Copper Nitrate-Mediated Chemo- and Regioselective Annulation from Two Different Alkynes: A Direct Route to Isoxazoles

Yingying Li, ${ }^{\text {ª }}$ Mingchun $\mathrm{Gao}^{\text {ta }}$ Bingxin $\mathrm{Liu},{ }^{\text {a }}{ }^{\text {Bin }} \mathrm{Xu}^{*}{ }^{\text {abc }}$
${ }^{\text {a }}$ School of Materials Science and Engineering, Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
${ }^{\mathrm{b}}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
${ }^{\text {c }}$ Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China

Tel: (+86) 21-66132830; Fax: (+86) 21-66132830; E-mail: xubin@shu.edu.cn

Supporting Information

CONTENTS:

1. General Information S2
2. Synthesis and Characterization of Products S3
3. Synthetic Applications S14
4. X-Ray Crystallographic Analysis for Compound 3ak S16
5. Mechanistic Studies S16
6. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra for All Compounds S19

1. General Information

All reagents were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All new compounds were fully characterized. All melting points were taken on a WRS-1A or a WRS-1B Digital Melting Point Apparatus without correction. Infrared spectra were obtained using an AVATAR 370 FT-IR spectrometer. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker AV-500 spectrometer operating at 500 MHz and 125 MHz , respectively, with chemical shift values being reported in ppm relative to chloroform ($\delta=7.26 \mathrm{ppm}$) or TMS ($\delta=0.00 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ NMR; chloroform ($\delta=77.16 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR; and $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta=-164.9 \mathrm{ppm})$ for ${ }^{19} \mathrm{~F}$ NMR. Mass spectra and high resolution mass spectra were recorded with an Agilent 5975N using an Electron impact (EI) or Electrospray ionization (ESI) techniques. Silica gel plate GF254 were used for thin layer chromatography (TLC) and silica gel 300-400 mesh were used for flash column chromatography. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated. Unless commercially available alkynes, N -(3-ethynylphenyl)acetamide, ${ }^{1}$ 1-(4-ethynyl-phenyl)ethanone, ${ }^{2}$ 2-ethynyl-6-methoxynaphthalene, ${ }^{2} \quad 3$-ethynyl-1-tosyl-1 H-indole, ${ }^{2} \quad$ 1,4-diethynyl benzene, $^{3} \quad$ phenyl propiolate, ${ }^{4} \quad 1$-phenylprop-2-yn-1-ol, ${ }^{5} \quad$ 1-phenylprop-2-yn-1-one, ${ }^{5} \quad$ 4-methyl- N, N-di-(prop-2-yn-1-yl)benzenesulfonamide, ${ }^{6} \quad N$-allyl-4-methyl- N-(prop-2-yn-1-yl)-benzenesulfonamide, ${ }^{7} \quad$ 4-methyl- N-(prop-2-yn-1-yl)benzenesulfonamide, ${ }^{8} \quad$ (prop-2-yn-1yloxy)benzene, ${ }^{9} \quad 2$-(prop-2-yn-1-yloxy)naphthalene, ${ }^{10}$ and 2 -(prop-2-yn-1-yl)-isoindoline-1,3-dione ${ }^{11}$ were all prepared according to the literature reported procedures.

2. Synthesis and Characterization of Products

Ethyl 3-benzoyl-isoxazole-5-carboxylate (3aa) (General Procedure): ${ }^{12}$ To a test tube were added 2a ($31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{PhCN}(1.0 \mathrm{~mL})$. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ under N_{2}, then 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ was added to the test tube through a syringe pump for 2 h . The reaction was kept stirring at $60^{\circ} \mathrm{C}$ for another 0.5 h . Upon completion, the reaction mixture was cooled down to room temperature, diluted with EA and washed with water and brine. The aqueous phase was extracted with EA $(3 \times 10 \mathrm{~mL})$ and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration through a thin pad of celite, the filtrate was evaporated in vacuum to give the crude product, which was purified by column chromatography on silica gel to give 3 aa as a white solid ($68.8 \mathrm{mg}, 94 \%$). M.p. $68-69{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1740,1659,1585,1304,1236,886,724,678 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.29$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 184.5,162.2,161.1,156.3$, 135.2, 134.4, 130.7, 128.7, 110.1, 62.7, 14.1; LC-MS (ESI) m/z $246\left[\mathrm{M}^{+} \mathrm{H}\right]$.

Methyl 3-benzoyl-isoxazole-5-carboxylate (3ab): ${ }^{13}$ Following the general procedure as for 3aa, to the mixture of $\mathbf{2 b}(27 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $1 \mathbf{a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product $\mathbf{3 a b}$ as a white solid ($67.6 \mathrm{mg}, 97 \%$). M.p. $96-97{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3142,1731,1656,1443,1287,1254,997,890,725,678 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 184.4,162.2,160.8,156.7,135.1$, 134.5, 130.7, 128.7, 110.3, 53.2; LC-MS (ESI) m/z 232 [M $\left.{ }^{+} \mathrm{H}\right]$.

