α-substituted cinnamic acid (0.2 mmol) and Ir-complex 6 ($0.2 \mu \mathrm{~mol}$) was dissolved in EtOH $(1 \mathrm{~mL})$. This solution was then transferred into an autoclave. The hydrogenation was performed at room temperature under 30 bar of H_{2} (or under reaction conditions described in Table 1 and Table 2). After carefully releasing the hydrogen, the reaction mixture was directly passed through a short silica gel column and flashed with EA. And then, the hydrogenation product in MeOH was slowly
added (Trimethylsilyl)diazomethane. Half an hour later, the reaction system was concentrated in vacuo to afford the corresponding methyl ester was directly used for chiral HPLC or GC analysis to measure the enantiomeric excess and for NMR to measure the conversion.

(R)-2-methyl-3-phenylpropanoic acid $8 \mathbf{a}^{6 a}$

Colorless oil, 98% yield; 97% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-12.6\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{6} \mathrm{HPLC}$ condition for corresponding methyl ester: Chiralpak OJ-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=18.9 \mathrm{~min}$ (major), 21.3 min (minor). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.69-$ $2.64(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.5,139.3,129.3,128.7$, 126.7, 41.5, 39.6, 16.7.

(R)-2-methyl-3-(o-tolyl)propanoic acid 8b ${ }^{\text {6a }}$

Colorless oil, 96% yield, 94% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-11.2(\mathrm{c}=0.5$, acetone). HPLC condition for corresponding methyl ester: Chiralpak IB column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; ~ U V$ detection at $205 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=9.7 \mathrm{~min}$ (major), 11.4 min (minor). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{brs}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 4 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.32(\mathrm{~m}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 183.2, 137.6, 136.6, $130.7,129.9,126.8,126.2,40.3,36.8,19.7,16.9$.
(R)-2-methyl-3-(p-tolyl)propanoic acid 8c ${ }^{6 \mathrm{a}}$

Colorless oil, 96% yield, 95% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-4.2(\mathrm{c}=1.0$, acetone $)$. HPLC condition for corresponding methyl ester: Chiralpak OJ-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=17.5 \mathrm{~min}$ (major), 18.2 min (minor). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-6.98(\mathrm{~m}, 4 \mathrm{H}), 3.05-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.31$ $(\mathrm{s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 182.9,136.3,136.1,129.4,129.2$,
(R)-3-(3,4-dimethylphenyl)-2-methylpropanoic acid 8d

Colorless oil, 95% yield; 94% ee, $[\alpha]_{D}{ }^{25}=-6.5(c=1.0$, acetone $)$. HPLC condition for corresponding methyl ester: Chiralpak OD-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$; UV detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$ (minor), 10.2 min (major). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.05-7.03 (m, 1H), 6.95-6.90(m, 2H), 3.04-2.99 (m, 1H), 2.75-2.69 (m, 1H), 2.60-2.54 (m, 1H), $2.22(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 182.7, $136.79,136.75,134.8,130.6,129.9,126.6,39.2,30.0,20.0,19.6,16.8$.
(R)-3-(2-methoxyphenyl)-2-methylpropanoic acid 8e ${ }^{\text {6a }}$

Colorless oil, 97% yield; 95% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-20.1$ ($\mathrm{c}=1.0$, acetone), HPLC condition for corresponding methyl ester: Chiralpak OD-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=35.5 \mathrm{~min}$ (minor), 37.3 min (major). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.07-3.02 (m, 1H), 2.88-2.81 (m, 1H), 2.72-2.67 (m, 1H), $1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.2,157.9,131.2,128.0,127.7,120.5,110.4,55.4,39.6,34.5,17.1$.
(R)-3-(3-methoxyphenyl)-2-methylpropanoic acid $\mathbf{8 f}{ }^{\text {6a }}$

Colorless oil, 96% yield, 94% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-5.4(\mathrm{c}=1.0$, acetone $)$. HPLC condition for corresponding methyl ester: Chiralpak OJ-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=21.7 \mathrm{~min}$ (major), 22.8 min (minor). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,140.9$, $129.7,121.7,115.0,112.0,55.4,39.6,16.8$.
(R)-3-(4-methoxyphenyl)-2-methylpropanoic acid $\mathbf{8 g}{ }^{6 a}$

Colorless oil, 95% yield, 96% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-4.7(\mathrm{c}=1.0$, acetone $)$. HPLC condition for corresponding methyl ester: Chiralpak OJ-H column, hexane/isopropanol = 99:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=29.9 \mathrm{~min}$ (minor), 31.5 min (major). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.03-$ $2.98(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 182.7,158.4,131.4,130.2,114.0,55.5,41.9,38.8,16.7$.
(R)-2-methyl-3-(3,4,5-trimethoxyphenyl)propanoic acid $\mathbf{8 h}{ }^{6 b}$

White solid, mp $116-118{ }^{\circ} \mathrm{C}, 98 \%$ yield, $93 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=-11.8(\mathrm{c}=1.0$, acetone). HPLC condition for corresponding methyl ester: Chiralpak AD-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $205 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=37.2 \mathrm{~min}$ (major), 40.5 min (minor). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{~s}, 2 \mathrm{H}), 3.84-3.83(\mathrm{~m}, 9 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H})$, 2.78-2.73 (m, 1H), 2.62-2.57 (m, 1H), $1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $182.4,153.3,136.7,135.1,106.1,61.1,56.3,41.7,40.0,16.9$.
(R)-3-(2-fluorophenyl)-2-methylpropanoic acid $\mathbf{8 i}$

Colorless oil, 94% yield, 94% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-20.8$ ($\mathrm{c}=1.0$, acetone). HPLC condition for corresponding methyl ester: Chiralpak AS-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=9.1 \mathrm{~min}$ (minor), 10.0 min (major). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.20$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.6(\mathrm{~d}, J=243.8 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=4.7 \mathrm{~Hz})$, $128.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 40.1$, 32.8, 16.9.
(R)-3-(3-fluorophenyl)-2-methylpropanoic acid $\mathbf{8 j}$

Colorless oil, 97% yield, $93 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=-5.3(\mathrm{c}=1.0$, acetone $)$. HPLC condition for corresponding methyl ester: Chiralpak AS-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; ~ U V$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$ (minor), 10.8 min (major). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.94($ brs, 1 H$), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.96-6.88(\mathrm{~m}, 3 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.879-$ $2.63(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.6,163.1(\mathrm{~d}, J=244.0$ $\mathrm{Hz}), 141.8(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.9(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 113.6$ $(\mathrm{d}, J=20.9 \mathrm{~Hz}), 41.4,39.2,16.8$.
(R)-3-(4-fluorophenyl)-2-methylpropanoic acid 8k

Colorless oil, 96% yield, 94% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-11.9$ ($\mathrm{c}=1.0$, acetone). HPLC condition for corresponding methyl ester: Chiralpak AS-H column, hexane/isopropanol = 99:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=9.8 \mathrm{~min}($ minor $), 10.8 \mathrm{~min}($ major $) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 3 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.18$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.9,161.7(\mathrm{~d}, J=242.8 \mathrm{~Hz}), 134.9,130.7(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 41.6,38.7,16.8$.
(R)-3-(4-chlorophenyl)-2-methylpropanoic acid $81{ }^{6 a}$

Colorless oil, 96% yield, 90% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-18.7$ ($\mathrm{c}=1.0$, acetone $)$. HPLC condition for corresponding methyl ester: Chiralpak AS-H column, hexane/isopropanol = 99:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$; UV detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=10.1 \mathrm{~min}$ (minor), 11.7 min (major). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H})$, 2.76-2.63 (m, 2H), $1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.0,132.4,130.6$, 128.8, 41.8, 39.0, 16.9.

