### **Electronic Supplementary Information**

### for

### Synthesis of Fully-substituted 1,2,3-Triazoles via Copper(I)-

### Catalyzed Three-Component Coupling of Sulfoximines, Alkynes

#### and Azides

Jian Xu<sup>a</sup> and Qiuling Song<sup>a,\*</sup>

<sup>a</sup> Institute of Next Generation Matter Transformation, College of Chemical Engineering at Huaqiao University

Fax: 86-592-6162990; email: qsong@hqu.edu.cn

### **Table of Contents**

| General Considerations       | .3  |
|------------------------------|-----|
| Experimental Procedures      | .3  |
| Characterization of Products | .4  |
| References                   | 10  |
| X-Ray Structure of <b>4u</b> | 11  |
| NMR Spectra of Products      | .13 |

#### **General Considerations**

All experiments were conducted with a sealed pressure vessel. Flash column chromatography was performed over silica gel (300-400 mesh). <sup>1</sup>H NMR spectra were recorded on a Bruker AVIII-500M spectrometers, Chemical shifts (in ppm) were referenced to CDCl<sub>3</sub> ( $\delta$  =7.26 ppm) as an internal standard. <sup>13</sup>C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl<sub>3</sub> ( $\delta$  = 77.0 ppm). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Azide<sup>1</sup> and sulfoximines<sup>2</sup> were prepared following the known procedures.

#### **Experimental Procedures**

#### Typical procedure for the synthesis of benzyl azides



In a 100 mL round-bottom flask, benzyl bromide (0.297 mL, 2.5 mmol) was dissolved in water (10 mL) and acetone (40 mL). Sodium azide (0.244 g, 3.75 mmol) was added in one portion, and the solution stirred overnight. Dichloromethane (50 mL) was added, and the organic layer separated. The aqueous layer was washed with dichloromethane ( $3 \times 10$  mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and filtered. Solvent was removed under reduced pressure to give **1u** (0.335 g, quantitative) as a yellow oil. Spectroscopic data was consistent with previously reported results.

#### Typical procedure for the synthesis of other azide



In a 125 mL round-bottom flask, NaN<sub>3</sub> (0.715 g, 11 mmol) was dissolved in DMSO (20 mL) and stirred until homogeneous. Bromocyclopentane (1.072 mL, 10 mmol) was added, and the solution was stirred at 80°C overnight. Water (80 mL) was added, and the aqueous layer was extracted with ether ( $5 \times 20$  mL). The organic layers were combined, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and filtered. Solvent was removed under reduced pressure to give azidocyclohexane (1.15 g, quantitative yield) as a yellow oil.

Note: Azides are explosive substances that must be carefully handled and stored.

#### Typical procedure for the synthesis of NH Sulfoximines



The sulfoxide (1.50 mmol, 1.0 equiv.), PhI(OAc)<sub>2</sub> (1.45 g, 4.50 mmol, 3.0 equiv.) and ammonium carbamate (470 mg, 6. 0 mmol, 4.0 equiv.) were added to a 10 mL round bottom

flask containing a stirrer bar. MeOH (3.0 mL, [0.5 M]) was added and the reaction was stirred for 30 min at 25 °C in an open flask. The solvent was removed in vacuo and the crude residue was purified by flash column chromatography (SiO<sub>2</sub>, dry loaded).

# General procedure for the copper(I)-catalyzed three-component coupling of sulfoximines, alkynes and azides



General reaction: azides (0.3 mmol), terminal alkynes (0.2 mmol), sulfoximines (0.3 mmol), CuSCN (0.04 mmol), and MeOLi (0.4 mmol) were added in dry MeCN (2.5 mL) and stirred for 12 h at room temperature in air. The reaction was monitored by TLC analysis. After the reaction was completed, the resulting mixture was evaporated to dryness and the crude product was purified with flash chromatography (silica gel, ethyl acetate: petroleum ether: =1:3).

