Trimerization of Enones under Air Enabled by NHC/NaOtBu via a SET Radical Pathway

Yuexia Zhang,^[a] Xingxing Wu,^[a] Lin Hao,^[a] Zeng Rong Wong,^[a] Sherman J. L. Lauw,^[a] Song Yang,^[b] Richard D. Webster^{*[a]} and Yonggui Robin Chi^{* [a] [b]}

^[a] Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

^[b] Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China

*Correspondence to: Richard D. Webster (webster@ntu.edu.sg); Yonggui Robin Chi (robinchi@ntu.edu.sg)

Supporting Information

Contents

I: General information	S2
II: General procedures for Table 1 (entry 2) and Table 2	
III: Summary of condition optimization (Table S1-S3)	
IV: Proposed reaction pathway to 2a (Scheme S1)	S6
V: Cyclic voltammograms of 1a and 1n (Figure S1-S2)	S7
VI: Mechanistic Study with LC-MS	
VII: Characterization of products	S10-19
VIII: ¹ H NMR, ¹³ C NMR, ¹³ C DEPT-135 spectra of products	

I: General Information

Commercially available materials purchased from Alfa Aesar, Merk or Aldrich were used as received. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker AV400 (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ 0.00). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets), and etc. All firstorder splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AV400 (100 MHz) spectrometer. High resolution mass spectral analysis (HRMS) was performed on Waters Q-TOF Premier mass spectrometer. IR spectra were recorded on a Shimadzu IRPrestige-21 FT-IR spectrometer as neat thinfilms between NaCl plates in case of liquids and as KBr pellets in the case of solids. LC-MS were recorded on ThermoFinnigan LCQ Fleet MS. Melting points were measured on SRS Optimelt Automated Point System SRS. MPA100. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.

The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1443861 (**2a**), CCDC 1443862 (**3a**).

II: General Procedure for Table 1(entry 2) and Table 2

1: General procedures for Table 1 (entry 2)

To a 4 mL sample vial equipped with a magnetic stir bar, was added imidazolium-based NHC (L2) (6.8 mg, 20 mol %), NaOtBu (15.0 mg, 1.5 equiv) and chalcone 1a (0.1 mmol). The vial was closed with a plastic stopper after addition of 1.5 mL diethyl ether (purchased from Merk for analysis, used without further purification). The resulting mixture was stirred at room temperature. After the consumption of chalcone 1a montiored by TLC, solvent was evaporated and the reaction mixture was then applied to silica gel chromatography (hexane/ethyl acetate = 10:1) to obtain product 3a.

2: General procedures for Table 2

To a 8 mL sample vial equipped with a magnetic stir bar, was added imidazolium-based NHC (L2) (13.6 mg, 20 mol %), NaO*t*Bu (29.0 mg, 1.5 equiv) and enone 1 (0.2 mmol). The vial was closed with a plastic stopper after addition of 3.0 mL diethyl ether (purchased from Merk for analysis, used without further purification). In some cases, 200 μ L THF was added in order to increase the solubility of enones. The resulting mixture was stirred at room temperature. After the consumption of enone 1 montiored by TLC, solvent was evaporated and the reaction mixture was then applied to silica gel chromatography to obtain product 3.

III: Summary of Condition Optimization

	$\frac{20 \text{ mol}\%}{\text{Mes} - N \sqrt{N}} \frac{\text{NH}}{\text{Mes} - N \sqrt{N}} \frac{\text{Mes}}{N} \frac{Mes}} \frac{\text{Mes}}{N} \frac{Mes}} \frac{\text{Mes}}{N} \frac{\text{Mes}}{N} \frac{Mes}}$	C C Mes mol%) Ph ^W Ph O Ph ^W Ph O Ph Mes A Ph Mes A A A A A A A A A A A A A	+ + + 0 Ph m Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	
Entry	Solvent	<i>t</i> (h)	Yield of 3a $(\%)^{[b]}$	Yield of 2a (%) ^[b]
1	Et ₂ O	18	80	11
2	toluene	36	65	trace
3	CH ₃ CN	24	71	trace
4	1,4-dioxane	24	57	20
5	THF	24	55	4
6	hexane	24	45	30
7	DCM	24	29	20

Table S1. Solvent screening for trimerization of chalcone $(1a)^{[a]}$

^[a] Reaction conditions: NHC (20 mol %), NaOtBu (1.5 equiv.), **1a** (0.1 mmol) and solvent (1.5 mL). ^[b] Isolated yield.