Benzoyl 3-benzoyl-isoxazole-5-carboxylate (3ac): Following the general procedure as for 3aa, to the mixture of $2 \mathrm{c}(43.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0$ $\mathrm{mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ac as colorless oil ($62.1 \mathrm{mg}, 71 \%$). IR (KBr, cm^{-1}): 3134, 1756, 1658, 1584, 1483, 1308, 1234, 1190, 1075, 888, 732, 680, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 184.3,162.4,160.4,154.6,149.7,135.1,134.6,130.8,129.8,128.8,126.9$, 121.2, 111.3; LC-MS (ESI) m/z $294\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$

(Isoxazole-3,5-diyl)bis(phenylmethanone) (3ad): ${ }^{14}$ Following the general procedure as for 3aa, to the mixture of $\mathbf{2 d}(39 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3 ad $(61.7 \mathrm{mg}, 74 \%)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3152,1668,1599,1448,1259,893,725,687 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 184.7,180.9,167.0,161.9,135.3,135.2,134.5,134.4,130.8,130.0,129.0$, 128.8, 110.9; LC-MS (ESI) m/z 278 [M $\left.{ }^{+} \mathrm{H}\right]$.

(5-Butylisoxazol-3-yl)(phenyl)methanone (3ae): ${ }^{12}$ Following the general procedure as for 3aa, to the mixture of $2 \mathbf{e}(34 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ae as pale yellow oil ($42.7 \mathrm{mg}, 62 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2929, 2865, 1663, 1593, 1455, 1221, 1179, 891, 729,$687 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 8.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 186.2,174.7,161.9,135.9,133.9,130.6,128.5,101.6,29.5,26.3,22.2,13.7$; LC-MS (ESI) m/z $230\left[\mathrm{M}^{+} \mathrm{H}\right]$.

(5-(Bromomethyl)-isoxazol-3-yl)(phenyl)methanone (3af): ${ }^{15}$ Following the general procedure as for 3aa, to the mixture of $2 f(26 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\operatorname{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3af as a pale yellow solid ($48.7 \mathrm{mg}, 61 \%$). M.p. $36-38^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2924, 1854, 1649, 1596, 1454, 1261, 1222, 1089, 1023, 894, 803, 725,$683 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.2$, 168.4, 162.1, 135.5, 134.2, 130.7, 128.7, 104.7, 18.0; EI-MS m/z (\%): 268 (100) [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)\right], 266$ (94) $\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)\right]$.

(5-(Phenoxymethyl)-isoxazol-3-yl)(phenyl)methanone (3ag): Following the general procedure
as for 3aa, to the mixture of $2 \mathrm{~g}(38 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\operatorname{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ag as pale yellow oil (73.0 $\mathrm{mg}, 87 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1657, 1592, 1495, 1455, 1246, 1068, 889, 835, 723, 679; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 185.4,168.9,161.9,157.6,135.6,134.1,130.7,129.8,128.6$, 122.1, 114.8, 104.4, 61.0; LC-MS (ESI) m/z: $280\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}$ [$\left.\mathrm{M}^{+} \mathrm{H}\right] 280.0968$, found 280.0965.

(5-(Naphthoxymethyl)-isoxazol-3-yl)(phenyl)methanone (3ah): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 h}(54.7 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ah as pale yellow solid ($59.0 \mathrm{mg}, 60 \%$). M.p. $110-111^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3051,1662,1600,1510,1458$, 1391, 1254, 1216, 1185, 1053, 887, 736, 682; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.4,168.8,161.9,155.6,135.6,134.2,134.1,130.7,130.0$, $129.5,128.6,127.8,127.0,126.7,124.3,118.5,107.3,104.5,61.1$; LC-MS (ESI) m/z $330\left[\mathrm{M}^{+} \mathrm{H}\right]$. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right] 330.1125$, found 330.1122.

(5-(Hydroxymethyl)-isoxazol-3-yl)(phenyl)methanone (3ai): ${ }^{16}$ Following the general procedure as for 3aa, to the mixture of $2 \mathbf{i}(18 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $\mathbf{1 a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ai as pale yellow oil (36.1 $\mathrm{mg}, 59 \%)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3425,1662,1593,1452,1181,892,730,687 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, $4.84(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.9,172.4,161.7,135.6,134.2$, 130.7, 128.6, 102.9, 56.3; LC-MS (ESI) m/z 204 [M $\left.{ }^{+} \mathrm{H}\right]$.

N-((3-Benzoyl-isoxazol-5-yl)methyl)-4-methylbenzenesulfonamide (3aj): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 j}(62.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0$ $\mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product $\mathbf{3 a j}$ as a
white solid ($75.4 \mathrm{mg}, 73 \%$). M.p. $109-110^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3252,1662,1596,1447,1320,1157$, 1071, 889, 727, 679; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.78$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.3$, 168.7, 161.6, 144.1, 136.4, 135.4, 134.2, 130.6, 129.9, 128.6, 127.1, 103.8, 38.6, 21.5; LC-MS (ESI) m/z $357\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 357.0904, found 357.0903.

2-((3-Benzoylisoxazol-5-yl)methyl)isoindoline-1,3-dione (3ak): Following the general procedure as for 3aa, to the mixture of $\mathbf{1 a}(55.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $\mathbf{2 k}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ak as a white solid ($74.6 \mathrm{mg}, 75 \%$). M.p. $156-157{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3478, 1768, 1721, 1664, 1597, 1386, $1251,1186,947,890,737 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H})$, $7.77(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.3,167.5,167.1,162.0,135.5,134.5,134.1,131.8,130.7,128.6$, 123.8, 104.0, 33.1; LC-MS (DART) m/z $333\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left[\mathrm{M}^{+} \mathrm{H}\right] 333.0870$, found 333.0865.