#### Unsuccessful NH-containing compounds under standard conditions



#### **Characterization of Products**

#### ((1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4a).



shallow yellow oil, 75.5 mg, 81% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 – 7.84 (m, 2 H), 7.69 – 7.67 (m, 2H), 7.59 – 7.56 (m, 1H), 7.44 – 7.39 (m, 6H), 7.32 – 7.28 (m, 1H), 7.22 – 7.20 (m, 2H), 5.60 – 5.53 (m, 2 H), 3.05 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.4, 137.3, 134.9, 134.8, 133.9, 131.6, 129.7, 129.4, 128.4, 127.7, 127.4, 126.8, 121.8, 50.2, 44.6. HRMS (ESI) *m/z*:

 $[M + H]^+$  Calcd for  $C_{22}H_{20}BrN_4OS^+$ , 467.0536; Found: 467.0533.

#### ((1-(4-bromobenzyl)-4-(p-tolyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4b).



shallow yellow oil, 74.8 mg, 78% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ .7.75 – 7.70 (m, 4 H), 7.60 – 7.57 (m, 1 H), 7.43 – 7.40 (m, 4 H), 7.22 – 7.19 (m, 4 H), 5.58 – 5.52 (m, 2 H), 3.02 (s, 3 H), 2.38 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.5, 137.3, 137.0, 134.9, 134.5, 133.9, 131.6, 129.7, 129.4, 129.1, 128.7, 127.7, 126.6, 121.8, 50.1, 44.5, 21.3. HRMS (ESI)

*m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>22</sub>BrN<sub>4</sub>OS<sup>+</sup>, 481.0692; Found: 481.0692.

#### ((1-(4-bromobenzyl)-4-(m-tolyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4c).



shallow yellow oil, 67.2 mg, 70% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ.7.72 - 7.64 (m, 4 H), 7.61 - 7.51 (m, 1 H), 7.44 - 7.40 (m, 4 H), 7.31 - 7.28 (m, 1 H), 7.22 - 7.19 (m, 2 H), 7.13-7.11 (m, 1 H), 5.56 (s, 2 H), 3.02 (s, 3 H), 2.38 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 137.9, 137.5, 137.3, 134.9, 134.7, 133.9, 131.6, 131.5, 129.7, 129.4, 128.3, 128.1, 127.7, 127.5, 123.8,

121.8, 50.1, 44.5, 21.4. HRMS (ESI) m/z:  $[M + H]^+$  Calcd for  $C_{23}H_{22}BrN_4OS^+$ , 481.0692; Found: 481.0695.

# ((1-(4-bromobenzyl)-4-(4-methoxyphenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4d).



shallow yellow oil, 69.4 mg, 70% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ .7.76 – 7.74 (m, 2 H), 7.68 – 7.67 (m, 2 H), 7.60 – 7.56 (m, 1 H), 7.43 – 7.39 (m, 4 H), 7.21 – 7.19 (m, 2 H), 6.95 – 6.93 (m, 2 H), 5.58 – 5.58 (m, 2 H), 3.83 (s, 3 H), 3.03 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  158.9, 137.5, 137.1, 135.0, 134.2, 133.9, 131.6, 129.7, 129.4, 128.2, 127.7,

124.2, 121.8, 113.8, 55.3, 50.1, 44.6. HRMS (ESI) m/z:  $[M + H]^+$  Calcd for  $C_{23}H_{22}BrN_4O_2S^+$ , 497.0641; Found: 497.0647.

## ((1-(4-bromobenzyl)-4-(4-nitrophenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4e).



yellow solid, mp 121 – 123 °C, 46 mg, 45% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.26 – 8.24 (m, 2 H), 8.20 – 8.09 (m, 2 H), 7.64 – 7.61 (m, 3H), 7.45 – 7.40 (m, 4H), 7.23 – 7.19 (m, 2H), 5.62 – 5.54 (m, 2H), 3.10 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.5, 138.3, 137.1, 136.3, 135.1, 134.5, 134.2, 131.7, 129.6, 129.5, 127.4, 126.7, 123.8, 122.0,

50.4, 45.0. HRMS (ESI) m/z:  $[M + H]^+$  Calcd for  $C_{22}H_{19}BrN_5O_3S^+$ , 512.0386; Found: 512.0384.

