Supporting Information

Chiral Ion-Pair Photoredox Organocatalyst: Enantioselective Anti-Markovnikov Hydroetherification of Alkenols

Zhongbo Yang,^a Han Li,^b Sujia Li,^a Ming-Tian Zhang,^b and Sanzhong Luo,*^a

^a Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing, 100190 (China)

^b Center of Basic Molecular Science (CBMS) Department of Chemistry, Tsinghua University, Beijing, 100084, China

Email: luosz@iccas.ac.cn

Table of Contents

1.	General Information and Materials	S3
2.	Optimization of Catalysts and Solvents	S4
3.	Experimental Section	S6
4.	¹ H NMR Investigation	S18
5.	Laser Flash Photolysis Studies	S18
6.	Stern-Volmer Analysis	S18
7.	References	S19
8.	NMR Spectrums	S21
9.	HPLC Charts	S51

General Information.

All commercial reagents were used without further purification unless otherwise noted. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on Bruker UltraShield 300MHz or 400MHz spectrometer with solvent resonance as the internal standard (¹H NMR: CDCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.16 ppm).. ¹H NMR data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, td = triplet of doublet, dt = doublet of triplet, dd = doublet of doublet), coupling constants (Hz), and integration. Infrared Spectroscopy was conducted on Thermo Fisher Nicolet 6700. High resolution mass spectra were obtained using electrospray ionization (ESI) mass spectrometer. Silica gel (300 - 400 mesh) was for column chromatography. Irradiation of photochemical reactions were carried out using 32×0.2 W blue LED floodlamp, with Pyrex glass schlenk tube purchased from Synthware. Stern-Volmer Analyses was performed using the commercially available LP920 system by Edinburgh Instruments, Inc., and laser excitation was provided by a pulsed Nd:YAG laser in combination with an optical parametric oscillator (OPO) for wavelength selection. The enantiomeric excesses were determined by HPLC analysis on Chiral Daicel Chiralpak OD-H, AD-H, AS-H. Optical rotations were measured on a commercial polarimeter and reported as follows: $[\alpha]_D^{25}$ (c = g/100 mL, solvent). NOTE: A couple of racemic and chiral samples were determined by ¹H NMR and ¹³C NMR. For several samples, the slight deviation of retention time in HPLC most possibly due to the low polarity of eluent.

Materials.

Compound $1a^{[1]}$, $S7 - S11^{[2]}$ were prepared according to reported process. Substrate 2a - 2n were prepared through method I. Solvents were freshly dried according to *the purification handbook Purification of Laboratory Chemicals* before using. 1,2-dichloroethane (DCE) was degassed by "pump-freeze-thaw" cycles (×2) before using. Other reagents were obtained from commercial sources and used without further purification. Unless otherwise noted, the reactions were taken under argon.

Optimization of Solvent, H-atom Donor and Catalyst on Substrate 2a

Table S1. Solvent Optimization on Substrate 2a.

Ph Ph		(5 mol %) Mes-AcrX₆ (100 mol %) PhCH(CN) ₂		Ph Ph O	
2a	`OH	solvent, -15°C, E	► BLEDs, 24 h	4a	
Entry	Sol	vent (concentration)	Yield ^a (%)	ee^{b} (%)	
1		DCM (0.2)	83	53	
2		CH ₃ CN (0.2)	23	30	
3		Toluene (0.2)	38	31	
4		CHCl ₃ (0.2)	90	20	
5		PhCl (0.2)	68	41	
6]	Ethyl acetate (0.2)	83	50	
7		THF (0.2)	< 5		
8		Et ₂ O (0.2)	85	47	
9		Hexane (0.2)	38	19	
10		DCE (0.2)	83	56	
11		DCE (0.4)	83	56	
 12		DCE (0.05)	< 5		

^{*a*} Determined by isolation after chromatographic purification. ^{*b*} Determined by HPLC analysis.

	Ph Ph	(5 mol %) Mes-AcrX₆ H-atom donor		Ph Ph	
2a `OH		DCE (0.2 M), -15°C, BLEDs, 24 h		4a	
	Entry	H-atom donor (mmol %)	Yield ^a (%)	ee^{b} (%)	
	1	PhCH(CN)2 (100)	83	56	
	2	$(PhS)_2(10)$	83	56	
	3	Ph ₃ SiH (100)	< 5		
	4	NC ^{CO2} Et	70	49	
	5	О ОН	< 5		

Table S2. H-atom Donor Optimization on Substrate 2a.