(5-(Hydroxyl(phenyl)methyl)isoxazol-3-yl)(phenyl)methanone (3al): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 l}(39 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3al as yellow oil ($42.4 \mathrm{mg}, 51 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3454, 2921, 1655, 1588, 1451, 1231, 1180, 891, 729, 690; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 4 \mathrm{H})$, 7.43-7.35 (m, 3H), $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.8$, $174.4,161.6,139.1,135.6,134.1,130.7,129.0,128.9,128.6,126.6,102.8,69.4$ LC-MS (ESI) $\mathrm{m} / \mathrm{z} 280\left[\mathrm{M}^{+} \mathrm{H}\right] ;$ HRMS (DART) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right] 280.0968$, found 280.0966.

(5-(2-Hydroxypropan-2-yl)isoxazol-3-yl)(phenyl)methanone (3am): Following the general procedure as for 3aa, to the mixture of $2 \mathrm{~m}(29 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $1 \mathrm{a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3am as yellow oil ($52.2 \mathrm{mg}, 75 \%$). IR (KBr, cm^{-1}): 3441, 2983, 1661, 1590, 1454, 1235, 1180, 892, 732, 687; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}$,

2H), $6.68(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{br}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 186.0,178.9,161.6$, 135.6, 134.1, 130.7, 128.6, 100.4, 69.1, 29.0; LC-MS (ESI) m/z $232\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 232.0968, found 232.0967.

(5-(1-Hydroxycyclohexyl)isoxazol-3-yl)(phenyl)methanone (3an): ${ }^{13}$ Following the general procedure as for 3aa, to the mixture of $2 \mathrm{n}(39 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $1 \mathrm{a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3an as pale yellow oil ($62.2 \mathrm{mg}, 76 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3517, 2934, 2859, 1742, 1698, 1448, 1286, 1218, 1174, $1016,941,860 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{br}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H})$,
 $178.9,161.6,135.7,134.1,130.7,128.6,100.8,70.4,36.6,29.7,25.1,21.5,13.9$, LC-MS (ESI) $\mathrm{m} / \mathrm{z} 272\left[\mathrm{M}^{+} \mathrm{H}\right]$.

Phenyl(5-(trimethylsilyl)isoxazol-3-yl)methanone (3ao): ${ }^{17}$ Following the general procedure as for 3aa, to the mixture of $2 \mathrm{o}(39 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $\mathbf{1 a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ao as a white solid (50.6 $\mathrm{mg}, 69 \%$). M.p. $32-34{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3141, 2960, 1665, 1590, 1451, 1241, 1063, 889, 845, $688 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 0.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 186.3,179.3,160.2,136.1$, 133.9, 130.7, 128.5, 113.5, -1.93; LC-MS (ESI) m/z $246\left[\mathrm{M}^{+} \mathrm{H}\right]$.

(4,5-Bis(trimethylsilyl)isoxazol-3-yl)(phenyl)methanone (3ap): Following the general procedure as for 3aa, to the mixture of $2 \mathbf{p}(68 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(290.0 \mathrm{mg}, 1.2$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $1 \mathbf{1 a}(100 \mu \mathrm{~L}, 0.9 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 45 min and afforded the desired product 3ap as a colorless solid ($57.8 \mathrm{mg}, 61 \%$). M.p. $93-94{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3444, 2959, 1659, 1587, 1450, $1414,1254,1216,906,841,748,689 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.46(\mathrm{~s}, 9 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta 190.0,183.0,164.0,136.6,134.1,130.5,128.6,121.6,0.90,-0.49 ;$ LC-MS (ESI) m/z 318 $\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{6}\left[\mathrm{M}^{+} \mathrm{H}\right] 318.1340$, found 318.1337.

Dimethyl 3-benzoylisoxazol-4,5 dicarboxylate (3aq): ${ }^{18}$ Following the general procedure as for 3aa, to the mixture of $\mathbf{2 q}(37 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0$ $\mathrm{mL})$ was added $1 \mathrm{a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3aq as a white solid ($65.2 \mathrm{mg}, 75 \%$). M.p. 92-93 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2962, 1749, 1658, 1598, 1451, 1286, 1216, 1172, 1097, 902, 688; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 183.8,160.2,159.9,159.0$, 155.9, 134.9, 134.8, 130.6, 128.9, 117.7, 53.7, 53.3; LC-MS (ESI) m/z $290\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{6}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 290.0665, found 290.0656.

N-((3-phenzoyl-4,5-dihydroisoxazol-5-yl)methyl)- N-((3-benzoylisoxazol-5-yl)methyl)-4-meth ylbenzenesulfonamide (3ar): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 r}$ $(74.2 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(290.0 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(100 \mu \mathrm{~L}, 0.9 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ar as a white solid ($70.6 \mathrm{mg}, 43 \%$). M.p. 128-129 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3137,1661,1597,1452,1344,1250,1163,1092,896,824,728,682,545 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.1,167.6,161.9,144.7,135.8,135.4,134.2,130.6,130.1,128.6$, 127.4, 104.9, 42.7, 21.6; LC-MS (ESI) m/z $542\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 542.1380, found 542.1372.