((1-(4-bromobenzyl)-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-16-sulfanone (4f).



shallow yellow oil, 53.4 mg, 50% yield. <sup>1</sup>H NMR (500 MHz, CDCl3)  $\delta$ . 7.86 – 7.79 (m, 2 H), 7.57 – 7.65 (m, 5 H), 7.46 – 7.39 (m, 4 H), 7.22 – 7.20 (m, 2 H), 5.55 (s, 2 H), 3.17 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl3)  $\delta$  137.2, 135.8, 135.5, 135.2, 134.7, 134.1, 131.7, 129.7, 129.5, 129.1 (q,

J = 3.5 Hz), 127.6, 126.8, 125.7 (q, J = 270.2 Hz), 125.3 (q, J = 3.4 Hz), 122.0, 50.3, 44.8. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>19</sub>BrF<sub>3</sub>N<sub>4</sub>OS<sup>+</sup>, 535.0410; Found: 535.0413. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): -62.40.

# ((1-(4-bromobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4g).



shallow yellow oil, 69.6 mg, 72% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ .7.78 – 7.75 (m, 2 H), 7.61 – 7.58 (m, 3 H), 7.45 – 7.38 (m, 4 H), 7.22 – 7.19 (m, 2 H), 7.10 – 7.06 (m, 2 H), 5.59 – 5.52 (m, 2 H), 3.08 (s, 3 H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 163.1, 161.1, 137.4, 136.3, 134.8, 134.7, 134.0, 131.7, 129.7, 129.4, 128.8, 128.7, 127.6, 121.9, 115.4, 115.2, 50.2, 44.8. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>19</sub>BrFN<sub>4</sub>OS<sup>+</sup>, 485.0441; Found: 485.0440. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): -114.39.

# ((1-(4-bromobenzyl)-4-(3-fluorophenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4h).



shallow yellow oil, 66.8 mg, 69% yield. <sup>1</sup>H NMR (500 MHz, CDCl3) δ. 7.68 – 7.66 (m, 3 H), 7.60 – 7.56 (m, 2 H), 7.44 – 7.34 (m, 5 H), 7.21 – 7.16 (m, 2 H), 7.01 – 6.97 (m, 1 H), 5.60 – 5.53 (m, 2 H), 3.12 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl3) δ 163.8, 161.9, 137.3, 136.1, 136.0, 135.1, 134.7, 134.0, 133.9, 133.8, 131.6, 130.0, 129.9, 129.7, 129.5, 127.5, 122.3,

122.2, 121.9, 114.1, 114.0, 113.5, 113.3, 50.2, 44.7. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>19</sub>BrFN<sub>4</sub>OS<sup>+</sup>, 485.0441; Found: 485.0431. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): -112.81.

# ((1-(4-bromobenzyl)-4-(4-bromophenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4i).



shallow yellow oil, 85.9 mg, 79% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ .7.72 – 7.69 (m, 2 H), 7.63 – 7.57 (m, 3 H), 7.51 – 7.50 (m, 2 H), 7.42 – 7.38 (m, 4 H), 7.20 – 7.16 (m, 2 H), 5.59 – 5.51 (m, 2 H) 3.09 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.3, 136.1, 135.0, 134.8, 134.0, 131.7, 131.5, 130.6, 129.7, 129.5, 128.3, 127.5, 121.9, 121.2, 50.2, 44.8. HRMS

(ESI) m/z:  $[M + H]^+$  Calcd for  $C_{22}H_{19}Br_2N_4OS^+$ , 544.9641; Found: 544.9642.

# ((1-(4-bromobenzyl)-4-(4-chlorophenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4j).



shallow yellow oil, 76.0 mg, 76% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ .7.77 – 7.76 (m, 2 H), 7.63 – 7.57 (m, 3 H), 7.44 – 7.35 (m, 6 H), 7.20 – 7.18 (m, 2 H), 5.59 – 5.52 (m, 2 H), 3.09 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.3, 136.1, 135.0, 134.8, 134.0, 133.0, 131.7, 130.2, 129.7, 129.5, 128.6, 128.1, 127.5, 121.9, 50.2, 44.8. HRMS (ESI) *m/z*: [M + H]<sup>+</sup>

Calcd for C<sub>22</sub>H<sub>19</sub>BrClN<sub>4</sub>OS<sup>+</sup>, 501.0146; Found: 501.0148.