Colorless oil, 95% yield; 90% ee; $[\alpha]_{\mathrm{D}}^{25}=-10.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{HPLC}$ condition for corresponding methyl ester: Chiralpak OJ-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=16.9 \mathrm{~min}$ (major), 17.7 min (minor). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.61(\mathrm{~m}$, $2 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.3,131.8,131.0,120.6,41.3,39.0$, 16.9.
(R)-3-(furan-2-yl)-2-methylpropanoic acid $\mathbf{8 n}{ }^{6 a}$

Colorless oil, 94% yield; 90% ee; $[\alpha]_{D}{ }^{25}=-4.3(c=1.0$, acetone $)$, HPLC condition for corresponding methyl ester: Chiralpak OD-H column, hexane/ isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=9.5 \mathrm{~min}$ (major), 9.9 min (minor). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.87-$ $2.71(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.5,153.9,141.5,110.4$, 106.6, 39.5, 32.0, 17.1.
(R)-3-cyclohexyl-2-methylpropanoic acid 80

Colorless oil, 93% yield, 88% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-11.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{GC}$ (Supelco β-DEX ${ }^{\mathrm{TM}} 120, \mathrm{df}=0.25 \mu \mathrm{~m}, 0.25 \mathrm{~mm}$ i.d. $\times 30 \mathrm{~m}$, fused silica capillary column); carrier gas, N_{2} (flow $1.2 \mathrm{~mL} / \mathrm{min}$); injection temp, $250^{\circ} \mathrm{C}$; initial column temperature, $80^{\circ} \mathrm{C}$; progress rate, $0.5^{\circ} \mathrm{C} / \mathrm{min}$; final column temperature, $150^{\circ} \mathrm{C}$; this temperature is held for 10 min ; detector temp, $260{ }^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{R}}(R)=73.5 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{S}}(S)=74.9 \mathrm{~min}$ (minor). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.08-3.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 5 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-$ $0.79(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.6,41.8,37.5,35.5,33.7,33.3,26.9,26.6,26.5$, 17.8.
(R)-2-benzylbutanoic acid $\mathbf{8 p}{ }^{6 \mathrm{~b}}$

Colorless oil, 96% yield, 97% ee, $[\alpha]_{D}{ }^{25}=-11.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. HPLC condition for corresponding methyl ester: Chiralpak OJ-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=17.1 \mathrm{~min}$ (major), 19.8 min (minor), ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.65-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.8$, $139.4,129.2,128.7,126.7,49.1,38.0,25.0,11.9$.
(S)-2-benzyl-3-methylbutanoic acid $\mathbf{8 q}{ }^{\text {6a }}$

Colorless oil, 96% yield, $95 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=-14.2$ ($\mathrm{c}=1.0$, acetone). HPLC condition for corresponding methyl ester: Chiralpak OJ-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min}$ (major), 15.2 min (minor), ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.90-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.50(\mathrm{~m}$, $1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.9, 129.1, 128.7, 126.5, 54.6, 35.6, 30.7, 20.6, 20.3.
(S)-2,3-diphenylpropanoic acid $8 \mathbf{r}^{6 a}$

White solid, 95% yield, $\mathrm{mp} 79-81{ }^{\circ} \mathrm{C}, 94 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=49.8 \quad(\mathrm{c}=0.5$, acetone). HPLC condition for corresponding methyl ester: Chiralpak OD-H column, hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; U V$ detection at $210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=12.9 \mathrm{~min}($ minor $)$, 14.2 min (major), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.03(\mathrm{~m}, 10 \mathrm{H}), 3.78(\mathrm{t}, J=7.3,1 \mathrm{H}), 3.33(\mathrm{~m}$, 1H), $2.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.7,139.1,138.5,129.2,128.9,128.7,128.4$, 127.7, 126.6, 77.6, 77.3, 77.0, 54.0, 39.6.

In addition, we applied our catalytic system to promote the asymmetric hydrogenation of two other types of unsaturated acids such as α-phenyl substituted acrylic acid and the unsaturated cyclic acid with tetra-substituted olefin. For α-phenyl substituted acrylic acid substrate, we can obtain the
hydrogenation product with moderate result (85% ee, 88% conversion). For unsaturated cyclic acid with tetra-substituted olefin substrate, no product was observed in this transformation, it was mainly owing to the substrate with bulky steric hindrance.

IV. NMR Spectra

(S)-4-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-(3,5-di-tert-butylphenyl)-4,5-dihydrooxazole (4a)

(S)-4-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-phenyl-4,5-dihydrooxazole (4b)

(S)-4-(2'-bromo-[1,1'-biphenyl]-2-yl)-2-(tert-butyl)-4,5-dihydrooxazole (4c)

(S)-4-(2'-benzhydryl-[1,1'-biphenyl]-2-yl)-2-(3,5-di-tert-butylphenyl)-4,5-dihydrooxazole (5a)

(

(S)-4-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-2-yl)-2-phenyl-4,5-dihydrooxazole (5b)

angrumu-00990

(S)-2-(tert-butyl)-4-(2'-(diphenylphosphanyl)-[1,1'-biphenyl]-2-yl)-4,5-dihydrooxazole (5c)

(S)-2-(3,5-di-tert-butylphenyl)-4-(2'-(dicyclohexylphosphanyl)-[1,1'-biphenyl]-2-yl)-4,5-
dihydrooxazole (5d)

$[\operatorname{Ir}(\mathrm{L}) \mathrm{COD}] \mathrm{BArF}$ complex 6a

zhnox

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & \\ \text { (ppm) }\end{array}$