^{*a*} Determined by isolation after chromatographic purification. ^{*b*} Determined by HPLC analysis.

Ph Ph OH	(5 mol %) Mes-AcrX_n (100 mol %) PhCH(CN) ₂		Ph Ph
2a	DCE (0.2 M), -15°C, BLEDs, 24 h		4a
Entry	Chiral anion X _n	Yield ^a (%)	ee^{b} (%)
1	\mathbf{X}_{1}	78	22
2	\mathbf{X}_{2}	83	18
3	X_3	83	38
4	X_4	< 5	
5	X_5	83	41
6	X_6	83	56
7	SX ₁	78	11
8	SX ₂	83	12
9	SX ₃	83	20
10	SX4	78	4
11	SX ₅	80	15
12	SX ₆	< 5	
13	SX ₇	10	
14	SX ₈	77	35
15	SX ₉	83	37
16	SX ₁₀	77	30
17	SX11	35	9
18	SX ₁₂	< 5	
19	SX13	50	13
20	SX14	60	20
21	SX15	77	33
22	SX16	< 5	
23	SX17	83	41
24	SX18	83	50
25	SX19	83	33
26	SX ₂₀	83	49

Table S3. Catalyst Optimization on Substrate 2a.

 a Determined by isolation after chromatographic purification. b Determined by HPLC analysis.

Experimental Section.

a) PBr₃, Et₂O, 0°C, 30 min. b) NaH, THF, 0°C - RT, 4 h. c) KOH (aq.), EtOH, reflux, 2 h. d) *n*BuLi, THF, -78°C - RT, overnight.

Method I: To a solution of allylic alcohol **S1** (1.0 eq.) dry Et_2O at 0 °C was added PBr₃ (1.2 eq., in 5 mL of Et_2O) and the mixture was stirred at this temperature for 30 min. The reaction mixture was quenched with saturated NaHCO₃ carefully at 0 °C. It was partitioned between EtOAc and water. The organic phase was separated. The aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was successively washed with saturated NaHCO₃ and brine, dried over Na₂SO₄, and concentrated in *vacuo* to allylic bromide **S2**, which was used in the next step without further purification.

To a solution of β -ketocarbonyl **S3** (1.0 eq.) in dry THF at 0 °C was added NaH (1.5 eq.) and the mixture was stirred at this temperature for 30 min. A solution of allylic bromide **S2** (1.0 eq., in 5 mL of THF) was added via cannula. The resulting solution was warmed to room temperature and stirred overnight, which was quenched with saturated NH₄Cl at 0 °C. The mixture was partitioned between EtOAc and water. The organic phase was separated and the aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was washed with brine, dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by silica gel chromatography to give the desired product β -ketocarbonyl **S4**.

To a solution of β -ketocarbonyl **S4** (1.0 eq.) in EtOH at room temperature was added aqueous KOH (4.0 eq., 7.0 M in H₂O) and the mixture was heated to reflux (92 °C) for 2 h. The resulting solution was cooled to room temperature and removed most EtOH in *vacuo*. It was partitioned between EtOAc and water. The organic phase was separated. The aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was successively washed with brine, dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by silica gel chromatography to give the desired product ketone **S5**.

To a solution of aryl bromide **S6** (2.0 eq.) in dry THF at -78 °C was slowly added "BuLi (2.0 eq., 2.4 M in hexane) and the mixture was stirred at this temperature for 1 h. A solution of ketone **S5** (1.0 eq., in 5 mL of THF) was added via cannula. The resulting solution was stirred at -78 °C for further 1 h and slowly warmed to room temperature overnight. The resulting solution was quenched with saturated NH₄Cl. The mixture was partitioned between EtOAc and water. The organic phase was separated and the aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was washed with brine, dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by silica gel chromatography to give the desired substrate **2**.