# ((1-(4-bromobenzyl)-4-(3-chlorophenyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4k).



shallow yellow oil, 73 mg, 73% yield. <sup>1</sup>H NMR (500 MHz, CDCl3) δ. 7.86 – 7.85 (m, 1 H), 7.76 – 7.74 (m, 1 H), 7.68 – 7.66 (m, 2 H), 7.60 – 7.58 (m, 1 H), 7.45 – 7.41 (m, 4 H), 7.34 – 7.31 (m, 1 H), 7.28 – 7.25 (m, 1 H), 7.20 – 7.18 (m, 2 H), 5.60 – 5.54 (m, 2 H),3.11 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl3) δ 137.3, 135.8, 135.2, 134.7, 134.2, 134.0, 133.4, 131.7, 129.8,

129.7, 129.5, 127.5, 127.2, 126.6, 124.7, 121.9, 50.3, 44.6. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>19</sub>BrClN<sub>4</sub>OS<sup>+</sup>, 501.0146; Found: 501.0149.

((4-([1,1'-biphenyl]-4-yl)-1-(4-bromobenzyl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4l).



shallow yellow oil, 65.0 mg, 60% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 – 7.89 (m, 2H), 7.76 – 7.70 (m, 2H), 7.70 – 7.63 (m, 4H), 7.62 – 7.55 (m, 1H), 7.52 – 7.35 (m, 7H), 7.26 – 7.17 (m, 2H), 5.68 – 5.44 (m, 2H), 3.12 (s, 3H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  140.6, 139.9, 137.5, 136.9, 134.9, 134.8, 134.0, 131.7, 130.7,

129.7, 129.4, 128.8, 127.7, 127.4, 127.1, 127.0, 126.9, 121.9, 50.2, 44.7. HRMS (ESI) m/z:  $[M + H]^+$  Calcd for  $C_{28}H_{24}BrN_4OS^+$ , 543.0849; Found: 543.0847.

# ((1-(4-bromobenzyl)-4-(naphthalen-2-yl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4m).



shallow yellow oil, 72.2 mg, 70% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.35 (s, 1 H), 8.05 – 8.03 (m, 1 H), 7.90 – 7.85 (m, 3H), 7.72 – 7.70 (m, 2H), 7.54 – 7.45 (m, 5H), 7.36 – 7.33 (m, 2 H), 7.25 – 7.24 (m, 2 H), 5.62 – 5.61 (m, 2H), 3.05 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.5, 137.2, 135.1, 134.9, 133.9, 133.4, 132.6, 131.7, 129.7, 129.4, 129.1,

128.1, 128.0, 127.7, 127.6, 126.2, 125.9, 125.4, 124.9, 121.9, 50.2, 44.5. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>22</sub>BrN<sub>4</sub>OS<sup>+</sup>, 517.0692; Found: 517.0692.

# ((1-(4-bromobenzyl)-4-(thiophen-2-yl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4n).



brown oil, 45.3 mg, 48% yield. <sup>1</sup>H NMR (500 MHz, CDCl3)  $\delta$ . 7.86 – 7.79 (m, 2 H), 7.63 (t, J = 7.5 Hz, 1 H), 7.57 – 7.45 (m, 3 H), 7.42 – 7.39 (m, 2 H), 7.33 – 7.26 (m, 1 H), 7.20 – 7.05 (m, 3 H), 5.55 (s, 2 H), 3.17 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl3)  $\delta$  137.4, 134.7, 134.2, 134.0, 133.5, 133.0,

131.6, 129.6, 129.5, 127.8, 127.3, 124.5, 124.2, 121.8, 50.3, 44.9. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>18</sub>BrN<sub>4</sub>OS<sub>2</sub><sup>+</sup>, 473.0125; Found: 473.0125.