Table S2. Base screening for trimerization of chalcone $(1a)^{[a]}$

	20 mol% NH Mes~N N Ph Ph Ph Base (150 m Air, Et ₂ O, 23	C D Mes O(%) Ph HO Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	h^{+} O_{Ph}^{Ph} Ph_{h}^{Ph} Ph_{Ph}^{Ph}	
	1a	3a	2a	
Entry	Base	<i>t</i> (h)	Yield of $3a (\%)^{[b]}$	Yield of 2a (%) ^[b]
1	NaO <i>t</i> Bu	18	80	11
2	KOtBu	48	30	17
3 ^[c]	$Mg(OtBu)_2$	48	0	0
4 ^[c]	Al(OtBu) ₃	48	0	0
5 ^[c]	NaOH	48	0	0
$6^{[c]}$	NaOMe	48	0	0
$7^{[c]}$	KOMe	48	0	0
$8^{[c]}$	K ₂ CO ₃	48	0	0
$9^{[c]}$	DBU	48	0	0
10 ^[c]	Et ₃ N	48	0	0

^[a] Reaction conditions: NHC (20 mol %), base (1.5 equiv.), **1a** (0.1 mmol) and Et₂O (1.5 mL).

^[b] Isolated yield. ^[c] No reaction.

	20 mol% ligar Ph Ph Air, Et ₂ 0, 23	hd mol%) °°C Ph	Ph + O + Ph Ph	
	1a	3a	2a	
	L1 Li	$ \begin{array}{c} $	$\begin{array}{c c} & & & & \\ \stackrel{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{$	
Entry	Ligand	<i>t</i> (h)	Yield of $3a (\%)^{[b]}$	Yield of 2a $(\%)^{[b]}$
1	L1	24	59	14
2	L2	18	80	11
3	L3	24	24	14
4	L4	24	0	19

.-----

Table S3. Ligand or additive screening for trimerization of chalcone $(1a)^{[a]}$

^[a] Reaction conditions: ligand (20 mol %), NaO*t*Bu (1.5 equiv.), **1a** (0.1 mmol) and Et₂O (1.5 mL). ^[b] Isolated yield.

IV: Proposed reaction pathway to 2a

Scheme S1. Proposed reaction pathway to 2a

A plausible mechanism for **2a** is depicted in Scheme S1. Initially, one electron reduction of chalcone **1a** by NHC/NaO*t*Bu gives radical anion **I**, which then adds to another molecule of **1a** to afford radical anion intermediate **II**. Intermediate **II** reacts with the third molecule of **1a** furtherly to lead to radical anion **III**, which undergoes 6-exo-trig radical cyclization to generate intermediate **IV**. Finally, single-electron transfer from **IV** to **1a** to produce **2a** with the generation of intermediate **I**.

V: Cyclic voltammograms of 1a and 1n

Figure S1. Cyclic voltammograms of 5 mM of analyte recorded at a 1 mm diameter planar circular glassy carbon electrode in acetonitrile containing 0.2 M n-Bu₄NPF₆ as the supporting electrolyte, at a scan rate of 0.1 mV s⁻¹ and at 22 ± 2 °C.

Figure S2. Cyclic voltammograms of 5 mM of analyte recorded at a 1 mm diameter planar circular glassy carbon electrode in acetonitrile containing 0.2 M *n*-Bu₄NPF₆ as the supporting electrolyte, at a scan rate of 0.1 mV s⁻¹ and at 22 ± 2 °C.

VI: Mechanistic Study with LC-MS

1. 20 mol% NHC precursor L2 and 1.5 equiv. NaOtBu in diethyl ether stirred for 1h

2. product 3a

3. chalcone 1a, 20 mol% NHC precursor L2 and 1.5 equiv. of NaOtBu in diethyl ether stirred for 8 h

4. chalcone 1a, 20 mol% NHC precursor L2 and 1.5 equiv. of NaOtBu in diethyl ether stirred for 20 h

VII: Characterization of Products

2,4,6-triphenylcyclohexane-1,3,5-triyl)tris(phenylmethanone)

¹**H NMR**: (400 MHz, CDCl₃) δ 7.65 – 7.62 (m, 4H), 7.47 (t, *J* = 7.2 Hz, 2H), 7.38 – 7.30 (m, 8H), 7.20 – 7.12 (m, 4H), 7.10 – 6.94 (m, 10H), 6.86 (t, *J* = 7.2 Hz, 2H), 4.77 (dd, *J* = 12.0, 5.2 Hz, 2H), 4.45 (t, *J* = 12.0 Hz, 2H), 4.19 (t, *J* = 11.6 Hz, 1H), 3.99 (t, *J* = 5.2 Hz, 1H);

¹³C NMR: (100 MHz, CDCl₃) δ 204.90, 197.71, 141.36, 138.78, 137.30, 135.88, 132.68, 131.74, 130.31, 128.59, 128.32, 128.21, 128.10, 127.68, 127.63, 127.43, 127.22, 126.63, 58.20, 53.55, 47.30, 43.37.