N, N -bis((3-benzoylisoxazol-5-yl)methyl)-4-methylbenzenesulfonamide (3as): Following the general procedure as for 3aa, to the mixture of $2 \mathrm{~s}(74.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(290.0$ $\mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added 1a $(100 \mu \mathrm{~L}, 0.9 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3as as yellow oil ($81.0 \mathrm{mg}, 51 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2923, 2858, 1655, 1456, 1369, 1253, 1158, 1088, 888, 806,$738 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=15.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=18.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta 185.7,185.1,168.2,161.7,158.0,144.4,135.9,135.5,135.4,134.1,133.8,130.6,130.3$, $130.0,128.6,128.5,127.3,104.8,82.4,50.9,44.1,37.4,21.5$; LC-MS (ESI) m/z $544\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{H}\right] 544.1537$, found 544.1534.

Ethyl 3-(2-methoxybenzoyl)-isoxazole-5-carboxylate (3ba): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $\mathbf{1 b}(59.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ba as yellow oil (48.1 mg , 57%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1729, 1679, 1599, 1465, 1292, 1242, 1020, 892, 756; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.63(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 186.5,163.0,161.1,158.9,156.4,134.4,130.8,126.7,120.6,112.1,108.9$, 62.6, 55.8, 14.1; LC-MS (ESI) m/z $276\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{5}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 276.0866, found 276.0864.

Ethyl 3-(2-chlorobenzoyl)-isoxazole-5-carboxylate (3ca): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $\mathbf{1 c}(61.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ca as yellow oil (60.1 mg , 72%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2986, 1741, 1687, 1586, 1438, 1276, 1235, 1184, 1014, 896, $749 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.8,162.2,161.9,156.1$, 136.0, 133.0, 132.5, 130.7, 130.6, 126.8, 108.8, 62.7, 14.1; LC-MS (ESI) m/z: 282.0 (28) [M ${ }^{+} \mathrm{H}$ $\left.\left({ }^{37} \mathrm{Cl}\right)\right], 280.0(100)\left[\mathrm{M}^{+} \mathrm{H}\left({ }^{35} \mathrm{Cl}\right)\right]$; HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClNO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 280.0371$, found 280.0371.

Ethyl 3-(3-methylbenzoyl)-isoxazole-5-carboxylate (3da): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $\mathbf{1 d}(52.3 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3da as yellow oil (72.5 mg , 93%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2986, 1740, 1666, 1590, 1444, 1258, 1205, 1091, 1017, 933, 751; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}$, $2 \mathrm{H}), 4.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): ~}$ δ 184.7, 162.2, 161.1, 156.3, 138.6, 135.3, 135.2, 131.0, 128.6, 128.1, 110.1, 62.6, 21.4, 14.1; LC-MS (ESI) m/z $260\left[M^{+} H\right]$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 260.0917$, found 260.0912.

Ethyl 3-(3-acetamidobenzoyl)-isoxazole-5-carboxylate (3ea): Following the general procedure as for 3aa, to the mixture of 2a ($31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $\mathbf{1 e}(71.6 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 45 mins and afforded the desired product 3ea as a white solid ($70.0 \mathrm{mg}, 77 \%$). M.p. $151-152{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3269, 1726, 1665, 1552, 1444, 1282, 1262, 1221, 1014, 836, 758; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 183.9,168.9,162.1,161.1$, 156.2, 138.5, 135.6, 129.5, 126.4, 125.9, 121.6, 110.1, 62.7, 24.5, 14.1; LC-MS (ESI) m/z 303 [$\left.\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+} \mathrm{H}\right] 303.0975$, found 303.0977.

Ethyl 3-(3-fluorobenzoyl)-isoxazole-5-carboxylate (3fa): Following the general procedure as for 3aa, to the mixture of $2 \mathrm{a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0$ $\mathrm{mL})$ was added $1 \mathrm{f}(54.1 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 1 h and afforded the desired product 3 fa as colorless oil ($57.1 \mathrm{mg}, 72 \%$). IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3474,2985,1740,1672,1584,1445,1256,1205,1013,759 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 8.17-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.04-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}$, $1 \mathrm{H}), 4.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.0,3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta-111.3(\mathrm{~m}$, $\mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 183.3\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 162.8\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=247.0 \mathrm{~Hz}\right), 162.1$, $161.4,156.3,137.1\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.0 \mathrm{~Hz}\right), 130.5\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 126.8\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 121.6\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $21.0 \mathrm{~Hz}), 117.4\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}\right), 110.1,62.9,14.2 ;$ LC-MS (ESI) m$/ \mathrm{z} 264\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FNO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 264.0667, found 264.0665.

Ethyl 3-(4-methylbenzoyl)-isoxazole-5-carboxylate (3ga): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $1 \mathrm{~g}(52.3 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ga as a white solid (72.7 $\mathrm{mg}, 93 \%$). M.p. $70-72{ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1737,1660,1605,1316,1252,894,763 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 184.0,162.3$, 161.0, 156.3, 145.7, 132.7, 130.9, 129.5, 110.1, 62.6, 21.9, 14.1; LC-MS (ESI) m/z: $260\left[\mathrm{M}^{+} \mathrm{H}\right] ;$ HRMS (ESI) m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 260.0917, found 260.0915.

Ethyl 3-(4-methoxybenzoyl)-isoxazole-5-carboxylate (3ha): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $\mathbf{1 h}(59.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ha as a white solid (66.2 $\mathrm{mg}, 80 \%$). M.p. $92-94{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 1744, 1597, 1431, 1249, 1185, 1012, 889, 764; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 182.6$, $164.8,162.5,160.9,156.4,133.3,128.2,114.1,110.2,62.6,55.6,14.1$; LC-MS (ESI) m/z: 276 $\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{5}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 276.0866, found 276.0863.