((1-(4-bromobenzyl)-4-(irondicyclopentadienyl-yl)-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)l6-sulfanone (40).



brown solid, mp 101 – 102 °C, 57.4 mg, 50% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ . 7.77 – 7.75 (m, 2 H), 7.64 – 7.58 (m, 1 H), 7.48 – 7.42 (m, 4 H), 7.17 – 7.14 (m, 2 H), 5.50 (s, 2 H), 4.78 – 4.72 (m, 2 H), 4.28 – 4.21 (m, 2 H), 4.17 (s, 5 H), 3.05 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.6,

135.9, 135.1, 134.0, 133.9, 131.6, 129.6, 129.5, 127.8, 121.7, 69.5, 68.1, 67.4, 67.1, 50.0, 44.7. HRMS (ESI) *m/z*: [M + H]<sup>+</sup>Calcd for C<sub>26</sub>H<sub>24</sub>BrFeN<sub>4</sub>OS<sup>+</sup>, 575.0198; Found: 575.0193.

((1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(4-fluorophenyl)(methyl)-l6-sulfanone (4p).



shallow yellow oil, 70.6 mg, 73% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ .7.80 – 7.78 (m, 2 H), 7.65 – 7.62 (m, 2 H), 7.45 – 7.38 (m, 4 H), 7.33 – 7.28 (m, 1 H), 7.21 – 7.19 (m, 2 H), 7.05 – 7.01 (m, 2 H), 5.60 – 5.52 (m, 2 H), 3.07 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.1, 161.1, 137.4, 136.3, 134.8, 134.7, 134.0, 131.7, 129.7, 129.4, 128.8, 128.7, 127.9, 127.8, 127.6, 121.9,

115.4, 115.2, 50.2, 44.8. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>19</sub>BrFN<sub>4</sub>OS<sup>+</sup>, 485.0441; Found: 485.0436. <sup>19</sup>F NMR (471 MHz, CDCl3): -102.52.

## ((1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(4-chlorophenyl)(methyl)-l6-sulfanone (4q).



shallow yellow oil, 69.0 mg, 69% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ .7.79 – 7.71 (m, 2 H), 7.55 – 7.53 (m, 2 H), 7.46 – 7.39 (m, 4 H), 7.33 – 7.28 (m, 3 H), 7.21 – 7.19 (m, 2 H), 5.60 – 5.52 (m, 2 H), 3.08 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  140.8, 137.3, 135.8, 134.8, 134.5, 131.7, 131.5, 129.6, 129.1, 128.5, 127.5, 126.9, 121.9, 50.2, 44.7. HRMS (ESI) *m/z*: [M + H]<sup>+</sup>

Calcd for C<sub>22</sub>H<sub>19</sub>BrClN<sub>4</sub>OS<sup>+</sup>, 501.0146; Found: 501.0150.

#### 4-(N-(1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)-S-methylsulfonimidoyl)benzonitrile (4r).



shallow yellow oil, 67.7 mg, 69% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 – 7.66 (m, 4 H), 7.59 – 7.57 (m, 2H), 7.47 – 7.45 (m, 2H), 7.40 – 7.33 (m, 3H), 7.21 – 7.19 (m, 2 H), 5.60 – 5.51 (m, 2 H), 3.15 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  141.8, 137.3, 134.7, 133.9, 132.8, 131.7, 131.3, 129.6, 128.5, 128.3, 127.7, 127.1, 122.0, 117.5, 116.7, 50.3, 44.4. HRMS (ESI)

m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>19</sub>BrN<sub>5</sub>OS<sup>+</sup>, 492.0488; Found: 492.0488.

#### ((1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(ethyl)(phenyl)-l6-sulfanone (4s).



shallow yellow oil, 69.1 mg, 72% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 – 7.81 (m, 2 H), 7.54 – 7.47 (m, 3H), 7.44 – 7.39 (m, 4H), 7.33 – 7.28 (m, 3H), 7.18 – 7.17 (m, 2 H), 5.65 – 5.54 (m, 2 H), 3.39 – 3.32 (m, 1 H), 3.20 – 3.13 (m, 1 H), 3.05 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.3, 135.2, 135.1, 135.0, 133.8, 131.8, 131.6, 129.6, 129.2, 128.5, 128.3, 127.3, 127.1,

121.7, 51.6, 50.3, 44.5. HRMS (ESI) m/z:  $[M + H]^+$  Calcd for  $C_{23}H_{22}BrN_4OS^+$ , 481.0692; Found: 481.0693.