HRMS: (ESI) [M+H]⁺ calcd. for C₄₅H₃₇O₃, 625.2743 found, 625.2747;

IR (KBr): *v*_{max} 3024, 2916, 1681 (C=O), 1667 (C=O), 1589, 1450, 1265, 987, 694 cm⁻¹ **mp** 302.9-303.4 °C

(4-hydroxy-2,4,6-triphenylcyclohexane-1,3-diyl)bis(phenylmethanone)

¹**H NMR**: (400 MHz, CDCl₃) δ 7.55 (d, J = 7.2 Hz, 2H), 7.29 – 6.95 (m, 20H), 6.83 (t, J = 7.6 Hz, 2H), 6.71 (t, J = 7.2 Hz, 1H), 5.39 (d, J = 2.4 Hz, 1H), 4.49 (d, J = 11.2 Hz, 1H), 4.26 – 4.14 (m, 2H), 4.10 – 4.02 (m, 1H), 2.56 – 2.48 (m, 1H), 2.26 (dd, J = 14.0, 3.6 Hz, 1H);

¹³C NMR: (100 MHz, CDCl₃) δ 207.17, 203.58, 145.88, 142.07, 138.96, 138.61, 138.12, 132.65, 131.76, 128.35, 128.16, 128.06, 127.97, 127.69, 127.66, 127.54, 127.36, 126.98, 126.90, 126.69, 124.80, 75.33, 56.74, 56.72, 48.06, 45.83, 43.34.

HRMS: (ESI) [M+Na]⁺ calcd. for C₃₈H₃₂O₃Na, 559.2249 found 559.2252;

IR (KBr): *v*_{max} 3402 (OH), 1666 (C=O), 1643 (C=O), 1597, 1439, 1257, 1026, 802, 694 cm⁻¹ **mp** 244.2-244.7 °C

(4-(4-chlorophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((4-chlorophenyl)methanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.8 Hz, 2H), 7.23 (t, *J* = 8.4 Hz, 4H), 7.17 (d, *J* = 8.4 Hz, 4H), 7.11 (t, *J* = 7.6 Hz, 4H), 7.07 – 6.99 (m, 5H), 6.87 (t, *J* = 7.6 Hz, 2H), 6.78 (t, *J* = 7.6 Hz, 1H), 5.36 (d, *J* = 2.4 Hz, 1H), 4.40 – 4.35 (m, 1H), 4.18 – 4.10 (m, 2H), 4.05 – 3.99 (m, 1H), 2.47 – 2.39 (m, 1H), 2.22 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 205.48, 202.13, 144.40, 141.57, 139.68, 138.35, 138.22, 136.98, 135.95, 133.02, 129.07, 128.72, 128.53, 128.41, 128.35, 128.25, 127.95, 127.81, 127.33, 127.02, 126.22, 75.09, 56.51, 56.30, 47.96, 45.65, 43.25.

HRMS: (ESI) [M+Na]⁺ calcd. for C₃₈H₂₉O₃NaCl₃, 661.1080 found, 661.1118;

IR (KBr): *v*_{max} 3425 (OH), 1672 (C=O), 1651 (C=O), 1589, 1489, 1396, 1087, 833, 702, 532 cm⁻¹

mp 237.9-238.5 °C

(4-(4-bromophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((4-

bromophenyl)methanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.8 Hz, 2H), 7.32 (d, *J* = 8.8 Hz, 2H), 7.24 – 7.21(m, 4H), 7.18 – 7.06 (m, 10H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.87 (t, *J* = 7.6 Hz, 2H), 6.79 (t, *J* = 7.6 Hz, 1H), 5.35 (d, *J* = 2.4 Hz, 1H), 4.40 – 4.33 (m, 1H), 4.17 – 4.09 (m, 2H), 4.04 – 3.98 (m, 1H), 2.46 – 2.37 (m, 1H), 2.22 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 205.70, 202.33, 144.93, 141.53, 138.17, 137.39, 136.36, 131.38, 131.25, 130.93, 129.12, 128.82, 128.55, 128.37, 127.81, 127.36, 127.12, 127.04, 126.57,

121.21, 75.14, 56.53, 56.22, 47.96, 45.61, 43.24.