5-methyl-1,1-diphenylhex-4-en-1-ol (2a)

2a: following general method I, compound **2a** (45% for 4 steps) was prepared as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.33 (m, 4H), 7.22 (t, J = 7.6 Hz, 4H), 7.15 – 7.11 (m, 2H), 5.09 (t, J = 7.1 Hz, 1H), 2.28 (s, 1H), 2.26 – 2.23 (m, 2H), 1.94 – 1.91 (m, 2H), 1.59 (s, 3H), 1.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.15, 132.69, 128.26, 126.86, 126.11, 124.25, 78.64, 41.87, 25.86, 22.95, 17.75. IR (thin film, cm⁻¹): 3475, 2956, 2925, 2854, 1447, 699. HRMS (ESI⁻): calcd for [C₁₉H₂₁OCl]⁻ 265.1598, found 265.1596.

1,1-bis(4-chlorophenyl)-5-methylhex-4-en-1-ol (2b)

2b: following general method I, compound **2b** (40% for 4 steps) was prepared as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.25 (m, 8H), 5.15 (t, J = 7.1 Hz, 1H), 2.43 (s, 1H), 2.28 – 2.25 (m, 2H), 2.00 - 1.93 (m, 2H), 1.67 (s, 3H), 1.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.28, 133.26, 132.94, 128.47, 127.51, 123.77, 78.04, 41.61, 25.84, 22.83, 17.80. IR (thin film, cm⁻¹): 3471, 2957, 2926, 2854, 1655, 1489, 821. HRMS (ESI⁻): calcd for [C₁₉H₁₉OCl₂]⁻ 333.0818, found 333.0818.

5-methyl-1,1-di-o-tolylhex-4-en-1-ol (2c)

2c: following general method I, compound **2c** (48% for 4 steps) was prepared as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 7.7, 1.2 Hz, 2H), 7.21 – 7.13 (m, 4H), 7.03 (d, J = 7.1 Hz, 2H), 5.15 (t, J = 7.2 Hz, 1H), 2.37 – 2.33 (m, 2H), 1.98 – 1.90 (m, 9H), 1.67 (s, 3H), 1.51 (s, 3H). ¹³ 13C NMR (101 MHz, CDCl₃) δ 143.97, 136.25, 132.40, 132.30, 127.21, 127.11, 125.33, 124.46, 78.76, 40.93, 25.84, 22.88, 21.52, 17.76. IR (thin film, cm⁻¹): 3359, 2957, 2921, 2851, 1659, 1633, 1457, 1377, 754. HRMS (ESI⁻): calcd for [C₂₁H₂₅O]⁻ 293.1911, found 293.1908.

5-methyl-1,1-di-m-tolylhex-4-en-1-ol (2d)

2d: following general method I, compound 2d (46% for 4 steps) was prepared as colorless oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 6H), 7.02 (d, J = 3.8 Hz, 2H), 5.17 (t, J = 7.3 Hz, 1H), 2.36 – 2.27 (m, 9H), 2.01 – 1.97 (m, 2H), 1.67 (s, 3H), 1.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.16, 137.76, 132.53, 128.09, 127.56, 126.71, 124.37, 123.17, 78.54, 41.95, 25.86, 22.97, 21.77, 17.74. IR (thin film, cm⁻¹): 3476, 3020, 2956, 2924, 2855, 1605, 1456, 789. HRMS (ESI⁻): calcd for [C₂₁H₂₅O]⁻ 293.1911, found 293.1908.

5-methyl-1,1-di-p-tolylhex-4-en-1-ol (2e)

2e: following general method I, compound **2e** (50% for 4 steps) was prepared as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 7.9 Hz, 4H), 7.11 (d, J = 7.9 Hz, 4H), 5.17 (t, J = 7.0 Hz, 1H), 2.35 – 2.26 (m, 9H), 2.02 – 1.97 (m, 2H), 1.68 (s, 3H), 1.49 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.46, 136.34, 132.50, 128.93, 125.99, 124.38, 78.42, 41.94, 25.86, 23.01, 21.11, 17.80. IR (thin film, cm⁻¹): 3473, 3023, 2970, 2923, 2856, 1510, 1448, 817. HRMS (ESI⁻): calcd for [C₂₁H₂₅O]⁻ 293.1911, found 293.1908.