Ethyl 3-(4-fluorobenzoyl)-isoxazole-5-carboxylate (3ia): Following the general procedure as for 3aa, to the mixture of $2 \mathrm{a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0$ mL) was added $1 \mathrm{i}(54.1 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ia as a white solid ($68.1 \mathrm{mg}, 86 \%$). M.p. $61-62{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1738,1663,1592,1307,1239,894,861,768 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 8.40-8.37(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta-102.3(\mathrm{~m}, \mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta 182.9,165.8,162.3,161.3,156.3,137.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.0 \mathrm{~Hz}\right), 131.7\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 116.2$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right.$), 110.2, 62.8, 14.3; LC-MS (ESI) m/z $264\left[\mathrm{M}^{+} \mathrm{H}\right] ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FNO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 264.0667$, found 264.0665.

Ethyl 3-(4-chlorobenzoyl)-isoxazole-5-carboxylate (3ja): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $\mathbf{1} \mathbf{j}(61.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product $\mathbf{3 j a}$ as a white solid (70.3 $\mathrm{mg}, 84 \%$). M.p. $64-66{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1741, 1656, 1581, 1239, 1177, 890, 761; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 183.1,162.0,161.3,156.2$, 141.2, 133.4, 132.1, 129.1, 110.1, 62.7, 14.1; LC-MS (ESI) m/z: $282(36)\left[\mathrm{M}^{+} \mathrm{H}\left({ }^{37} \mathrm{Cl}\right)\right], 280(100)$ $\left[\mathrm{M}^{+} \mathrm{H}\left({ }^{35} \mathrm{Cl}\right)\right]$. HRMS (ESI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClNO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 280.0371, found 280.0369.

Ethyl 3-(4-bromobenzoyl)-isoxazole-5-carboxylate (3ka): Following the general procedure as for 3aa, to the mixture of $2 \mathrm{a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $\mathbf{1 k}(81.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3ka as a white solid (88.3 $\mathrm{mg}, 91 \%$). M.p. $74-75^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2991, 1740, 1656, 1579, 1307, 1236, 1177, 1008, 888, $757 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}$, $1 \mathrm{H}), 4.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 183.4$, 162.0, 161.3, 156.2, 133.8, 132.2, 132.1, 130.1, 110.0, 62.7, 14.1; LC-MS (ESI) m/z: 326 (88) $\left[\mathrm{M}^{+} \mathrm{H}\left({ }^{81} \mathrm{Br}\right)\right], 324(90)\left[\mathrm{M}^{+} \mathrm{H}\left({ }^{79} \mathrm{Br}\right)\right]$. HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrNO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 323.9866$, found 323.9863 .

Ethyl 3-(4-acetylbenzoyl)-isoxazole-5-carboxylate (3la): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0$ $\mathrm{mL})$ was added $11(64.9 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3la as a white solid ($66.7 \mathrm{mg}, 77 \%$). M.p. $73-75^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1742,1688,1656,1582,1259,1204,904,858 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 8.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=7.0 \mathrm{~Hz}$, 2H), $2.69(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 197.4,184.0,162.0$, 161.4, 156.1, 140.9, 138.3, 130.9, 128.4, 110.0, 62.8, 27.0, 14.1; LC-MS (ESI) m/z $288\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{5}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 288.0866, found 288.0864.

Ethyl 3-(6-methoxy-2-naphthoyl)-isoxazole-5-carboxylate (3ma): Following the general procedure as for 3aa, to the mixture of $2 \mathbf{a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $\mathbf{1 m}(82.0 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3 ma as a white solid ($64.8 \mathrm{mg}, 71 \%$). M.p. 117-119 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1746,1616,1479,1391,1269,1206$, 1016,$865 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H})$, $4.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $183.8,162.5,161.0,160.5,156.4,138.1,134.0,131.9,130.5,127.7,127.4,125.8,119.9,110.3$, 105.8, 62.6, 55.5, 14.2; LC-MS (ESI) m/z $326\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{5}$ $\left[\mathrm{M}^{+} \mathrm{H}\right]$ 326.1023, found 326.1018.

Ethyl 3-(1-tosyl-1H-indole-3-carbonyl)-isoxazole-5-carboxylate (3na): To the test tube were
added $\mathbf{1 n}(132.9 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.5 \mathrm{~mL})$. The reaction was stirred under N_{2} at $60{ }^{\circ} \mathrm{C}$ for 1 h . Upon completion, the reaction mixture was cooled down to room temperature, diluted with EA and washed with water and brine. The aqueous phase was then extracted with EA $(3 \times 10 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration through a thin pad of celite, the filtrate was evaporated in vacuum to give the crude product, which was purified by column chromatography on silica gel to give the desired product 3na as a white solid ($68.2 \mathrm{mg}, 52 \%$). M.p. $141-142{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3148,1741,1645,1529,1443,1378,1296,1203,1012,960,842,757,662,574,{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 178.3,162.7,161.3,156.3,146.1$, 136.6, 134.7, 134.4, 130.3, 127.9, 127.4, 126.2, 125.2, 122.9, 118.5, 113.3, 109.3, 62.7, 21.7, 14.2; LC-MS (ESI) m/z $439\left[M^{+} H\right]$. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 439.0958, found 439.0952.