## 1-((1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)imino)tetrahydro-1H-116-thiophene 1-oxide (4t).



shallow yellow oil, 43.0 mg, 50% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ . 7.95 – 7.93 (m, 2 H), 7.55 – 7.47 (m, 2 H), 7.43 – 7.37 (m, 2 H), 7.32 – 7.24 (m, 3 H), 5.55 (s, 2 H), 3.21 – 3.15 (m, 2 H), 3.00 – 2.94 (m, 2 H), 2.24 – 2.05 (m, 4 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  136.4, 135.6, 134.8, 131.7,

131.5, 129.7, 128.5, 127.5, 126.3, 121.9, 52.9, 50.0, 23.7. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>BrN<sub>4</sub>OS<sup>+</sup>, 431.0536; Found: 431.0536.

#### ((1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4u).



white solid, mp 128 – 130 °C, 55.8 mg, 72% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 – 7.81 (m, 2 H), 7.65 – 7.63 (m, 2 H), 7.58 – 7.55 (m, 1H), 7.40 – 7.28 (m, 10 H), 5.62 (s, 2 H), 3.02 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.5, 137.0, 136.0, 134.9, 133.8, 131.7, 129.3, 128.5, 128.3, 127.9, 127.8,

127.7, 127.3, 127.0, 50.8, 44.5. HRMS (ESI) m/z:  $[M + H]^+$  Calcd for  $C_{22}H_{21}N_4OS^+$ , 389.1431; Found: 389.1431.

#### ((1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4v).



shallow yellow oil, 62.4 mg, 74% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ7.85 - 7.83 (m, 2 H), 7.72 - 7.64 (m, 2H), 7.61 - 7.53 (m, 1H), 7.45 - 7.35 (m, 4H), 7.34 - 7.22 (m, 5H), 5.68 - 5.47 (m, 2H), 3.05 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 137.4, 137.2, 134.8, 134.4, 133.9, 133.6, 131.6, 129.5,

129.4, 128.7, 128.4, 127.7, 127.3, 126.8, 50.1, 44.64. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>20</sub>ClN<sub>4</sub>OS<sup>+</sup>, 423.1041; Found: 423.1040.

## Methyl(phenyl)((4-phenyl-1-(4-(trifluoromethoxy)benzyl)-1H-1,2,3-triazol-5-yl)imino)-l6-sulfanone (4w).



shallow yellow solid, mp 115 – 116 °C, 67.9 mg, 72% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 – 7.82 (m, 2H), 7.72 – 7.66 (m, 2H), 7.61 – 7.53 (m, 1H), 7.45 – 7.34 (m, 6H), 7.34 – 7.27 (m, 1H), 7.20 – 7.12 (m, 2H), 5.73 – 5.46 (m, 2H), 3.06 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) )  $\delta$  148.7, 137.4, 137.2, 134.8, 134.6, 133.9, 131.7, 129.5, 129.4, 128.4,

127.7, 127.3, 126.8, 121.0, 120.5 (q, J = 271.2 Hz), 50.0, 44.6. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>20</sub>F<sub>3</sub>N<sub>4</sub>O<sub>2</sub>S<sup>+</sup>, 473.1254; Found: 473.1257. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): -57.81.

# Methyl((1-(naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(phenyl)-l6-sulfanone (4x).



white solid, mp 125 – 127 °C, 65.7 mg, 75% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ . 8.27 – 8.25 (m, 1 H), 7.90 – 7.80 (m, 4 H), 7.57 – 7.49 (m, 5 H), 7.40 – 7.35 (m, 3 H), 7.32 – 7.25 (m, 3 H), 7.20 – 7.19 (m, 1 H), 6.12 – 5.05 (m, 2 H), 2.97 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.5, 137.0, 135.4, 133.7, 133.6, 131.8, 131.7, 131.0, 129.2, 128.7, 128.5, 128.3, 127.6,

127.3, 127.1, 126.6, 126.1, 125.9, 125.3, 123.3, 48.8, 44.6. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>23</sub>N<sub>4</sub>OS<sup>+</sup>, 439.1587; Found: 439.1588.