1,1-bis(4-chlorophenyl)-4-cyclopentylidenebutan-1-ol (2f)

2f: following general method I, compound **2f** (40% for 4 steps) was prepared as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.29 (m, 4H), 7.24 – 7.21 (m, 4H), 5.23 (d, J = 6.9 Hz, 1H), 2.49 (s, 1H), 2.27 – 2.24 (m, 2H), 2.17 – 2.15 (m, 2H), 1.97 – 1.92 (m, 4H), 1.61 – 1.52 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 145.28, 145.15, 132.88, 128.43, 127.48, 119.17, 78.08, 41.38, 33.75, 28.72, 26.42, 26.35, 24.42. IR (thin film, cm⁻¹): 3478, 2954, 2927, 2855, 1671, 1489, 1400, 1093, 1013, 819. HRMS (ESI⁻): calcd for [C₂₁H₂₁OCl₂]⁻ 359.0975, found 359.0971.

1,1-bis(4-chlorophenyl)-4-cyclohexylidenebutan-1-ol (2g)

2g: following general method I, compound **2g** (45% for 4 steps) was prepared as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.28 (m, 4H), 7.25 – 7.22 (m, 4H), 5.08 (t, J = 7.3 Hz, 1H), 2.48 (s, 1H), 2.24 (dd, J = 8.7, 6.5 Hz, 2H), 2.02 – 1.89 (m, 6H), 1.48 – 1.39 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 145.31, 141.48, 132.92, 128.46, 127.51, 120.52, 78.22, 41.91, 37.26, 28.76, 28.64, 27.83, 26.91, 21.98. IR (thin film, cm⁻¹): 3578, 3489, 2927, 2853, 1593, 1489, 1093, 822. HRMS (ESI⁻): calcd for [C₂₂H₂₃OCl₂]⁻ 373.1131, found 373.1127.

1,1-bis(4-chlorophenyl)-4-cycloheptylidenebutan-1-ol (2h)

2h: following general method I, compound **2h** (40% for 4 steps) was prepared as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.6 Hz, 4H), 7.23 (d, J = 8.7 Hz, 4H), 5.12 (t, J = 7.1 Hz, 1H), 2.40 (s, 1H), 2.24 (dd, J = 8.9, 6.6 Hz, 2H), 2.15 – 2.12 (m, 2H), 2.01 – 1.91 (m, 4H), 1.49 – 1.43 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 145.31, 143.12, 132.95, 128.48, 127.53, 123.96, 78.13, 41.65, 37.95, 30.12, 29.97, 29.40, 29.29, 27.10, 22.43. IR (thin film, cm⁻¹): 3727, 2956, 2923, 2852, 1489, 1094, 821. HRMS (ESI⁻): calcd for [C₂₃H₂₅OCl₂]⁻ 387.1288, found 387.1284.

1,1,5,5-tetraphenylpent-4-en-1-ol (2i)

2i: following general method I, compound **2i** (50% for 4 steps) was prepared as colorless viscous oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.08 (m, 18H), 7.10 (dd, J = 7.7, 1.6 Hz, 2H), 6.11 (t, J = 7.7 Hz, 1H), 2.43 – 2.39 (m, 2H), 2.18 – 2.12 (m, 2H), 2.07 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.91, 142.70, 142.39, 140.01, 129.87, 129.24, 128.35, 128.28, 128.21, 127.28, 127.05, 127.02, 126.93, 126.07, 78.35, 42.10, 24.61. IR (thin film, cm⁻¹): 3559, 3359, 2921, 2851, 1659, 1633, 1598, 1494, 1446, 761, 699. HRMS (ESI⁻): calcd for [C₂₉H₂₅O]⁻ 389.1911, found 389.1915.

5,5-bis(4-chlorophenyl)-1,1-diphenylpent-4-en-1-ol (2j)

2j: following general method I, compound **2j** (30% for 4 steps) was prepared as colorless viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.19 (m, 14H), 7.06 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.3 Hz, 2H), 6.08 (t, J = 7.7 Hz, 1H), 2.39 – 2.36 (m, 2H), 2.14 – 2.06 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.71, 140.73, 140.10, 137.90, 133.16, 133.06, 131.16, 130.43, 128.70, 128.49, 128.43, 128.34, 127.07, 126.03, 78.29, 41.87, 24.61. IR (thin film, cm⁻¹): 3059, 3027, 2957, 2926, 2854, 1722, 1491, 1447, 1288, 1091, 829, 700. HRMS (ESI⁻): calcd for [C₂₉H₂₃OCl₂]⁻ 457.1131, found 457.1128.