$[\operatorname{Ir}(\mathrm{L}) \mathrm{COD}] \mathrm{BArF}$ complex 6b

[$\operatorname{Ir}(\mathrm{L}) \mathrm{COD}] \mathrm{BArF}$ complex 6c

[$\operatorname{Ir}(\mathrm{L})$ COD]BArF complex 6d

(R)-2-methyl-3-phenylpropanoic acid 8a

(R)-2-methyl-3-(o-tolyl)propanoic acid 8b

(R)-2-methyl-3-(p-tolyl)propanoic acid 8c

(R)-3-(3,4-dimethylphenyl)-2-methylpropanoic acid 8d

(R)-3-(2-methoxyphenyl)-2-methylpropanoic acid 8e

(R)-3-(3-methoxyphenyl)-2-methylpropanoic acid $\mathbf{8 f}$

(R)-3-(4-methoxyphenyl)-2-methylpropanoic acid $\mathbf{8 g}$

(R)-2-methyl-3-(3,4,5-trimethoxyphenyl)propanoic acid $\mathbf{8 h}$

(R)-3-(2-fluorophenyl)-2-methylpropanoic acid $\mathbf{8 i}$

(R)-3-(3-fluorophenyl)-2-methylpropanoic acid $\mathbf{8 j}$

(R)-3-(4-fluorophenyl)-2-methylpropanoic acid $\mathbf{8 k}$

(R)-3-(4-chlorophenyl)-2-methylpropanoic acid $8 \mathbf{8}$

(R)-3-(4-bromophenyl)-2-methylpropanoic acid 8m

(R)-3-(furan-2-yl)-2-methylpropanoic acid 8n

(R)-3-cyclohexyl-2-methylpropanoic acid 80

(R)-2-benzylbutanoic acid 8p

(S)-2-benzyl-3-methylbutanoic acid $\mathbf{8 q}$

(S)-2,3-diphenylpropanoic acid $\mathbf{8 r}$

V. HPLC and GC of hydrogenation product ester derivatives.

(R)-2-methyl-3-phenylpropanoic acid 8a

```
Data File E:\DATA\CCY\CCY-6-133\CCY-6-133 2015-11-28 10-55-00\061-0901.D
Sample Name: wq-s7-rac
\(=======================================================================-1\)
Acq. Operator : SYSTEM
Acq. Instrument : \(1260 \mathrm{HPLC-DAD}\)
Injection Date : \(11 / 28 / 20152: 53: 43 \mathrm{PM}\)
Inj Volume : \(5.000 \mu \mathrm{l}\)
Acq. Method : E:\DATA\CCY\CCY-6-133\CCY-6-133 2015-11-28 10-55-00\DAD-OJ(1-6)-99-1-0.5ML-
                ALL-40MIN.M
Last changed : 11/28/2015 11:26:43 AM by SYSTEM
Analysis Method : E:\DATA\CCY\CCY-6-133\CCY-6-133 2015-11-28 10-55-00\DAD-OJ(1-6)-99-1-0.5ML-
                    ALL-40MIN.M (Sequence Method)
Last changed : 5/29/2016 8:03:52 PM by SYSTEM
                                    (modified after loading)
Additional Info : Peak(s) manually integrated
```



```
\begin{tabular}{lll} 
& Area Percent Report \\
\(====================================================\) \\
& & \\
Sorted By & \(:\) & Signal \\
Multiplier & 1.0000 \\
Dilution & 1.0000 \\
Do not use Multiplier \& Dilution Factor with ISTDs
\end{tabular}
Signal 1: DAD1 B, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & Height
[mA.U] & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 19.224 & BB & 0.3374 & 4095.74658 & 187.09590 & 50.0797 \\
\hline 2 & 21.527 & BB & 0.3784 & 4082.70752 & 166.29533 & 49.9203 \\
\hline Total & S : & & & 8178.45410 & 353.39124 & \\
\hline
\end{tabular}
```

\qquad

```
    *** End of Report ***

Data File E: \DATA\CCY \CCY-6-133\CCY-6-133 2015-11-28 10-55-00\066-1401.D
Sample Name: wq-2-42-2
\begin{tabular}{ll}
\(==========================================================================\) \\
Acq. Operator : SYSTEM & Seq. Line : 14 \\
Acq. Instrument : \(1260 \mathrm{HPLC-DAD}\) & Location : Vial 66 \\
Injection Date : \(11 / 28 / 2015\) & \(6: 18: 23 \mathrm{PM}\)
\end{tabular}

Acq. Method : E: \DATA\CCY \CCY-6-133\CCY-6-133 2015-11-28 10-55-00\DAD-OJ (1-6)-99-1-0.5ML-ALL-40MIN.M
Last changed : 11/28/2015 11:26:43 AM by SYSTEM
Analysis Method : E: \DATA\CCY \CCY-6-133\CCY-6-133 2015-11-28 10-55-00\DAD-OJ(1-6)-99-1-0.5ML-ALL-40MIN.M (Sequence Method)
Last changed : 5/29/2016 7:59:34 PM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated


Signal 1: DAD1 B, Sig=210, 4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 18.927 & BB & 0.3525 & 2.29393 e 4 & 1011.94232 & 98.6494 \\
\hline 2 & 21.260 & BB & 0.3627 & 314.04916 & 13.14562 & 1.3506 \\
\hline Total & 3 : & & & 2.32533 e 4 & 1025.08794 & \\
\hline
\end{tabular}
\(\qquad\)
*** End of Report ***

\section*{(R)-2-methyl-3-(o-tolyl)propanoic acid 8b}

Data File E: \DATA\WQ\WQ-2-174 \WQ-2-174-2 2016-04-27 20-34-17\021-0201.D Sample Name: WQ-2-174-1-RAC


Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|r|}{Area Percent Report} \\
\hline Sorted By & : & Signal \\
\hline Multiplier & : & 1.0000 \\
\hline Dilution & : & 1.0000 \\
\hline Do not use & & tion Fac \\
\hline
\end{tabular}

Signal 1: VWD1 A, Wavelength=205 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*}]}
\end{gathered}
\] & Height
[mAU] & Area \% \\
\hline 1 & 9.645 & & 0.1953 & 1.51485 e 4 & 1207.81519 & 49.8559 \\
\hline 2 & 11.381 & & 0.2134 & 1.52361 e 4 & 1108.50342 & 50.1441 \\
\hline Total & \(s\) : & & & 3.03845 e 4 & 2316.31860 & \\
\hline
\end{tabular}
*** End of Report ***

Data File E: \DATA\WQ\WQ-2-174\WQ-2-174-2 2016-04-27 20-34-17\022-0301.D Sample Name: WQ-2-174-1


Additional Info : Peak(s) manually integrated

\(\qquad\)
Area Percent Report
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Eactor with ISTDs

Signal 1: VWD1 A, Wavelength=205 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
\#
\end{tabular} & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \begin{tabular}{l}
Area \\
8
\end{tabular} \\
\hline 1 & 9.651 & & 0.1982 & 1.70221e4 & 1339.85925 & 97.1191 \\
\hline 2 & 11.422 & & 0.2067 & 504.94086 & 37.83417 & 2.8809 \\
\hline
\end{tabular}

\section*{(R)-2-methyl-3-(p-tolyl)propanoic acid 8c}

Data File E: \DATA\WQ\WQ-2-174 \DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\065-1301.D
Sample Name: WQ-2-174-9-RAC


Additional Info : Peak(s) manually integrated



Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 17.521 & & 0.3205 & 7838.83350 & 407.65817 & 48.8569 \\
\hline 2 & 18.142 & & 0.4079 & 8205.65820 & 335.30875 & 51.1431 \\
\hline Total & \(s\) : & & & 1. 60445 e 4 & 742.96692 & \\
\hline
\end{tabular}
\(\qquad\)
*** End of Report ***

Data File E: \DATA\WQ\WQ-2-174 \DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\066-1401.D
Sample Name: WQ-2-174-9

Acq. Operator : SYSTEM
Acq. Instrument : \(1260 \mathrm{HPLC}-\mathrm{DAD}\)
Injection Date : 4/28/2016 4:02:39 AM
Seq. Line : 14
Location : Vial 66
Inj : 1
Inj Volume : \(5.000 \mu \mathrm{l}\)
```