#### ((1-cyclohexyl-4-phenyl-1H-1,2,3-triazol-5-yl) imino) (methyl) (phenyl)-16-sulfanone (4y).



shallow yellow oil, 42.5 mg, 56% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.91 – 7.87 (m, 4 H), 7.65 – 7.62 (m, 1H), 7.50 – 7.41 (m, 4H), 7.32 – 7.28 (m, 1H), 4.56 – 4.50 (m, 1H), 3.02 (s, 3H), 2.15 – 1.90 (m, 6 H), 1.50 – 1.25 (m, 4H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 137.8, 136.6, 133.9, 133.4, 132.2, 129.4,

128.4, 127.8, 127.1, 126.7, 56.3, 44.0, 33.1, 25.6, 25.2. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>25</sub>N<sub>4</sub>OS<sup>+</sup>, 381.1744; Found: 381.1744.

#### ((1-dodecyl-4-phenyl-1H-1,2,3-triazol-5-yl)imino)(methyl)(phenyl)-l6-sulfanone (4z).



shallow yellow oil, 48.4 mg, 52% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ . 7.90 – 7.85 (m, 4 H), 7.63 – 7.60 (m, 1 H), 7.48 – 7.40 (m, 4 H), 7.32 – 7.28 (m, 1 H), 4.37 – 4.34 (m, 2 H), 3.04 (s, 3 H), 1.97 – 1.92 (m, 2 H), 1.41 – 1.26 (m, 18 H), 0.91 – 0.88 (m, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.8,

137.0, 134.3, 133.9, 132.0, 129.4, 128.4, 127.8, 127.1, 126.7, 47.4, 44.3, 31.9, 29.7, 29.6, 29.5, 29.3, 26.6, 22.7, 14.1. MS-ESI: *m*/*z* 247.1, [M + H]<sup>+</sup>. HRMS (ESI) *m*/*z*: [M + H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>39</sub>N<sub>4</sub>OS<sup>+</sup>, 467.2839; Found: 467.2839.

## 2-(4-(5-((methyl(oxo)(phenyl)-l6-sulfanylidene)amino)-4-phenyl-1H-1,2,3-triazol-1-yl)butyl)isoindoline-1,3-dione (4aa).



shallow yellow oil, 53.8 mg, 54% yield. 1H NMR (500 MHz, CDCl3)  $\delta$ 7.92 - 7.77 (m, 6H), 7.77 - 7.68 (m, 2H), 7.63 - 7.58 (m, 1H), 7.50 -7.38 (m, 4H), 7.35 - 7.28 (m, 1H), 4.55 - 4.23 (m, 2H), 3.77 (t, *J* = 7.0 Hz, 2H), 3.05 (s, 3H), 2.09 - 1.97 (m, 2H), 1.90 - 1.72 (m, 2H). <sup>13</sup>C

NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 137.7, 137.0, 134.4, 133.9, 133.8, 132.1, 131.9, 129.4, 128.4, 127.7, 127.2, 126.7, 123.2, 46.6, 44.3, 37.4, 29.7, 27.0, 25.7 MS-ESI: *m/z* 247.1, [M + H]<sup>+</sup>. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>26</sub>N<sub>5</sub>O<sub>3</sub>S<sup>+</sup>, 500.1751; Found: 500.1758.

#### Methyl(phenyl)((4-phenyl-1-(p-tolyl)-1H-1,2,3-triazol-5-yl)imino)-l6-sulfanone (4ab).



white solid, mp 135 – 137 °C, 43.4 mg, 56% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ . 8.00 – 7.98 (m, 2 H), 7.64 – 7.55 (m, 5 H), 7.45 – 7.28 (m, 7 H), 2.97 (s, 3 H), 2.46 (s, 3 H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  138.7, 138.3, 137.7, 134.7, 134.1, 133.6, 131.5, 129.5, 129.2, 128.3, 127.5, 127.4, 127.0,

124.8, 44.6, 21.3. HRMS (ESI) m/z:  $[M + H]^+$  Calcd for  $C_{22}H_{21}N_4OS^+$ , 389.1431; Found: 389.1435.