Ethyl 3-(thienyl)-isoxazole-5-carboxylate (3oa): Following the general procedure as for 3aa, to the mixture of $2 \mathrm{a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $10(48.7 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product $3 \mathbf{o a}$ as a white solid ($53.3 \mathrm{mg}, 71 \%$). M.p. $78-79{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 1727, 1637, 1442, 1246, 1170, 743, $743 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 8.46(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 175.9,162.0$, 161.3, 156.2, 141.2, 137.1, 136.7, 128.9, 109.5, 62.7, 14.1; LC-MS (ESI) m/z $252\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{4} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{H}\right] 252.0325$, found 252.0323.

Ethyl 3-(cyclopropanecarbonyl)isoxazole-5-carboxylate (3pa): Following the general procedure as for 3aa, to the mixture of 2a ($31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(290.0 \mathrm{mg}, 1.2$ $\mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $\mathbf{1 p}(59.5 \mathrm{mg}, 0.9 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 3 h . The reaction was stirred for another 2 h and afforded the desired product 3pa as pale yellow oil ($21.3 \mathrm{mg}, 34 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3447, 2999, 1739, 1689, 1455, 1365, 1293, 1214, 952, 766; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.22(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 1 \mathrm{H})$, $1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 193.4, 162.4, 161.6, 156.3, 107.5, 62.6, 18.7, 14.1, 13.1; LC-MS (ESI) m/z 210 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right] 210.0761$, found 210.0758.

Ethyl 3-(1-hydroxycyclohexanecarbonyl)-isoxazole-5-carboxylate (3qa): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}$, $0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $\mathbf{1 q}(55.9 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 22 h and afforded the desired product 3qa as pale yellow oil ($34.2 \mathrm{mg}, 43 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3386, 2932, 2856, 1660, 1450, 1257, 1201, 1066, 966, 895, 730, 685, 631; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.56(\mathrm{br}, 1 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.58(\mathrm{~m}, 7 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 196.7,161.2,159.7,156.0,109.7,79.1,62.7,34.0,25.1,21.0$, 14.1; LC-MS (ESI) m/z 268 [$\left.\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{5}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 268.1179, found 268.1179.

Ethyl 3-(2-hydroxy-2-methylpropanoyl)isoxazole-5-carboxylate (3ra): Following the general procedure as for 3aa, to the mixture of $2 \mathbf{a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol}), t \mathrm{BuCN}(132 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ was added $1 \mathrm{r}(37.9 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 2 h and afforded the desired product 3ra as pale yellow oil ($20.1 \mathrm{mg}, 29 \%$) . IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3514, 3137, 2986, 2938, $2294,1743,1702,1586,1460,1369,1295,1194,1018,924,852,769,616 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{br}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 196.6,161.3,159.2,156.0,109.5,62.8,30.2,26.9,14.1 ;$ LC-MS (ESI) $\mathrm{m} / \mathrm{z} 228\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{5}\left[\mathrm{M}^{+} \mathrm{H}\right] 228.0866$, found 228.0864.

(E)-diethyl 3,3'-terephaloylbis(isoxazole-5-carboxylate) (3sa): Following the general procedure as for 3aa, to the mixture of 2a ($31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(290.0 \mathrm{mg}, 1.2 \mathrm{mmol})$ in PhCN $(1.0 \mathrm{~mL})$ was added $1 \mathrm{~s}(113.6 \mathrm{mg}, 0.9 \mathrm{mmol})$ in $\mathrm{PhCN}(0.5 \mathrm{~mL})$ by syringe pump for 2 h . The reaction continued stirred for another 0.5 h and afforded the desired product 3sa as a white solid ($49.9 \mathrm{mg}, 81 \%$). M.p. $129-131^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3139, 1738, 1667, 1290, 1247, 1015, 879, $741 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.46(\mathrm{~s}, 4 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.45(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 184.0,161.9,161.5,156.1,139.0,130.8,110.0,62.8$, 14.1; LC-MS (ESI) m/z $430\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]$ 430.1245 , found 430.1234 .

3. Synthetic Applications

(5-(Chloromethyl)-isoxazol-3-yl)(phenyl)methanone (3at): ${ }^{17}$ Gram-scale synthesis of 3at. Following the general procedure as for 3aa, to the mixture of $\mathbf{2 t}(1 \mathrm{~g}, 13.4 \mathrm{mmol})$, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(6.47 \mathrm{~g}, 26.8 \mathrm{mmol})$ in $\mathrm{PhCN}(20.0 \mathrm{~mL})$ was added $\mathbf{1 a}(2.04 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{PhCN}(6.0 \mathrm{~mL})$ by syringe pump for 3 h . The reaction was stirred for another 0.5 h and afforded the desired product 3at at $55^{\circ} \mathrm{C}$ as a pale yellow solid (1.95 g, 66%). M.p. $46-47{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 2924,2857,1666,1457,1375,1218,891,729 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.30(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 185.2,168.4,162.0,135.5,134.2,130.7,128.7,104.7,34.1$; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 224.0(15)\left[\mathrm{M}^{+} \mathrm{H}\left({ }^{37} \mathrm{Cl}\right)\right], 222.0(70)\left[\mathrm{M}^{+} \mathrm{H}\left({ }^{35} \mathrm{Cl}\right)\right]$.