Acq. Method : E: \DATA \WQ \WQ-2-174 \DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\DAD-OJ(1-6)-99-1-0.5ML-40MIN.M
Last changed : 4/27/2016 8:49:49 PM by SYSTEM
Analysis Method : E: \DATA \WQ \WQ-2-174 \DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\DAD-OJ(1-6)-99-1-0.5ML-40MIN.M (Sequence Method)
Last changed : 5/29/2016 9:03:22 PM by SYSTEM
(modified after loading)

```

Additional Info : Peak(s) manually integrated

\(\qquad\)
\begin{tabular}{lcl} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & Height
[mAU] & Area \(\%\) \\
\hline 1 & 17.547 & & 0.3273 & 6069.75488 & 309.09094 & 97.3595 \\
\hline 2 & 18.176 & FM & 0.3345 & 164.61998 & 8.20196 & 2.6405 \\
\hline Total & \(s\) : & & & 6234.37486 & 317.29291 & \\
\hline
\end{tabular}
*** End of Report ***
(R)-3-(3,4-dimethylphenyl)-2-methylpropanoic acid 8d

Data File E: \DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \003-0401.D
Sample Name: WQ-2-182-4-RAC
\begin{tabular}{|c|c|}
\hline Acq. Operator & : SYSTEM Seq. Line : 4 \\
\hline Acq. Instrument & : 1260HPLC-DAD Location : Vial 3 \\
\hline Injection Date & : 5/7/2016 2:22:15 PM Inj : 1 \\
\hline & Inj Volume : \(3.000 \mu \mathrm{l}\) \\
\hline Acq. Method & \[
\begin{aligned}
& \text { E: \DATA } \backslash W Q \backslash W Q-2-182 \backslash W Q-2-182 \text { 2016-05-07 12-26-34 \DAD-OD }(1-2)-99-1-0.5 M L-3 U L \\
& -50 M I N . M
\end{aligned}
\] \\
\hline Last changed & 5/7/2016 3:06:01 PM by SYSTEM (modified after loading) \\
\hline Analysis Method & E: \DATA \WQ \WQ-2-182 \WQ-2-182 2016-05-07 12-26-34 \DAD-OD (1-2)-99-1-0.5ML-3UL -50MIN.M (Sequence Method) \\
\hline Last changed & 5/29/2016 9:11:23 PM by SYSTEM (modified after loading) \\
\hline
\end{tabular}

Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Use Multiplier \& & lution & Factor with & ISTDs & \\
\hline Signal 1: DAD1 C, & ig=210 & 4 Ref=off & & \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \quad[\mathrm{~min}]
\end{aligned}
\] & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \begin{tabular}{l}
Area \\
8
\end{tabular} \\
\hline \(1 \quad 9.586 \mathrm{BV}\) & 0.1750 & 2173.64331 & 187.85251 & 50.5599 \\
\hline 210.177 VB & 0.1847 & 2125.50244 & 176.19662 & 49.4401 \\
\hline
\end{tabular}

Data File E: \DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \004-0501.D
Sample Name: WQ-2-182-4


Acq. Method : E: \DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \DAD-OD (1-2)-99-1-0.5ML-3UL -50MIN.M
Last changed : 5/7/2016 3:09:56 PM by SYSTEM (modified after loading)
Analysis Method : E: \DATA \WQ \WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \DAD-OD (1-2)-99-1-0.5ML-3UL -50MIN.M (Sequence Method)
Last changed : 5/29/2016 9:12:29 PM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated

\begin{tabular}{lcc} 
& Area Percent Report \\
\(==========m==================================\) \\
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & : & 1.0000 \\
Use Multiplier \& Dilution Factor with ISTDs
\end{tabular}

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 9.612 & & 0.1728 & 628.67419 & 55.23700 & 3.0329 \\
\hline 2 & 10.209 & VB & 0.1969 & 2.00997 e 4 & 1575.29175 & 96.9671 \\
\hline Total & \(s\) : & & & 2.07284 e 4 & 1630.52874 & \\
\hline
\end{tabular}

\section*{(R)-3-(2-methoxyphenyl)-2-methylpropanoic acid 8e}
```

Data File E:\DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34\001-0201.D
Sample Name: WQ-2-182-1-RAC

Acq. Operator : SYSTEM	Seq. Line : 2
Acq. Instrument : 1260 HPLC -DAD	Location : Vial 1
Injection Date : 5/7/2016 12:40:30 PM	Inj :

- Inj Volume : $3.000 \mu \mathrm{l}$
Acq. Method : E:\DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34\DAD-OD (1-2)-99-1-0.5ML-3UL -50MIN.M
Last changed : 5/7/2016 12:26:35 PM by SYSTEM
Analysis Method : E: \DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \DAD-OD (1-2)-99-1-0.5ML-3UL -50MIN.M (Sequence Method)
Last changed : 5/29/2016 9:06:08 PM by SYSTEM (modified after loading)

```

Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Area Percent Report} \\
\hline Sorted By & : & Signal \\
\hline Multiplier & : & 1.0000 \\
\hline Dilution & : & 1.0000 \\
\hline Use Multipl & & ctor wit \\
\hline
\end{tabular}

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{aligned}
& \text { Ret Time } \\
& {[\mathrm{min}]}
\end{aligned}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& {[\mathrm{min}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} * s]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area
\[
8
\] \\
\hline 1 & 35.060 & BB & 0.6392 & 3599.51636 & 87.27083 & 50.3794 \\
\hline 2 & 37.544 & BB & 0.7006 & 3545.30029 & 77.95901 & 49.6206 \\
\hline Tota & (s : & & & 7144.81665 & 165.22984 & \\
\hline
\end{tabular}

Data File E: \DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \002-0301.D
Sample Name: WQ-2-182-1


Acq. Method : E: \DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \DAD-OD (1-2)-99-1-0.5ML-3UL -50MIN.M
Last changed : 5/7/2016 12:26:35 PM by SYSTEM
Analysis Method : E: \DATA \WQ \WQ-2-182 \WQ-2-182 2016-05-07 12-26-34 \DAD-OD (1-2)-99-1-0.5ML-3UL -50MIN.M (Sequence Method)
Last changed : 5/29/2016 9:08:50 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Use Multiplier \& & lution & Factor with & ISTDS & \\
\hline Signal 1: DAD1 C, & \(\mathrm{g}=210\) & Ref=off & & \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \quad[\mathrm{~min}]
\end{aligned}
\] & width
[min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { \% }
\end{gathered}
\] \\
\hline 135.491 BB & 0.5739 & 648.52295 & 17.76537 & 2.5904 \\
\hline 237.289 BB & 0.8401 & 2.43871 e 4 & 425.84824 & 97.4096 \\
\hline Totals : & & 2.50356 e 4 & 443.61360 & \\
\hline
\end{tabular}

\section*{(R)-3-(3-methoxyphenyl)-2-methylpropanoic acid \(\mathbf{8 f}\)}

Data File E: \DATA\GWC\GWC16-4\S-SOLVENT 2016-04-23 22-28-47\053-0401.D Sample Name: WQ-2-172-2-RAC


Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Area Percent Report} \\
\hline \multicolumn{3}{|l|}{} \\
\hline Sorted By & : & Signal \\
\hline Multiplier & : & 1.0000 \\
\hline Dilution & : & 1.0000 \\
\hline Use Multipl & & ctor with ISTDs \\
\hline
\end{tabular}

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & туре & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 1 & 21.676 & MF & 0.4058 & 1.02121 e 4 & 419.39774 & 49.5173 \\
\hline 2 & 22.697 & FM & 0.4513 & 1.04112 e 4 & 384.49316 & 50.4827 \\
\hline Total & \(s\) : & & & 2.06234 e 4 & 803.89090 & \\
\hline
\end{tabular}

Data File E: \DATA\GWC\GWC16-4\S-SOLVENT 2016-04-23 22-28-47\054-0501.D
Sample Name: WQ-2-172-2


Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Use Multiplier \& & lution & Factor wit & ISTDs & \\
\hline Signal 1: DAD1 C , & ig=210 & 4 Ref=off & & \\
\hline \[
\begin{gathered}
\text { Peak RetTime Type } \\
\# \text { [min] }
\end{gathered}
\] & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 1 21.665 MF & 0.4174 & 1.80719 e 4 & 721.63135 & 96.9489 \\
\hline 2 22.793 FM & 0.4560 & 568.75299 & 20.78808 & 3.0511 \\
\hline Totals : & & 1.86407e4 & 742.41943 & \\
\hline
\end{tabular}

\section*{(R)-3-(4-methoxyphenyl)-2-methylpropanoic acid \(\mathbf{8 g}\)}

Data File E: \DATA\WQ\WQ-2-174 \DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\061-0901.D
Sample Name: WQ-2-174-6-RAC


Additional Info : Peak(s) manually integrated

\begin{tabular}{lll} 
& Area Percent Report \\
\(====================================================\) \\
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000 \\
Do not use Multiplier \& Dilution Factor with ISTDs
\end{tabular}

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 29.881 & & 0.5308 & 3754.36743 & 108.73714 & 50.0339 \\
\hline 2 & 31.495 & VB & 0.5402 & 3749.27979 & 107.16940 & 49.9661 \\
\hline Total & \(s\) : & & & 7503.64722 & 215.90655 & \\
\hline
\end{tabular}
\(\qquad\)
*** End of Report ***

Data File E: \DATA\WQ\WQ-2-174 \DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\062-1001.D
Sample Name: WQ-2-174-6
```