HRMS: (ESI) [M+Na]⁺ calcd. for C₃₈H₂₉O₃NaBr₃, 792.9564 found, 792.9537;

IR (KBr): *v*_{max} 3441 (OH), 1666 (C=O), 1643 (C=O), 1581, 1489, 1396, 1072, 1002, 833, 702, 532 cm⁻¹

mp 256.8-258.0 °C

(4-hydroxy-4-(4-methoxyphenyl)-2,6-diphenylcyclohexane-1,3-diyl)bis((4-

methoxyphenyl)methanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.8 Hz, 2H), 7.35 – 7.31 (m, 4H), 7.26 (d, *J* = 7.2 Hz, 2H), 7.15 – 7.06 (m, 4H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 2H), 6.74 – 6.69 (m, 3H), 6.55 – 6.50 (m, 4H), 5.56 (d, *J* = 2.0 Hz, 1H), 4.44 – 4.36 (m, 1H), 4.19 – 4.12 (m, 2H), 4.07–4.00 (m, 1H), 3.70 (s, 3H), 3.68 (s, 3H), 3.66 (s, 3H), 2.49 – 2.41 (m, 1H), 2.20 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 204.97, 201.47, 163.21, 162.43, 158.26, 142.38, 139.02, 138.48, 131.84, 130.96, 130.36, 129.85, 128.26, 127.97, 127.92, 126.72, 126.56, 125.95, 113.40, 112.93, 112.74, 75.00, 55.95, 55.88, 55.26, 55.16, 55.11, 47.99, 46.28, 43.30.

HRMS: (ESI) $[M+Na]^+$ calcd. for C₄₁H₃₈O₆Na, 649.2566 found, 649.2526;

IR (KBr): *v*_{max} 3402 (OH), 1658 (C=O), 1597 (C=O), 1512, 1257, 1174, 1026, 833, 702, 540 cm⁻¹

mp 223.2-224.4 °C

(4-hydroxy-4-(naphthalen-2-yl)-2,6-diphenylcyclohexane-1,3-diyl)bis(naphthalen-2-

ylmethanone)

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.78 – 7.56 (m, 10H), 7.49 – 7.27 (m, 14H), 7.08 (t, *J* = 7.6 Hz, 2H), 6.91 (t, *J* = 7.2 Hz, 1H), 6.75 (t, *J* = 8.0 Hz, 2H), 6.55 (t, *J* = 7.2 Hz, 1H), 5.69 (d, *J* = 2.4 Hz, 1H), 4.84 (d, *J* = 11.6 Hz, 1H), 4.48 (t, *J* = 11.2 Hz, 1H), 4.37 (t, *J* = 11.2 Hz, 1H), 4.25 – 4.18 (m, 1H), 2.77–2.69 (m, 1H), 2.38 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 206.92, 203.39, 143.41, 142.17, 138.74, 136.32, 135.36, 135.03, 134.78, 133.10, 132.30, 131.93, 131.66, 129.86, 129.32, 129.30, 128.98, 128.57, 128.41, 128.35, 128.10, 128.00, 127.91, 127.87, 127.57, 127.48, 127.43, 127.26, 126.96, 126.79, 126.39, 126.19, 126.04, 125.73, 124.10, 123.55, 123.17, 123.00, 75.73, 56.88, 56.49, 48.37, 45.96, 43.53.

HRMS: (ESI) $[M+H]^+$ calcd. for C₅₀H₃₉O₃, 687.2899 found, 687.2899;

IR (KBr): *v*_{max} 3410 (OH), 1666 (C=O), 1621 (C=O), 1512, 1357, 1180, 748 cm⁻¹

mp 247.6-248.3 °C

(2,6-bis(4-chlorophenyl)-4-hydroxy-4-phenylcyclohexane-1,3-diyl)bis(phenylmethanone) ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.2 Hz, 2H), 7.29 – 7.15 (m, 10H), 7.12 – 7.02 (m, 9H), 6.80 (d, *J* = 8.4 Hz, 2H), 5.32 (d, *J* = 2.4 Hz, 1H), 4.48 – 4.40 (m, 1H), 4.21 – 4.10 (m, 2H), 4.08 – 3.99 (m, 1H), 2.51 – 2.39 (m, 1H), 2.22 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 206.68, 202.88, 145.43, 140.40, 138.46, 137.85, 137.11, 133.00, 132.70, 132.43, 132.33, 129.26, 128.51, 128.26, 128.24, 127.87, 127.66, 127.35, 127.18, 124.69, 75.22, 56.51, 56.46, 47.41, 45.69, 42.76.