(5-Butylisoxazol-3-yl)(4-methoxyphenyl)methanone (3he): Following the general procedure as for 3aa, to the mixture of $\mathbf{2 e}(113 \mu \mathrm{~L}, 1 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(483.3 \mathrm{mg}, 2.0 \mathrm{mmol})$ in PhCN $(3.5 \mathrm{~mL})$ was added $\mathbf{1 h}(198.3 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{PhCN}(1.0 \mathrm{~mL})$ by syringe pump for 2 h . The reaction was stirred for another 0.5 h and afforded the desired product 3he as yellow oil (109.8 mg , 42%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2948, 1654, 1598, 1452, 1257, 1171, 1027, 893, 844, 767, 617, 404; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 184.4,174.5,164.3,162.1,133.2,128.8,113.8,101.7,55.6,29.5$, 26.3, 22.2, 13.7; LC-MS (ESI) m/z: $260\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 260.1281 , found 260.1286

4-Methoxylphenyl 5-butylisoxazole-3-carboxylate (4): To a solution of (5-butylisoxazol-3-yl)-(4-methoxyphenyl)methanone 3he $(82.0 \mathrm{mg}, 0.32 \mathrm{mmol}), \mathrm{pH}=7.5$ phosphate buffer $(0.6 \mathrm{~mL})$ in HFIP (1.5 mL) and DCM (1.5 mL) was added 3-chloroperoxybenzoic acid ($394.4 \mathrm{mg}, 1.6 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at room temperature for 19 h . After complete consumption of the material 3he (monitored by TLC), the reaction was quenched with saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(16.0 \mathrm{~mL})$, and washed with $\mathrm{NaHCO}_{3}(36.0 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by flash column chromatography on silica gel to afford compound 4 as yellow oil ($72.8 \mathrm{mg}, 88 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3333, 2945, 1742, 1508, 1457, 1209, 1028, 823, $728 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.15(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 176.2,159.1$, 157.7, 155.9, 143.6, 122.2, 114.6, 101.8, 55.6, 29.4, 26.4, 22.1, 13.7; LC-MS (ESI) m/z: 276 $\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 276.1230, found 276.1232.

5-Butylisoxazole-3-carbohyrazide (5): To a solution of 4-methoxylphenyl-5-butyl-isoxazole-3-carboxylate $4(0.05 \mathrm{mmol}, 13.8 \mathrm{mg})$ in $\operatorname{EtOH}(0.15 \mathrm{~mL})$ was added hydrazine hydrate $(6.3 \mathrm{mg}$, 0.1 mmol) at room temperature. The reaction mixture was stirred at room temperature for 3 h . After complete consumption of compound 4 (monitored by TLC), the reaction was quenched with brine $(15.0 \mathrm{~mL})$. The reaction mixture was extracted with EA $(3 \times 10.0 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation, the residue was purified by silica gel plate to afford 5-butylisoxazole-3-carbohyrazide 5 as a white solid ($8.3 \mathrm{mg}, 91 \%$). M.p. $30-31{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3289,2955,2867,1677,1589,1541,1455,1246,939,846,608 ;$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.20(\mathrm{br}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{br}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 175.6, 160.2, 157.2, 100.5, 29.4, 26.4, 22.1, 13.6; LC-MS (ESI) m/z: $184\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 184.1081, found 184.1079.

4. X-ray Crystallographic Analysis for Compound 3ak

Crystallographic data for compound 3ak: $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{M}=332.31$, Triclinic, $\mathrm{P}-1$ (No. 2), $\mathrm{a}=$ 8.066 (8) $\AA, b=8.242$ (8) $\AA, c=12.157$ (13) $\AA, \alpha=92.727(13)^{\circ}, \beta=102.604(12)^{\circ}, \gamma=98.233$ $(11)^{\circ}, \mathrm{V}=778.0(14) \AA^{3}, \mathrm{Z}=2$, crystal size: $0.23 \times 0.19 \times 0.17 \mathrm{~mm}, \mathrm{~T}=295 \mathrm{~K}, \rho_{\text {calcd }}=1.419$ $\mathrm{g} \cdot \mathrm{cm}^{-3}, \mathrm{R}_{1}=0.0389(\mathrm{I}>4 \sigma(\mathrm{I})), \mathrm{wR}_{2}=0.1051$ (all data), $\mathrm{GOF}=1.053$, reflections collected/unique: $2700 / 2122$ (Rint $=0.0128$), Data: 2700, restraints: 0, parameters: 227. CCDC 1486863 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

5. Mechanistic Studies

To a test tube were added $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathbf{1 a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$, 2a (31 $\mu \mathrm{L}, 0.3 \mathrm{mmol})$ and $\mathrm{PhCN}(1.5 \mathrm{~mL})$. The mixture was stirred under N_{2} at $50{ }^{\circ} \mathrm{C}$ for 15 min and was quenched by $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was then extracted with $\mathrm{EA}(3 \times 10 \mathrm{~mL})$ and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration through a thin pad of celite, the filtrate was evaporated in vacuum to give the crude product, which was purified by column chromatography on silica gel to give 3aa ($64.7 \mathrm{mg}, 88 \%$) and $\mathbf{6 a}(3.5 \mathrm{mg}, 7 \%)$.

To the mixture of $\mathbf{6 a}(74.3 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{PhCN}(1.5$ $\mathrm{mL})$ was added $2 \mathrm{a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$. The reaction was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. Then the mixture was cooled down to room temperature, and purified by column chromatography on silica gel to give 3aa as a white solid ($72.9 \mathrm{mg}, 99 \%$).