Acq. Operator : SYSTEM Seq. Line : }1
Acq. Instrument : 1260HPLC-DAD
Injection Date : 4/28/2016 1:38:45 AM
Location : Vial }6
Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : E:\DATA\WQ\WQ-2-174\DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\DAD-OJ(1-6)-
99-1-0.5ML-40MIN.M
Last changed : 4/27/2016 8:49:49 PM by SYSTEM
Analysis Method : E:\DATA\WQ\WQ-2-174\DAD-AD-90-10-WFY-2-112 2016-04-27 20-48-16\DAD-OJ(1-6)-
99-1-0.5ML-40MIN.M (Sequence Method)
Last changed : 5/29/2016 8:33:52 PM by SYSTEM
(modified after loading)

```
Additional Info : Peak(s) manually integrated


\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210, 4 Ref=off
\begin{tabular}{cccccc}
\begin{tabular}{c} 
Peak \\
RetTime Type \\
[min]
\end{tabular} & \begin{tabular}{c} 
Width \\
[min]
\end{tabular} & \begin{tabular}{c} 
Area \\
{\(\left[\mathrm{mAU}^{*} \mathrm{~s}\right]\)}
\end{tabular} & \begin{tabular}{c} 
Height \\
[mAU]
\end{tabular} & Area & \%
\end{tabular}
*** End of Report ***

\section*{(R)-2-methyl-3-(3,4,5-trimethoxyphenyl)propanoic acid 8h}
```

Data File E:\DATA\WQ\WQ-2-174\WQ-2-174-3 2016-04-27 22-50-47\011-1501.D
Sample Name: WQ-2-174-10-RAC

```

```

Additional Info : Peak(s) manually integrated

```
(E:DATAIWQIWQ-2-174IWQ-2-174-3 2016-04-27 22-50-47011-1501.D)
\begin{tabular}{lll} 
& Area Percent Report \\
\(===================================================\) \\
& \(:\) & Signal \\
Sorted By & \(:\) & 1.0000 \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \\
Do not use Multiplier \& Dilution Factor with ISTDS
\end{tabular}

Signal 1: VWD1 A, Wavelength=205 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & Height [mAU] & Area \% \\
\hline 1 & 37.502 & BB & 0.7512 & 1501.69165 & 30.72799 & 50.8595 \\
\hline 2 & 40.560 & BB & 0.7937 & 1450.93335 & 28.36941 & 49.1405 \\
\hline Total & \(s\) : & & & 2952.62500 & 59.09740 & \\
\hline
\end{tabular}
*** End of Report ***

Data File E: \DATA\WQ\WQ-2-174\WQ-2-174-3 2016-04-27 22-50-47\012-1601.D
Sample Name: WQ-2-174-10


WWD1 A, Wavelength \(=205 \mathrm{~nm}\) (E:IDATAIWQIWQ-2-174IWQ-2-174-3 2016-04-27 22-50-47012-1601.D)

\(\qquad\)
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=205 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \(\%\) \\
\hline 1 & 37.181 & & 0.8603 & 8.89845e4 & 1724.00012 & 96.6486 \\
\hline 2 & 40.541 & & 0.8230 & 3085.63428 & 62.48996 & 3.3514 \\
\hline Total & \(s\) : & & & 9.20701 e 4 & 1786.49008 & \\
\hline
\end{tabular}
*** End of Report ***
(R)-3-(2-fluorophenyl)-2-methylpropanoic acid \(\mathbf{8 i}\)

Data File E: \DATA\WQ\WQ-2-182 \WQ-2-182-2 2016-05-07 17-10-08\013-0201.D
Sample Name: WQ-2-182-5-RAC


Additional Info : Peak(s) manually integrated

\begin{tabular}{lll} 
& Area Percent Report \\
\(====================================================\) \\
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000 \\
Do not use Multiplier \& Dilution Factor with ISTDs
\end{tabular}

Signal 1: VWD1 A, Wavelength=210 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 9.154 & BB & 0.1835 & 3193.89624 & 267.14471 & 49.9402 \\
\hline 2 & 10.066 & BB & 0.1964 & 3201.54761 & 249.94551 & 50.0598 \\
\hline Total & \(s\) : & & & 6395.44385 & 517.09023 & \\
\hline
\end{tabular}
*** End of Report ***

Data File E: \DATA\WQ\WQ-2-182\WQ-2-182-2 2016-05-07 17-10-08\014-0301.D Sample Name: WQ-2-182-5
```

Acq. Operator : SYSTEM
Seq. Line :
Acq. Instrument : 1260HPLC-VWD
Location : Vial }1
Injection Date : 5/7/2016 5:52:37 PM
Inj : 1
Inj Volume : 3.000 \mul
Acq. Method : E:\DATA\WQ\WQ-2-182\WQ-2-182-2 2016-05-07 17-10-08\VWD-AS(1-2)-99-1-0.50ML-
210NM-30MIN.M
Last changed : 5/7/2016 5:10:08 PM by SYSTEM
Analysis Method : E:\DATA\WQ\WQ-2-182\WQ-2-182-2 2016-05-07 17-10-08\VWD-AS(1-2)-99-1-0.50ML-
210NM-30MIN.M (Sequence Method)
Last changed : 5/29/2016 9:17:26 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated

```


\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=210 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 9.087 & & 0.1885 & 65.54678 & 5.79515 & 2.9522 \\
\hline 2 & 9.996 & MM & 0.2107 & 2154.74170 & 170.42198 & 97.0478 \\
\hline Tota & 1 s : & & & 2220.28848 & 176.21713 & \\
\hline
\end{tabular}
*** End of Report ***

\section*{(R)-3-(3-fluorophenyl)-2-methylpropanoic acid 8j}

Data File E: \DATA\WQ\WQ-2-182\WQ-2-182-2 2016-05-07 17-10-08\015-0401.D
Sample Name: WQ-2-182-6-RAC


Additional Info : Peak(s) manually integrated
(E:DATAIWQIWQ-2-182IWQ-2-182-2 2016-05-07 17-10-081015-0401.D)
\begin{tabular}{lll} 
& Area Percent Report \\
\(=====================================================\) \\
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000 \\
Do not use Multiplier \& Dilution Factor with ISTDs
\end{tabular}

Signal 1: VWD1 A, Wavelength=210 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 9.648 & VV & 0.1938 & 1.21032 e 4 & 955.40259 & 50.0189 \\
\hline 2 & 10.822 & VB & 0.2128 & 1.20940 e 4 & 877.66675 & 49.9811 \\
\hline Total & \(s\) : & & & 2.41972 e 4 & 1833.06934 & \\
\hline
\end{tabular}
*** End of Report ***

Data File E: \DATA \WQ \WQ-2-182\WQ-2-182-2 2016-05-07 17-10-08\016-0501. Sample Name: WQ-2-182-6
```