5,5-bis(4-fluorophenyl)-1,1-diphenylpent-4-en-1-ol (2k)

2k: following general method I, compound **2k** (25% for 4 steps) was prepared as colorless viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.31 (m, 4H), 7.27 – 7.24 (m, 4H), 7.20 (t, J = 7.2 Hz, 2H), 7.10 (dd, J = 8.6, 5.5 Hz, 2H), 7.25 – 6.90 (m, 6H), 6.02 (t, J = 7.7 Hz, 1H), 2.40 – 2.37 (m, 2H), 2.13 – 2.09 (m, 2H), 2.05 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.18, 162.99, 161.22, 161.04, 146.79, 140.30, 138.71, 138.68, 135.65, 135.62, 131.42, 131.36, 129.55, 128.81, 128.75, 128.32, 127.04, 126.04, 115.44, 115.27, 115.16, 114.99, 78.32, 41.97, 24.60. IR (thin film, cm⁻¹): 3359, 2921, 2851, 1601, 1508, 1223, 835, 700. HRMS (ESI⁻): calcd for [C₂₉H₂₃OF₂]⁻ 425.1722, found 425.1718.

5,5-bis(4-methoxyphenyl)-1,1-diphenylpent-4-en-1-ol (21)

21: following general method I, compound **21** (30% for 4 steps) was prepared as light yellow viscous oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.33 (m, 4H), 7.28 – 7.24 (m, 4H), 7.21 – 7.17 (m, 2H), 7.12 – 7.10 (m, 2H), 7.01 – 6.98 (m, 2H), 6.85 – 6.77 (m, 4H), 5.97 (t, J = 7.6 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 2.42 – 2.38 (m, 2H), 2.17 – 2.12 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.84, 158.60, 146.97, 141.41, 135.80, 132.51, 130.96, 128.42, 128.26, 127.28, 126.89, 126.08, 113.71, 113.56, 78.40, 55.41, 55.37, 42.20, 24.55. IR (thin film, cm⁻¹): 3559, 2921, 2850, 1660, 1633, 1606, 1511, 1245, 1033, 831, 701. HRMS (ESI⁻): calcd for [C₃₁H₂₉O₃]⁻ 449.2122, found 449.2119.

(*E*)-5-(4-methoxyphenyl)-1,1-diphenylpent-4-en-1-ol (2m)

2m: following general method I, compound **2m** (40% for 4 steps) was prepared as slight yellow viscous oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.8 Hz, 4H), 7.26 (t, J = 7.7 Hz, 4H), 7.19 – 7.15 (m, 4H), 6.76 (d, J = 8.6 Hz, 2H), 6.23 (d, J = 15.8 Hz, 1H), 6.06 – 6.00 (m, 1H), 3.73 (s, 3H), 2.42 – 2.38 (m, 2H), 2.17 – 2.13 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.84, 147.01, 130.59, 129.64, 128.38, 128.33, 127.14, 127.01, 126.16, 114.05, 78.41, 55.40, 41.70, 27.70. IR (thin film, cm⁻¹): 3445, 2920, 2849, 1634, 1608, 1510, 1246, 700. HRMS (ESI⁻): calcd for [C₂₄H₂₃O₂]⁻ 343.1704, found 343.1708.

(E)-1,1-diphenyl-5-(thiophen-2-yl)pent-4-en-1-ol (**2n**)

2n: following general method I, compound **2n** (28% for 4 steps) was prepared as colorless viscous oil. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 7.5 Hz, 4H), 7.32 (t, J = 7.7 Hz, 4H), 7.25 – 7.22 (m, 2H), 7.07 (d, J = 5.0 Hz, 1H), 6.91 (dd, J = 5.0, 3.6 Hz, 1H), 6.83 (d, J = 3.4 Hz, 1H), 6.47 (d, J = 15.7 Hz, 1H), 6.06 (dt, J = 15.5, 6.9 Hz, 1H), 2.46 – 2.43 (m, 2H), 2.21 – 2.16 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.93, 143.01, 130.57, 128.38, 127.34, 127.09, 126.17, 124.48, 123.53, 123.38, 78.33, 41.53, 27.55. IR (thin film, cm⁻¹): 3359, 3024, 2955, 2922, 2851, 1717, 1447, 1287, 697. HRMS (ESI⁻): calcd for [C₂₁H₁₉OS]⁻ 319.1162, found 319.1158.