HRMS: (ESI) $[M+H]^+$ calcd. for C₃₈H₃₁O₃Cl₂, 605.1650 found, 605.1650;

IR (KBr): *v*_{max} 3394 (OH), 1668 (C=O), 1631 (C=O), 1597, 1489, 1096, 1010, 694, 540 cm⁻¹ **mp** 250.5-252.9 °C

(2,6-bis(4-bromophenyl)-4-hydroxy-4-phenylcyclohexane-1,3-diyl)bis(phenylmethanone) ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 2H), 7.31 – 7.16 (m, 10H), 7.15 – 6.92 (m, 11H), 5.31 (d, *J* = 2.4 Hz, 1H), 4.48 – 4.39 (m, 1H), 4.20 – 4.08 (m, 2H), 4.07 – 3.97 (m, 1H), 2.50 – 2.39 (m, 1H), 2.22 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 206.65, 202.84, 145.39, 140.90, 138.45, 137.85, 137.61, 133.00, 132.34, 131.47, 131.19, 129.63, 128.27, 127.89, 127.87, 127.65, 127.35, 127.19, 124.69, 120.87, 120.54, 75.20, 56.48, 56.34, 47.47, 45.63, 42.82.

HRMS: (ESI) $[M+Na]^+$ calcd. for $C_{38}H_{30}O_3NaBr_2$, 715.0459 found, 715.0471;

IR (KBr): *v*_{max} 3441 (OH), 1666 (C=O), 1631 (C=O), 1597, 1489, 1072, 1010, 694, 540 cm⁻¹ **mp** 260.4-261.6 °C

(4-hydroxy-2,6-bis(4-methoxyphenyl)-4-phenylcyclohexane-1,3-

diyl)bis(phenylmethanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.6 Hz, 2H), 7.28 – 7.14 (m, 10H), 7.10 – 6.98 (m, 7H), 6.63 (d, *J* = 8.8 Hz, 2H), 6.36 (d, *J* = 8.8 Hz, 2H), 5.35 (d, *J* = 2.4 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.18 – 4.07 (m, 2H), 4.05 – 3.92 (m, 1H), 3.63 (s, 3H), 3.47 (s, 3H), 2.51 – 2.38 (m, 1H), 2.20 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 207.39, 203.92, 158.16, 145.93, 139.03, 138.17, 134.29, 132.60, 131.72, 130.75, 128.87, 128.13, 127.69, 127.67, 127.59, 127.40, 126.93, 124.78, 113.75, 113.50, 75.39, 57.26, 57.01, 55.11, 54.97, 47.23, 46.10, 42.52.

HRMS: (ESI) [M+Na]⁺ calcd. for C₄₀H₃₆O₅Na, 619.2460 found, 619.2462;

IR (KBr): *v*_{max} 3417 (OH), 1666 (C=O), 1643 (C=O), 1512, 1249, 1033, 825, 694, 540 cm⁻¹ **mp** 199.8-200.1 °C

(4-hydroxy-4-phenyl-2,6-di-p-tolylcyclohexane-1,3-diyl)bis(phenylmethanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.2 Hz, 2H), 7.28 – 7.12 (m, 10H), 7.10– 6.94 (m, 7H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 5.34 (d, *J* = 2.0 Hz, 1H), 4.45 (d, *J* = 11.2 Hz, 1H), 4.22 – 4.08 (m, 2H), 4.05 – 3.95 (m, 1H), 2.54 – 2.41 (m, 1H), 2.21 (dd, *J* = 14.0, 3.6 Hz, 1H), 2.12 (s, 3H), 1.91 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 207.34, 203.79, 145.95, 139.09, 138.22, 136.30, 136.06, 135.57, 132.47, 131.54, 128.96, 128.68, 128.10, 127.79, 127.72, 127.59, 127.47, 126.90, 124.81, 75.37, 57.03, 56.98, 47.60, 46.04, 42.93, 20.83, 20.65.