Acq. Operator : SYSTEM Seq. Line : }
Acq. Instrument : 1260HPLC-VWD
Injection Date : 5/7/2016 6:54:06 PM
Location : Vial }1
Inj : 1
Inj Volume : 3.000 \mul
Acq. Method : E:\DATA\WQ\WQ-2-182\WQ-2-182-2 2016-05-07 17-10-08\VWD-AS(1-2)-99-1-0.50ML-
210NM-30MIN.M
Last changed : 5/7/2016 5:10:08 PM by SYSTEM
Analysis Method : E:\DATA\WQ\WQ-2-182\WQ-2-182-2 2016-05-07 17-10-08\VWD-A.S(1-2)-99-1-0.50ML-
210NM-30MIN.M (Sequence Method)
Last changed : 5/29/2016 9:21:07 PM by SYSTEM
(modified after loading)

```
Additional Info : Peak(s) manually integrated

\(\qquad\)
Area Percent Report
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=210 nm
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 9.620 & & 0.1859 & 670.47961 & 55.12567 & 3.3845 \\
\hline 2 & 10.782 & & 0.2187 & 1. 91398 e 4 & 1355.52502 & 96.6155 \\
\hline Total & 3 : & & & 1.98103 e 4 & 1410.65070 & \\
\hline
\end{tabular}
\(\qquad\)
*** End of Report ***

\section*{(R)-3-(4-fluorophenyl)-2-methylpropanoic acid 8k}

Data File E: \DATA\GWC\GWC16-4\S-SOLVENT 2016-04-23 21-26-46\057-0201.D Sample Name: WQ-2-172-4-RAC


Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Area Percent Report} \\
\hline Sorted By & : & Signal \\
\hline Multiplier & : & 1.0000 \\
\hline Dilution & : & 1.0000 \\
\hline Do not use & & ion Fac \\
\hline
\end{tabular}

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 1 & 9.849 & BB & 0.2055 & 4182.33057 & 309.82227 & 49.7090 \\
\hline 2 & 10.819 & BB & 0.2195 & 4231.29590 & 294.73523 & 50.2910 \\
\hline Total & \(s\) : & & & 8413.62646 & 604.55750 & \\
\hline
\end{tabular}

Data File E: \DATA\GWC\GWC16-4\S-SOLVENT 2016-04-23 21-26-46\058-0301.D
Sample Name: WQ-2-172-4


Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Do not use Multip & ier \& D & lution Fact & r with IS' & \\
\hline Signal 1: DAD1 C, & Sig=210 & 4 Ref=off & & \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \quad[\mathrm{~min}]
\end{aligned}
\] & \[
\begin{aligned}
& \text { Width } \\
& {[\mathrm{min}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { \% }
\end{gathered}
\] \\
\hline \(1 \quad 9.843 \mathrm{BB}\) & 0.2056 & 162.86629 & 12.05527 & 3.0265 \\
\hline 210.814 BB & 0.2201 & 5218.46924 & 362.18933 & 96.9735 \\
\hline Totals : & & 5381.33553 & 374.24461 & \\
\hline
\end{tabular}

\section*{(R)-3-(4-chlorophenyl)-2-methylpropanoic acid \(8 \mathbf{1}\)}

Data File E: \DATA\WQ\WQ-2-184 \WQ-2-184-3 2016-05-12 16-53-31\015-0201.D Sample Name: wq-2-184-5-rac


Additional Info : Peak(s) manually integrated



Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 1 & 10.007 & BB & 0.1960 & 2736.16089 & 212.87825 & 59.2150 \\
\hline 2 & 11.529 & BB & 0.2211 & 1884.56213 & 130.05888 & 40.7850 \\
\hline Total & \(s\) : & & & 4620.72302 & 342.93713 & \\
\hline
\end{tabular}

Data File E: \DATA\WQ\WQ-2-184\WQ-2-184-3 2016-05-12 16-53-31\016-0301.D Sample Name: wq-2-184-5
\begin{tabular}{|c|c|c|}
\hline Acq. Operator & : SYSTEM & Seq. Line : 3 \\
\hline Acq. Instrument & : 1260HPLC-DAD & Location : Vial 16 \\
\hline Injection Date & : 5/12/2016 5:36:17 PM & Inj : 1 \\
\hline & & Inj Volume : \(3.000 \mu \mathrm{l}\) \\
\hline Acq. Method & : E: \DATA\WQ\WQ-2-184 \WQ-2-184-3 3UL-30MIN.M & 2016-05-12 16-53-31 \DAD-AS (1-6)-99-1-0.5ML- \\
\hline Last changed & : 5/12/2016 4:53:31 PM by SYSTEM & \\
\hline Analysis Method & : E: \DATA \WQ\WQ-2-184 \WQ-2-184-3 3UL-30MIN.M (Sequence Method) & 2016-05-12 16-53-31 \DAD-A.S (1-6)-99-1-0.5ML- \\
\hline Last changed & : 5/29/2016 9:41:10 PM by SYSTEM (modified after loading) & \\
\hline
\end{tabular}

Additional Info : Peak(s) manually integrated



Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 1 & 10.128 & BB & 0.1994 & 855.14240 & 65.05398 & 4.7243 \\
\hline 2 & 11.720 & BB & 0.2380 & 1.72459e4 & 1117.64990 & 95.2757 \\
\hline
\end{tabular}

\section*{(R)-3-(4-bromophenyl)-2-methylpropanoic acid 8m}

Data File E: \DATA\WQ\WQ-2-184 \WQ-2-184-2 2016-05-12 14-17-49\013-0501.D Sample Name: wq-2-184-4-rac

DAD1 C, Sig=210,4 Ref=off(E:DATAIWQIWQ-2-1841WQ-2-184-2,2016-05-1214-17-491013-0501.D)


Data File E: \DATA\WQ\WQ-2-184\WQ-2-184-2 2016-05-12 14-17-49\014-0601.D
Sample Name: wq-2-184-4-rac
\begin{tabular}{|c|c|}
\hline Acq. Operator & : SYSTEM Seq. Line : 6 \\
\hline Acq. Instrument & : 1260HPLC-DAD Location : Vial 14 \\
\hline Injection Date & : 5/12/2016 4:16:31 PM Inj : 1 \\
\hline & Inj Volume : \(2.000 \mu \mathrm{l}\) \\
\hline Acq. Method & \[
\begin{aligned}
&: E: \backslash D A T A \backslash W Q \backslash W Q-2-184 \backslash W Q-2-184-2 ~ 2016-05-12 \\
& 14-17-49 \backslash D A D-O J(1-6)-99-1-0.5 M L- \\
& 2 U L-205-35 M I N . M
\end{aligned}
\] \\
\hline Last changed & : 5/12/2016 4:15:38 PM by SYSTEM \\
\hline Analysis Method & \(: ~ E: \backslash D A T A \backslash W Q \backslash W Q-2-184 \backslash W Q-2-184-2\) 2016-05-12 14-17-49\DAD-OJ(1-6)-99-1-0.5ML-2UL-205-35MIN.M (Sequence Method) \\
\hline Last changed & : 5/29/2016 9:37:49 PM by SYSTEM (modified after loading) \\
\hline
\end{tabular}