(*S*)-(3,3'-bis(4-chlorophenyl)-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-6,6'diyl)bis(triisopropylsilane) (**S12**)

In a flask, **S11** (1.0 g, 1.07 mmol), (4-chlorophenyl)boronic acid (0.40 g, 2.57 mmol), Pd(PPh₃)₄ (0.185 g, 0.16 mmol), and Ba(OH)₂ (1.69 g, 5.35 mmol) were combined and purged with nitrogen. A mixture of 3:1 dioxane : H₂O (16 mL) was added and then stirred with reflux for 24 h. The resulting reaction was cooled to room temperature, then diluted with 1M HCl and DCM until a homogeneous biphasic solution resulted. The aqueous layer was extracted twice with DCE. The combined organic layers were washed with water and brine. The organic layer was then dried over

Na₂SO₄ and concentrated under vacuum form the reaction residue, which was dissolved in DCE (16 mL). 12M HCl (5.0 mL) was added into above mixture at room temperature. The reaction was heated to reflux for 6 h, then cooled to room temperature. The mixture was partitioned between DCE and water. The organic phase was separated and the aqueous phase was extracted three times with DCE. The combined DCE extract was washed with saturated aqueous NaHCO₃, dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by silica gel chromatography to give the desired product **S12** (0.526 g, 60%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 20.0 Hz, 4H), 7.72 – 7.70 (m, 4H), 7.46 – 7.44 (m, 6H), 7.25 (d, J = 8.4 Hz, 2H), 5.35 (s, 2H), 1.47 (dt, J = 14.9, 7.5 Hz, 6H), 1.11 (dd, J = 7.5, 3.8 Hz, 36H). ¹³C NMR (126 MHz, CDCl₃) δ 150.54, 136.59, 136.24, 133.84, 133.81, 133.01, 132.03, 131.18, 131.11, 129.32, 129.15, 128.65, 122.88, 111.86, 18.79, 18.77, 11.05. HRMS (ESF): calcd for [C₅₀H₅₉O₂Cl₂Si₂]⁻ 817.3436, found 817.3427.

(4*R*,11b*S*)-2,6-bis(4-chlorophenyl)-4-hydroxy-9,14-bis(triisopropylsilyl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4-oxide (**HX**₆)

To a solution of **S12** (0.5 g, 0.61 mmol) in pyridine (5.0 mL) was added dropwise freshly distilled POCl₃ (170 µL, 1.83 mmol) over 1 min. The resultant mixture was stirred at 95 °C for 12 h, upon which H₂O (5.0 mL) was cautiously added. Heating was continued at 70 °C for an additional 12 h. The reaction mixture was then cooled to ambient temperature and poured into chilled 6 M aqueous HCl. The reaction mixture was extracted with DCE. The organic phase was separated and the aqueous phase was extracted three times with DCE. The combined DCE extract was washed with brine, dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by silica gel chromatography to give the desired product **HX**₆ (0.484 g, 90%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 2H), 7.99 (s, 2H), 7.55 – 7.26 (m, 12H), 1.50 (dt, J = 14.9, 7.4 Hz, 6H), 1.12 (dd, J = 7.4, 1.6 Hz, 36H). ¹³C NMR (126 MHz, CDCl₃) δ 144.29, 136.34, 135.36, 133.89, 133.49, 132.72, 132.61, 132.59, 132.22, 131.71, 131.18, 131.08, 128.49, 125.80, 122.44, 18.72, 18.70, 10.98. HRMS (ESI⁻): calcd for [C₅₀H₅₈O₄Cl₂PSi₂]⁻ 879.2994, found 879.2984.

General procedure I for photoinduced enantioselective anti-Markovnikov hydroetherification of 2a. To a flame-dried Schlenk tube equipped with a magnetic stir bar was added Mes-AcrBF₄ (5 mol %) and NaX₆ (5 mol %). The mixture was diluted with 0.5 mL of anhydrous chloroform. After stirring for 15 min under dark, the solvent was removed in *vacuo*. Then 2a (0.05 mmol) and 2-phenylmalononitrile (100 mol %) was added. Following the mixture diluted with 0.25 mL DCE in glove box, the reaction was irradiated with Blue LEDs in -15 °C for 24 h. Upon completion, the reaction mixture was concentrated in *vacuo*. The residue was purified by silica gel chromatography (1% EtOAc in Petroleum ether) to give 4a (11.0 mg, 83% yield, 56% *ee*. Reaction temperature was -25 °C, 70% yield, 60% ee).