HRMS: (ESI) $[M+Na]^+$ calcd. for C₄₀H₃₆O₃Na, 587.2562 found, 587.2556;

IR (KBr): *v*_{max} 3417 (OH), 1666 (C=O), 1643 (C=O), 1597, 1342, 1210, 694, 540 cm⁻¹ **mp** 270.7-271.9 °C

(2,6-bis(3-bromophenyl)-4-hydroxy-4-phenylcyclohexane-1,3-diyl)bis(phenylmethanone) ¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.51 (m, 2H), 7.47 (t, *J* = 1.6 Hz, 1H), 7.40 – 6.96 (m, 17H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.86 – 6.80 (m, 1H), 6.69 (t, *J* = 8.0 Hz, 1H), 5.38 (d, *J* = 2.4 Hz, 1H), 4.45 (d, *J* = 11.2 Hz, 1H), 4.22 – 4.07 (m, 2H), 4.05 – 3.95 (m, 1H), 2.50 – 2.36 (m, 1H), 2.23 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 206.54, 202.52, 145.44, 144.21, 140.86, 138.44, 137.80, 133.06, 132.37, 130.64, 130.05, 129.99, 129.87, 129.74, 128.29, 127.85, 127.70, 127.39, 127.19, 127.07, 124.68, 122.43, 122.15, 75.20, 56.15, 55.96, 47.61, 45.82, 43.09.

HRMS: (ESI) $[M+Na]^+$ calcd. for $C_{38}H_{30}O_3Br_2Na$, 715.0459 found, 715.0447;

IR (KBr): *v*_{max} 3402 (OH), 1666 (C=O), 1643 (C=O), 1573, 1188, 1072, 902, 779, 694 cm⁻¹ **mp** 236.0-237.1 °C

(2,6-bis(3,4-dimethoxyphenyl)-4-hydroxy-4-phenylcyclohexane-1,3-

diyl)bis(phenylmethanone)

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.6 Hz, 2H), 7.33 – 7.16 (m, 8H), 7.13 – 7.01 (m, 4H), 6.85 (dd, J = 8.0, 1.6 Hz, 1H), 6.78 – 6.56 (m, 4H), 6.34 (d, J = 8.4 Hz, 2H), 5.40 (d, J = 2.0 Hz, 1H), 4.45 (d, J = 11.2 Hz, 1H), 4.21 – 4.07 (m, 2H), 4.05 – 3.95 (m, 1H), 3.75 (s, 3H), 3.71 (s, 3H), 3.59 (s, 3H), 3.54 (s, 3H), 2.50 – 2.39 (m, 1H), 2.24 (dd, J = 14.0, 3.6 Hz, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 207.29, 203.64, 148.59, 148.31, 147.71, 147.62, 145.88, 139.05, 138.19, 134.81, 132.71, 131.92, 131.11, 128.18, 127.69, 127.66, 127.62, 127.34, 127.01,

124.77, 119.71, 111.86, 111.22, 110.90, 75.45, 56.91, 56.87, 55.86, 55.80, 55.78, 55.62, 47.79, 46.26, 43.06.

HRMS: (ESI) [M+Na]⁺ calcd. for C₄₂H₄₀O₇Na, 679.2672 found, 679.2667;

IR (film): *v*_{max} 3441 (OH), 3024, 1672 (C=O), 1650 (C=O), 1516, 1257, 1141, 1026, 754cm⁻¹

(4-hydroxy-2,6-di(naphthalen-2-yl)-4-phenylcyclohexane-1,3-diyl)bis(phenylmethanone) ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.15 (m, 22H), 7.13 – 7.01 (m, 2H), 6.99 – 6.86 (m, 3H), 6.80 (t, *J* = 8.0 Hz, 2H), 5.46 (d, *J* = 2.4 Hz, 1H), 4.67 (d, *J* = 11.2 Hz, 1H), 4.54 – 4.37 (m, 2H), 4.35 – 4.25 (m, 1H), 2.75 – 2.55 (m, 1H), 2.35 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 207.13, 203.39, 145.83, 139.55, 138.68, 137.99, 135.99, 133.34, 132.88, 132.56, 132.32, 132.16, 131.66, 128.20, 128.04, 127.88, 127.60, 127.54, 127.38, 127.25, 127.12, 127.04, 126.94, 126.00, 125.78, 125.71, 125.42, 125.33, 124.83, 75.42, 56.79, 56.49, 48.21, 46.17, 43.53.