Additional Info : Peak(s) manually integrated



Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
\#
\end{tabular} & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 16.958 & BV & 0.2663 & 1.00925 e 4 & 587.89148 & 94.9124 \\
\hline 2 & 17.673 & VB & 0.2878 & 540.98395 & 28.71175 & 5.0876 \\
\hline Tota & 5 : & & & 1.06335 e 4 & 616.60323 & \\
\hline
\end{tabular}

\section*{(R)-3-(furan-2-yl)-2-methylpropanoic acid 8n}

Data File E: \DATA\WQ\WQ-2-199\WQ-2-199 2016-05-30 16-07-48\001-0201.D
Sample Name: wq-2-199-2-rac


Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Do not use Multip & er \& D & lution Fact & r with IST & \\
\hline Signal 1: DAD1 C , & ig \(=210\) & 4 Ref=off & & \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \text { [min] }
\end{aligned}
\] & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 19.461 BV & 0.1701 & 3815.09814 & 336.93869 & 47.0180 \\
\hline 29.904 VB & 0.1875 & 4299.02002 & 340.02939 & 52.9820 \\
\hline Totals : & & 8114.11816 & 676.96808 & \\
\hline
\end{tabular}

Data File E: \DATA\WQ\WQ-2-199\WQ-2-199 2016-05-30 16-07-48\002-0301.D
Sample Name: wq-2-199-2
\begin{tabular}{|c|c|c|c|c|}
\hline Acq. Operator & : SYSTEM & Seq. Line & : & 3 \\
\hline Acq. Instrument & : 1260HPLC-DAD & Location & & Vial \\
\hline Injection Date & : 5/30/2016 5:00:34 PM & Inj & & 1 \\
\hline & & Inj Volume & & 2.000 \\
\hline
\end{tabular}

Acq. Method : E: \DATA\WQ\WQ-2-199\WQ-2-199 2016-05-30 16-07-48 \DAD-OD (1-2)-99-1-0.5ML-2UL -205-35MIN.M
Last changed : 5/30/2016 4:59:43 PM by SYSTEM
Analysis Method : E: \DATA \WQ \WQ-2-199 \WQ-2-199 2016-05-30 16-07-48 \DAD-OD(1-2)-99-1-0.5ML-2UL -205-35MIN.M (Sequence Method)
Last changed : 6/7/2016 10:14:34 AM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated



Signal 1: DAD1 C, Sig=210, 4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 9.468 & MF & 0.1909 & 5817.34912 & 507.86591 & 95.0276 \\
\hline 2 & 9.903 & FM & 0.1997 & 304.39493 & 25.39856 & 4.9724 \\
\hline Total & 1s : & & & 6121.74405 & 533.26447 & \\
\hline
\end{tabular}
(R)-3-cyclohexyl-2-methylpropanoic acid 80

\section*{SHIMADZU \\ LabSolutions \\ Analysis Report}
<Sample Information>
Sample Name : wq-cy-4
Sample ID
Data Filename : wq-cy-4.gcd
Method Filename : bdex120-250-80-150-260-170min.gcm
Batch Filename
Vial \#
Injection Volume
Date Acquired
: wq-cy-4.gcb
\(: 1\) uL
\(2016-5-14\) 10:56:38 : 2016-5-23 21:08:23

Sample Typ
Acquired by Processed by : System Administrator
<Chromatogram>
uv

<Peak Table>
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{ll}
\text { FiD1 } \\
\hline \text { Pean }
\end{array}
\] & Ret. Time & Area & Height & Conc. & Unit & Mark & Name \\
\hline 1 & 70.648 & 1314708 & 57141 & 50.093 & & M & \\
\hline 2 & 71.524 & 1309838 & 48019 & 49.907 & & VM & \\
\hline Total & & 2624546 & 105160 & & & & \\
\hline
\end{tabular}

\section*{SHIMADZU}

LabSolutions

\section*{Analysis Report}

\section*{<Sample Information>}

<Peak Table>
FID1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Peak\# & Ret. Time & Area & Height & Conc. & Unit & Mark & Name \\
\hline 1 & 73.527 & 2126550 & 73524 & 93.774 & & M & \\
\hline 2 & 74.855 & 141193 & 5411 & 6.226 & & V M & \\
\hline Total & & 2267743 & 78935 & & & & \\
\hline
\end{tabular}

\section*{(R)-2-benzylbutanoic acid 8p}

Data File E: \DATA\GWC\GWC16-4 \S-SOLVENT 2016-04-23 22-28-47\059-0801.D Sample Name: WQ-2-172-5-RAC

Additional Info : Peak(s) manually integrated

\begin{tabular}{lll} 
& Area Percen \\
\(=m=m=m=m=m=m=m=m=m=m=m=m=m=m=m=m\) \\
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 1 & 17.211 & BB & 0.3730 & 2986.34375 & 118.90550 & 50.0523 \\
\hline 2 & 19.753 & BB & 0.4682 & 2980.10596 & 93.39954 & 49.9477 \\
\hline Total & s : & & & 5966.44971 & 212.30505 & \\
\hline
\end{tabular}

Data File E: \DATA\GWC\GWC16-4\S-SOLVENT 2016-04-23 22-28-47\060-0901.D
Sample Name: WQ-2-172-5
\begin{tabular}{ll}
\(===========================================================================\) \\
Acq. Operator : SYSTEM & Seq. Line : 9 \\
Acq. Instrument : \(1260 \mathrm{HPLC-DAD}\) & Location : Vial 60 \\
Injection Date : \(4 / 24 / 20162: 47: 28 \mathrm{AM}\) & Inj : 1
\end{tabular}

Acq. Method : E:\DATA\GWC\GWC16-4\S-SOLVENT 2016-04-23 22-28-47\DAD-OJ (1-6)-99-1-0.5ML-210NM--30MIN.M
Last changed : 4/23/2016 10:28:48 PM by SYSTEM
Analysis Method : E: \DATA\GWC\GWC16-4\S-SOLVENT 2016-04-23 22-28-47\DAD-OJ(1-6)-99-1-0.5ML-210NM--30MIN.M (Sequence Method)
Last changed : 5/29/2016 8:26:45 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Do not use Multip & ier \& D & lution Fac & or with IST & \\
\hline Signal 1: DAD1 C, & Sig=210 & 4 Ref=off & & \\
\hline Peak RetTime Type \# [min] & width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { \% }
\end{gathered}
\] \\
\hline 1 17.134 BB & 0.4026 & 2.20230 e 4 & 827.18225 & 98.3017 \\
\hline 219.779 MM & 0.3977 & 380.48965 & 15.94494 & 1.6983 \\
\hline Totals : & & 2.24035 e 4 & 843.12719 & \\
\hline
\end{tabular}

\section*{(S)-2-benzyl-3-methylbutanoic acid \(\mathbf{8 q}\)}
```