5-isopropyl-2,2-diphenyltetrahydrofuran (**4a**): $[\alpha]_D^{25} = -2.6^\circ$ (c = 0.35, CHCl₃, 60% *ee*). HPLC analysis: Daicel Chiralpak OD-H, 0.1% *iso*-propanol/hexane, flow rate = 0.5 mL/min, λ = 216 nm, retention time: 15.5 min (minor), 22.1 min (major). ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.44 (m, 4H), 7.31 – 7.25 (m, 4H), 7.21 - 7.16 (m, 2H), 3.75 (q, J = 7.2 Hz, 1H), 2.68 – 2.62 (m, 1H), 2.50 - 2.44 (m, 1H), 1.96 – 1.89 (m, 1H), 1.81 - 1.77 (m, 1H), 1.72 - 1.65 (m, 1H), 1.08 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.62, 147.04, 128.25, 128.08, 126.64, 126.55, 126.05, 125.91, 87.65, 84.45, 39.23, 33.65, 29.20, 19.68, 18.69. IR (thin film, cm⁻¹): 3444, 2956, 2922, 2851, 1633, 1470, 1055, 701. HRMS (APCI⁺): calcd for [C₁₉H₂₃O]⁺ 267.1743, found 267.1738.

2,2-bis(4-chlorophenyl)-5-isopropyltetrahydrofuran (**4b**): the product **4b** (82% yield, 53% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -4.0^\circ$ (c = 0.85, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 0.1% *iso*-propanol/hexane, flow rate = 0.3 mL/min, λ = 221 nm, retention time: 19.1 min (major), 20.0 min (minor). ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.33 (m, 4H), 7.27 – 7.22 (m, 4H), 3.72 (q, J = 7.3 Hz, 1H), 2.59 – 2.54 (m, 1H), 2.44 – 2.39 (m, 1H), 1.92 (td, J = 13.4, 6.9 Hz, 1H), 1.76 – 1.65 (m, 2H), 1.05 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.70, 145.22, 132.71, 132.60, 128.51, 128.32, 127.40, 127.26, 86.87, 84.78, 39.13, 33.61, 29.19, 19.57, 18.67.. IR (thin film, cm⁻¹): 2962, 2923, 2876, 2848, 1488, 1091, 1055, 1008, 825. HRMS (APCI⁺): calcd for [C₁₉H₂₁OCl₂]⁺ 335.0964, found 355.0968.

5-isopropyl-2,2-di-o-tolyltetrahydrofuran (**4c**): the product **4c** (54% yield, 33% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -11.0^\circ$ (c = 0.4, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 0.1% *iso*-propanol/hexane, flow rate = 0.2 mL/min, λ = 218 nm, retention time: 29.4 min (major), 31.4 min (minor). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.16 – 7.11 (m, 4H), 7.04 – 7.00 (m, 2H), 3.62 (q, J = 7.4 Hz, 1H), 2.69 – 2.63 (m, 1H), 2.50 – 2.44 (m, 1H), 2.05 – 1.98 (m, 7H), 1.79 – 1.69 (m, 2H), 0.99 (d, J = 6.6 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.02, 143.44, 136.85, 136.32, 132.32, 132.07, 127.02, 126.98, 126.80, 126.38, 124.99, 124.86, 88.37, 84.08, 36.65, 33.69, 29.50, 21.77,

21.67, 19.67, 18.87.. IR (thin film, cm⁻¹): 2958, 2927, 2871, 1460, 1046, 753. HRMS (APCI⁺): calcd for $[C_{21}H_{27}O_3]^+$ 295.2056, found 295.2054.