HRMS: (ESI) $[M+Na]^+$ calcd. for C₄₆H₃₆O₃Na, 659.2562 found, 659.2576;

IR (KBr): *v*_{max} 3410 (OH), 1668 (C=O), 1643 (C=O), 1597, 1342, 1256, 817, 694, 478 cm⁻¹ **mp** 283.5-284.1 °C

(4-hydroxy-4-phenyl-2,6-di(thiophen-2-yl)cyclohexane-1,3-diyl)bis(phenylmethanone) ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.2 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.20 – 7.01 (m, 7H), 6.93 (d, *J* = 5.2 Hz, 1H), 6.74 (d, *J* = 3.2 Hz, 1H), 6.69 – 6.60 (m, 3H), 6.38 (dd, *J* = 4.8, 3.6 Hz, 1H), 5.28 (d, *J* = 2.4 Hz, 1H), 4.55 (t, *J* = 11.2 Hz, 1H), 4.47 – 4.33 (m, 2H), 4.13 (t, *J* = 11.2 Hz, 1H), 2.53 – 2.43 (m, 1H), 2.39 (dd, *J* = 14.0, 4.0 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 206.65, 203.07, 145.46, 145.14, 142.02, 138.59, 137.79, 132.90, 132.14, 128.19, 127.88, 127.72, 127.68, 127.62, 127.11, 126.96, 126.53, 126.23, 125.52, 124.79, 123.88, 123.23, 75.20, 58.89, 57.67, 46.86, 43.30, 39.00.

HRMS: (ESI) [M+Na]⁺ calcd. for C₃₄H₂₈O₃NaS₂, 571.1378 found, 571.1375;

IR (KBr): *v*_{max} 3371 (OH), 1666 (C=O), 1635 (C=O), 1589, 1342, 1249, 694, 524 cm⁻¹ **mp** 260.1-260.4 °C

(2,4,6-tris(4-chlorophenyl)-4-hydroxycyclohexane-1,3-diyl)bis((4-

chlorophenyl)methanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, J = 8.8 Hz, 2H), 7.26 – 7.13 (m, 8H), 7.13 – 6.97 (m, 8H), 6.87 (d, J = 8.4 Hz, 2H), 5.26 (d, J = 2.0 Hz, 1H), 4.33 (d, J = 11.2 Hz, 1H), 4.18 – 3.93 (m, 3H), 2.42 – 2.31 (m, 1H), 2.18 (dd, J = 14.0, 3.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 204.87, 201.34, 143.91, 140.15, 139.91, 139.08, 136.73, 136.46, 135.67, 133.24, 133.20, 132.80, 129.11, 129.03, 128.72, 128.55, 128.50, 128.49, 128.32, 126.13, 74.97, 56.19, 56.06, 47.28, 45.54, 42.67.

HRMS: (ESI) [M+Na]⁺ calcd. for C₃₈H₂₇O₃NaCl₅, 729.0301 found, 729.0262;

IR (KBr): *v*_{max} 3487 (OH), 1666 (C=O), 1635 (C=O), 1589, 1489, 1095, 825, 732, 532 cm⁻¹ **mp** 259.6-261.2 °C

(2,6-bis(4-bromophenyl)-4-(4-chlorophenyl)-4-hydroxycyclohexane-1,3-diyl)bis((4-chlorophenyl)methanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.8 Hz, 2H), 7.26 – 7.14 (m, 8H), 7.12 – 7.06 (m, 6H), 7.04 – 6.93 (m, 4H), 5.25 (d, *J* = 2.4 Hz, 1H), 4.32 (d, *J* = 11.2 Hz, 1H), 4.17 – 3.91 (m, 3H), 2.41 – 2.29 (m, 1H), 2.18 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 204.85, 201.30, 143.87, 140.41, 140.15, 139.10, 137.23, 136.44, 135.67, 133.24, 131.66, 131.50, 129.46, 129.03, 128.72, 128.50, 128.48, 128.33, 126.12,

121.32, 120.87, 74.94, 56.06, 56.02, 47.33, 45.47, 42.73. **HRMS**: (ESI) [M+H]⁺ calcd. for C₃₈H₂₈Br₂Cl₃O₃, 794.9471 found, 794.9457; **IR (KBr)**: *v*_{max} 3441 (OH), 1666 (C=O), 1643 (C=O), 1589, 1489, 1087, 817, 532 cm⁻¹ **mp** 257.5-259.1 °C