Data File E:\DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34\013-1201.D
Sample Name: WQ-2-182-7-RAC

Acq. Operator	: SYSTEM	Seq. Line : 12
Acq. Instrument	: 1260HPLC-DAD	Location : Vial 13
Injection Date	: 5/7/2016 5:28:42 PM	Inj : 1

Inj Volume : $2.000 \mu 1$
Acq. Method : E:\DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34\DAD-OJ(1-6)-99-1-0.5ML-2UL
-205-35MIN.M
Last changed : 5/7/2016 12:44:53 PM by SYSTEM
Analysis Method : E:\DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34\DAD-OJ(1-6)-99-1-0.5ML-2UL
-205-35MIN.M (Sequence Method)
Last changed : 5/29/2016 9:29:13 PM by SYSTEM
(modified after loading)

```
Additional Info : Peak(s) manually integrated
DAD1 C, Sig=210,4 Ref=off (E:DATAIWQIWQ-2-182IWQ-2-182 2016-05-07 12-26-341013-1201.D)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Area Percent Report} \\
\hline Sorted By & : & Signal \\
\hline Multiplier & : & 1.0000 \\
\hline Dilution & : & 1.0000 \\
\hline Do not use & & tion Fact \\
\hline
\end{tabular}

Signal 1: DAD1 C, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area 8 \\
\hline 1 & 13.415 & BB & 0.2245 & 1046.47876 & 72.44518 & 50.5160 \\
\hline 2 & 15.494 & BB & 0.2699 & 1025.09985 & 59.83932 & 49.4840 \\
\hline Total & \(s\) : & & & 2071.57861 & 132.28451 & \\
\hline
\end{tabular}

Data File E: \DATA\WQ\WQ-2-182\WQ-2-182 2016-05-07 12-26-34 \014-1301.D
Sample Name: WQ-2-182-7
\begin{tabular}{ll}
\(============================================================================\) \\
Acq. Operator : SYSTEM & Seq. Line : 13 \\
Acq. Instrument : \(1260 \mathrm{HPLC-DAD}\) & Location : Vial 14 \\
Injection Date : \(5 / 7 / 2016\) 6:04:36 PM & Inj : 1
\end{tabular}

Acq. Method : E: \DATA\WQ\WQ-2-182 \WQ-2-182 2016-05-07 12-26-34 \DAD-OJ (1-6)-99-1-0.5ML-2UL -205-35MIN.M
Last changed : 5/7/2016 12:44:53 PM by SYSTEM
Analysis Method : E: \DATA \WQ \WQ-2-182 \WQ-2-182 2016-05-07 12-26-34 \DAD-OJ (1-6)-99-1-0.5ML-2UL -205-35MIN.M (Sequence Method)
Last changed : 5/29/2016 9:33:08 PM by SYSTEM (modified after loading)
Additional Info : Peak(s) manually integrated


(S)-2,3-diphenylpropanoic acid \(\mathbf{8 r}\)

Data File E: \DATA \WQ \WQ-3-69\WQ-3-69-2 2016-12-14 21-35-07\052-0301.D
Sample Name: W0-3-69-2

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted BY & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline \multicolumn{5}{|l|}{Do not use Multiplier \& Dilution Factor with IsTDs} \\
\hline \multicolumn{5}{|l|}{Signal l: DAD A , Sig= 210,4 Ref=off} \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \quad[\text { min }]
\end{aligned}
\] & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[ m AUW ]
\end{tabular} & Area \\
\hline \(1 \quad 12.862 \mathrm{BB}\) & 0.2286 & 6941.72656 & 463.73779 & 50.0201 \\
\hline 214.225 BB & 0.2555 & 6936.13574 & 413.99414 & 49.9799 \\
\hline Totals : & & 1.38779e4 & 877.73193 & \\
\hline
\end{tabular}

*** End of Report ***

Data File E: \DATA\WQ\WQ-3-70\WQ-3-70 2016-12-15 16-19-03\015-0401.D
Sample Name: WQ-3-70-2

\begin{tabular}{llrl} 
Acq. Operator \(: ~ S Y S T E M ~\) & Seq. Line : & 4 \\
Acq. Instrument : \(1260 \mathrm{HPLC-DAD}\) & Location : Vial 15 \\
Injection Date \(: 12 / 15 / 20165: 07: 58 \mathrm{PM}\) & Inj : 1
\end{tabular}

Acq. Me thod : E: \DATA \(\backslash \mathrm{WQ} \backslash \mathrm{WQ}-3-70 \backslash \mathrm{WQ}-3-70 \quad 2016-12-1516-19-03 \backslash D A D-0 D(1-2)-99-1-0.5 \mathrm{ML}-\) 2UL-25MIN. M
Last changed : \(12 / 15 / 2016\) 4:19:03 PM by SYSTEM
Analysis Method : E : \DATA \(\backslash \mathrm{WQ} \backslash \mathrm{WQ}-3-70 \backslash \mathrm{WQ}-3-70\) 2016-12-15 16-19-03\DAD-0D(1-2)-99-1-0.5ML-2UL-25MIN.M (Sequence Method)
Last changed : 12/19/2016 9:10:49 AM bY SYSTEM (modified after loading)
Additional Info : Peak (s) manually integrated


\footnotetext{

Area Percent Report

}
\begin{tabular}{llc} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000 \\
Do not use Multiplier & \& & Dilution Factor with ISTDs
\end{tabular}

Signal l: DADl C, Sig=210, 4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak
\# & \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU} \mathrm{AU}^{2}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[ madU]
\end{tabular} & Area \% \\
\hline 1 & 12.889 & BB & 0.2279 & 660.16901 & 44.29417 & 3.0872 \\
\hline 2 & 14.170 & BB & 0.2649 & 2.07241 e 4 & 1203.23914 & 96.9128 \\
\hline Total & 3 : & & & 2. 13843 e 4 & 1247.53331 & \\
\hline
\end{tabular}
*** End of Report ***

\section*{VI. Reference}
1. T. Sugimura, J. Watanabe, T. Uchida, Y. Nitta and T. Okuyama, Catal. Lett., 2006, 112, 27-30.
2. Z.-G. Wang, L. Chen, J. Chen, J.-F. Zheng, W. Gao, Z. Zeng, H. Zhou, X.-K. Zhang, P.-Q. Huang and Y. Su, Eur. J. Med. Chem., 2013, 62, 632-648
3. C. Joyanta, P. Susmita and R. Sujit, J. Am. Chem. Soc., 2005, 127, 6162-6163.
4. D. Yang, Y. Long, H. Wang and Z. Zhang, Org. Lett., 2008, 10, 4723-4250.
5. F. Tian, D. Yao, Y. Liu, F. Xie and W. Zhang, Adv. Synth. Catal., 2010, 352, 1841-1845.
6. a) S. Li, S.-F. Zhu, C.-M. Zhang, S. Song and Q.-L. Zhou, J. Am. Chem. Soc., 2008, 130, 8584-8585; b) M. W. Hackl, M. Lakemeyer, M. Dahmen, M. Glaser, A. Pahl, K. LorenzBacith, T. Menzel, S. Sievers, T. Böttcher, I. Antes, H. Waldmann, S.A. Sieber, J. Am. Chem. Soc., 2015, 137, 8475-8485; c) T. Suginura, J. Watanabe, T. Uchida, Y. Nitta, T. Okuyama, Catal. Lett., 2006, 112, 27-30.
7. D. Liu, W. Tang, and X. Zhang, Org. Lett., 2004, 6, 513-516.```