#### References

[1] M. T. Berry, D. Castrejon, and J. E. Hein, Org. Lett., 2014, 16, 3676.

[2] M. Zenzola, R. Doran, L. Degennaro, R. Luisi and J. A. Bull, *Angew. Chem., Int. Ed.* 2016, 55, 7203.

### X-Ray Structure of 4u

Crystal data

Crystallographic data for compound 4u (CCDC-

1511230) has been deposited with the Cambridge Crystallographic Data Center, Copi es of the data can be obtained, free of charge, on application to CCDC (Email:deposit @ccdc.cam.ac.uk).

| Bond precision: (                                               |             | C-C = 0.0056 A |           | Wavelength=0.71073 |                |  |  |
|-----------------------------------------------------------------|-------------|----------------|-----------|--------------------|----------------|--|--|
| Cell:                                                           | a=11.6535(8 | ) b=9.6        | 660(5)    | c=17.3752          | 2(12)          |  |  |
|                                                                 | alpha=90    | beta=          | 98.934(6) | gamma=9            | 00             |  |  |
| Temperature:                                                    | 293 K       |                |           |                    |                |  |  |
|                                                                 | Ca          | lculated       |           |                    | Reported       |  |  |
| Volume                                                          | 19.         | 33.5(2)        |           |                    | 1933.4(2)      |  |  |
| Space group                                                     | P 2         | 21/n           |           |                    | P 1 21/n 1     |  |  |
| Hall group                                                      | -P          | 2yn            |           |                    | -P 2yn         |  |  |
| Moiety form                                                     | ula C2      | 2 H20 N4 O     | S         |                    | C22 H20 N4 O S |  |  |
| Sum formula                                                     | C2          | 2 H20 N4 O     | S         |                    | C22 H20 N4 O S |  |  |
| Mr                                                              | 38          | 8.48           |           |                    | 388.48         |  |  |
| Dx,g cm-3                                                       | 1.3         | 35             |           |                    | 1.335          |  |  |
| Ζ                                                               | 4           |                |           |                    | 4              |  |  |
| Mu (mm-1)                                                       | 0.1         | 88             |           |                    | 0.188          |  |  |
| F000                                                            | 81          | 5.0            |           |                    | 816.0          |  |  |
| F000'                                                           | 81          | 5.77           |           |                    |                |  |  |
| h,k,lmax                                                        | 15,         | 13,23          |           |                    | 15,12,23       |  |  |
| Nref                                                            | 520         | 01             |           |                    | 4456           |  |  |
| Tmin,Tmax                                                       | 0.9         | 14,0.945       |           |                    | 0.766,1.000    |  |  |
| Tmin'                                                           | 0.9         | 10             |           |                    |                |  |  |
| Correction method= # Reported T Limits: Tmin=0.766 Tmax=1.000   |             |                |           |                    |                |  |  |
| AbsCorr = MULTI-SCAN                                            |             |                |           |                    |                |  |  |
| Data completeness= 0.857 Theta(max)= 29.118                     |             |                |           |                    |                |  |  |
| R(reflections) = 0.0755(3271) $wR2(reflections) = 0.2456(4456)$ |             |                |           |                    |                |  |  |
| S = 1.022                                                       |             | Npar=254       |           |                    |                |  |  |

### Datablock: exp\_4u



**Figure 1:** ORTEP view of the complex **4u** (Color scheme: C, gray; N, blue; O, red; S, yellow)

### NMR Spectra of Products

















































### 7.79

-3.08















-3.15

### 



180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0















-3.02









### 8 7 8 7 9 7 9 8 7 7 8 7 8 7 9 8 7 7 8 7 8 8 7 7 8 8 7 8 7 7 8 7 8 8 7 8 8 7 5 7 5 7 5 8 7 5 5 8 7 5 5 8 7 5 5 8 7 6 7 9 8 7 5 9 7 5 5 10 7 5 5 11 7 5 5 12 7 10 5 13 10 10 10 14 10 10 10 15 10 10 10 16 10 10 10 17 10 10 10 16 10 10 10 17 10 10 10