(4-(4-bromophenyl)-4-hydroxy-2,6-di-p-tolylcyclohexane-1,3-diyl)bis((4-bromophenyl)methanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H), 7.25 – 7.07 (m, 10H), 6.97 (d, J = 7.2 Hz, 2H), 6.90 (d, J = 7.6 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H), 5.30 (d, J = 2.4 Hz, 1H), 4.37 – 4.27 (m, 1H), 4.13 – 4.02 (m, 2H), 3.99 – 3.89 (m, 1H), 2.41 – 2.31 (m, 1H), 2.20 – 2.10 (m, 4H), 1.97 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 205.86, 202.49, 145.02, 138.56, 137.52, 136.93, 136.52, 136.48, 135.14, 131.33, 131.18, 130.86, 129.18, 129.16, 128.97, 128.33, 127.64, 126.90, 126.59, 121.12, 75.17, 56.71, 56.50, 47.48, 45.83, 42.84, 20.86, 20.72.

HRMS: (ESI) $[M+H]^+$ calcd. for C₄₀H₃₄Br₃O₃, 801.0038 found, 801.0092;

IR (KBr): *v*_{max} 3448 (OH), 1666 (C=O), 1643 (C=O), 1581, 1396, 1072, 810 cm⁻¹ **mp** 282.2-282.8 °C

(4-hydroxy-2,4,6-tris(4-methoxyphenyl)cyclohexane-1,3-diyl)bis((4-

methoxyphenyl)methanone)

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.8 Hz, 2H), 7.35 (d, *J* = 9.2 Hz, 4H), 7.17 (d, *J* = 8.8 Hz, 2H), 7.05 (d, *J* = 7.2 Hz, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.8 Hz, 2H), 6.54

(d, *J* = 8.8 Hz, 4H), 6.37 (d, *J* = 8.8 Hz, 2H), 5.52 (d, *J* = 2.0 Hz, 1H), 4.40 – 4.30 (m, 1H), 4.18 – 4.03 (m, 2H), 4.03 – 3.90 (m, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.65 (s, 3H), 3.62 (s, 3H), 3.47 (s, 3H), 2.46 – 2.33 (m, 1H), 2.16 (dd, *J* = 14.0, 3.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 205.17, 201.80, 163.19, 162.42, 158.21, 158.01, 157.95, 138.51, 134.61, 131.87, 131.20, 130.97, 130.36, 129.88, 128.80, 125.93, 113.65, 113.36, 112.95, 112.80, 75.06, 56.10, 55.24, 55.16, 55.09, 55.06, 54.91, 47.16, 46.55, 42.48.

HRMS: (ESI) [M+Na]⁺ calcd. for C₄₃H₄₂O₈Na, 709.2777 found, 709.2783;

IR (KBr): *v*_{max} 3387 (OH), 1658 (C=O), 1604 (C=O), 1512, 1257, 1172, 1033, 833, 547 cm⁻¹ **mp** 147.8-248.8 °C

(2,6-bis(4-bromophenyl)-4-hydroxy-4-(thiophen-2-yl)cyclohexane-1,3-diyl)bis(thiophen-2-ylmethanone)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, J = 4.4 Hz, 1H), 7.36 (d, J = 4.8 Hz, 1H), 7.31 (d, J = 3.3 Hz, 1H), 7.25 (d, J = 7.6 Hz, 2H), 7.20 – 7.01 (m, 8H), 6.98 – 6.94 (m, 1H), 6.88 – 6.73 (m, 3H), 5.61 (s, 1H), 4.22 – 4.06 (m, 2H), 4.05 – 3.75 (m, 2H), 2.48 – 2.26 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 196.92, 193.60, 151.08, 144.43, 140.48, 137.45, 135.48, 134.03, 133.39, 131.72, 131.52, 131.39, 129.58, 127.77, 127.58, 126.82, 124.05, 122.98, 121.06, 120.70, 74.51, 59.48, 57.95, 47.16, 46.81, 42.44.

HRMS: (ESI) [M+Na]⁺ calcd. for C₃₂H₂₄O₃NaS₃Br₂, 732.9152 found, 732.9152; IR (KBr): v_{max} 3433 (OH), 1643 (C=O), 1604 (C=O), 1411, 1257, 1072, 817, 709, 532 cm⁻¹ mp 251.3-252.6 °C VIII: ¹H NMR, ¹³C NMR, ¹³C DEPT-135 spectra of products

-0.000

S22

129.110 128.76 128.577 128.577 128.574 128.391 128.391 128.300 127.999 127.999 127.371 127.371 127.360 127.360 <56.549
<56.333
-48.000
-43.294</pre>

S34

S36

--0.000