To a test tube were added $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathbf{1 a}(50 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ and $\operatorname{PhCN}(1.5 \mathrm{~mL})$. The mixture was stirred under N_{2} at $60^{\circ} \mathrm{C}$ for 1 h and was quenched by $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was then extracted with EA $(3 \times 10 \mathrm{~mL})$ and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration through a thin pad of celite, the filtrate was evaporated in vacuum to give the crude product, which was purified by column chromatography on silica gel to give the product phenyl(5-phenylisoxazol-3-yl)methanone ($54.6 \mathrm{mg}, 73 \%$).

To a test tube were added $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathbf{2 a}(31 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ and PhCN $(1.5 \mathrm{~mL})$. The mixture was stirred under N_{2} at $60^{\circ} \mathrm{C}$ for 1 h and no reaction occurred.

Reference

[1] S. R. Gerrard, M. M. Edrees, I. Bouamaied, K. R. Fox and T. Brown, Org. Biomol. Chem., 2010, 8, 5087.
[2] M. Gao, Y. Li, Y. Gan and B. Xu, Angew. Chem., Int. Ed., 2015, 54, 8795.
[3] A. Pelter and D. E. Jones, J. Chem. Soc., Perkin Trans., 2000, 1, 2289.
[4] E. J. Jeong and I. H. Lee, Bull. Korean Chem. Soc., 2015, 36, 295.
[5] T. Haro and C. Nevado, J. Am. Chem. Soc., 2010, 132, 1512.
[6] J. M. Yang, X. Y. Tang, Y. Wei and M. Shi, Adv. Synth. Catal., 2013, 355, 3545.
[7] H. J. Song, Y. X. Liu and Q. M. Wang, Org. Lett., 2013, 15, 3274.
[8] D. Campolo, T. Arif, C. Borie, D. Mouysset, N. Vanthuyne, J. V. Naubron, M. P.Bertrand and M. Nechab, Angew. Chem., Int. Ed., 2014, 53, 3227.
[9] P. Wei, X. Yan, J. Li, Y. Ma, Y. Yao and F. H. Huang, Tetrahedron, 2012, 68, 9179.
[10] Y. Tsuzuki, T. K. Nguyen, D. R. Garud, B. Kuberan and M. Kokets, Bioorg. Med. Chem. Lett., 2010, 20, 7269.
[11] T. Achard, A. Lepronier, Y. Gimbert, H. Clavier, L. Giordano, A. Tenaglia and G. Buono, Angew. Chem., Int. Ed., 2011, 50, 3552.
[12] K. I. Itoh and C. A. Horiuchi, Tetrahedron, 2004, 60, 1671.
[13] P. K. Mykhailiuk, Org. Biomol. Chem., 2015, 13, 3438.
[14] M. I. Shevchuk, Zh. Org. Khim., 1978, 14, 2003.
[15] J. J. Tegeler and C. J. Diamond, Hoechst-Roussel Pharmaceuticals Inc. Patent: US4562187 A1, 1985.
[16] R. G. Chary, G. R. Reddy, Y. S. S. Ganesh, K. V. Prasad, A. Raghunadh, T. Krishna, S. Mukherjee and M. Pal, Adv. Synth. Catal., 2014, 356, 160.
[17] K. I. Itoh, T. Aoyama, H. Satoh, Y. Fujii, H. Sakamaki, T. Takido and M. Kodomari, Tetrahedron Lett., 2011, 52, 6892.
[18] I. Yavari, M. Piltan and L. Moradi, Tetrahedron, 2009, 65, 2067.

$\stackrel{+}{\circ}$
$\stackrel{\square}{\square}$
LYY-3-147

-53.17

3ab

LYY-3-147

$\begin{array}{llllllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{ppm}\end{array}$ 웅

$\stackrel{0}{\circ}$
LYY-2-166
C13CPD CDC13

3ah

LYY-3-2
PROTON CDC13

\bullet
$\stackrel{-}{i}$
\dot{i}
LYY-3-2
C13CPD CDC13

$\stackrel{\stackrel{M}{\infty}}{\stackrel{\omega}{\dot{\sigma}}}$

3ai

-56.31

3ai

$180 \quad 16$

3ak
$\begin{array}{llllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & p p m\end{array}$

$\begin{array}{lllllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{ppm}\end{array}$
 $\left|\begin{array}{|c|c|}\text { N゙ }\end{array}\right|$

LYY-149CH
C13CPD CDC1

LYY-3-72CH
C13CPD CDC13

3al

$\begin{array}{llllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \text { ppm }\end{array}$

3ao

m
$\stackrel{3}{1}$
$\stackrel{1}{1}$

$$
\begin{aligned}
& \text { LYY-TMS } \\
& \text { C13CPD CDC13 }
\end{aligned}
$$

LYY-151CH
C13CPD CDC13

$3 a q$

ppm

LYY-151CH
PROTON CDC13

3ar

r

LYY-2-111
PROTON CDC PROTON CDC13

3ea
-

| 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | 0 | ppm |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	

$31 \mathbf{a}$

-62.77
-26.97
-14.13
-14.13

LYY-ACH
C13CPD CDC13

(

LYY-2-NT
C13CPD CDC13

LYY-2-121 CH
C13CPD CDC13

LYY-134
C13CPD CDC1

LYY-4-143-CH
C13CPD CDC13

LYY-143
C13CPD CDC13