5-isopropyl-2,2-di-m-tolyltetrahydrofuran (**4d**): the product **4d** (50% yield, 59% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -4.3^\circ$ (c = 0.30, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 0.2% *iso*-propanol/hexane, flow rate = 0.5 mL/min, λ = 214 nm, retention time: 7.9 min (minor), 8.2 min (major). ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.23 (m, 4H), 7.16 (dtd, J = 10.3, 7.5, 2.7 Hz, 2H), 7.00 – 6.97 (m, 2H), 3.74 (q, J = 7.4 Hz, 1H), 2.63 – 2.61 (m, 1H), 2.45 – 2.42 (m, 1H), 2.32 (d, J = 6.5 Hz, 6H), 1.92 – 1.89 (m, 1H), 1.80 – 1.78 (m, 1H), 1.68 – 1.66 (m, 1H), 1.08 (d, J = 3.7 Hz, 3H), 0.88 (d, J = 3.7 Hz, 3H)... ¹³C NMR (126 MHz, CDCl₃) δ 147.64, 147.05, 137.74, 137.52, 128.08, 127.91, 127.38, 127.28, 126.73, 126.59, 123.09, 122.97, 87.63, 84.33, 39.15, 33.60, 29.85, 29.07, 21.80, 19.71, 18.63. IR (thin film, cm⁻¹): 2922, 2851, 1727, 1467, 1284, 1121, 1073. HRMS (APCI⁺): calcd for [C₂₁H₂₇O]⁺ 295.2056, found 295.2059.

5-isopropyl-2,2-di-p-tolyltetrahydrofuran (**4e**): the product **4e** (77% yield, 50% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -5.0^\circ$ (c = 0.30, CHCl₃). HPLC analysis: Daicel Chiralpak AD-H x 2, 0.5% *iso*-propanol/hexane, flow rate = 0.5 mL/min, λ = 223 nm, retention time: 16.4 min (minor), 17.0 min (major). ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.30 (m, 4H), 7.08 (dd, J = 17.4, 7.1 Hz, 4H), 3.72 (dd, J = 14.3, 7.2 Hz, 1H), 2.63 – 2.58 (m, 1H), 2.44 – 2.38 (m, 1H), 2.29 (d, J = 8.7 Hz, 6H), 1.92 – 1.88 (m, 1H), 1.79 – 1.76 (m, 1H), 1.68 – 1.65 (m, 1H), 1.06 (dd, J = 6.6, 1.6 Hz, 3H), 0.87 (dd, J = 6.7, 1.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.93, 144.24, 136.09, 135.99, 128.94, 128.75, 125.96, 125.80, 87.47, 84.29, 39.20, 33.63, 29.85, 29.19, 21.12, 19.68, 18.66. IR (thin film, cm⁻¹): 3358, 3192, 2956, 2851, 1659, 1633, 1470. HRMS (APCI⁺): calcd for [C₁₅H₂₇O]⁺ 295.2056, found 295.2051.

2,2-bis(4-chlorophenyl)-5-cyclopentyltetrahydrofuran (**4f**): the product **4f** (80% yield, 50% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -9.1^\circ$ (c = 0.55, CHCl₃). HPLC analysis:

Daicel Chiralpak OD-H, 0.1% *iso*-propanol/hexane, flow rate = 0.3 mL/min, λ = 223 nm, retention time: 19.8 min (major), 20.9 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 4H), 7.26 – 7.22 (m, 4H), 3.85 (dd, J = 14.8, 7.3 Hz, 1H), 2.60 - 2.53 (m, 1H), 2.48 – 2.41 (m, 1H), 2.02 – 1.89 (m, 3H), 1.68 – 1.61 (m, 4H), 1.53 - 1.47 (m, 2H), 1.21 – 1.16 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.84, 145.30, 132.70, 132.59, 128.49, 128.31, 127.43, 127.30, 86.90, 83.77, 45.51, 39.21, 30.55, 30.12, 29.16, 25.77, 25.72. IR (thin film, cm⁻¹): 2951, 2920, 2873, 2854, 1489, 1089, 1055, 819. HRMS (APCI⁺): calcd for [C₂₁H₂₃OCl₂]⁺ 366.1121, found 366.1117.

2,2-bis(4-chlorophenyl)-5-cyclohexyltetrahydrofuran (**4g**): the product **4g** (85% yield, 64% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -5.4^\circ$ (c = 0.65, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 0.1% *iso*-propanol/hexane, flow rate = 1.0 mL/min, λ = 207 nm, retention time: 6.1 min (major), 6.7 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 4H), 7.27 – 7.23 (m, 4H), 3.74 (q, J = 7.4 Hz, 1H), 2.56 (dt, J = 12.5, 7.4 Hz, 1H), 2.41 (ddd, J = 12.5, 8.3, 6.2 Hz, 1H), 2.11 – 1.89 (m, 3H), 1.75 – 1.66 (m, 6H), 1.47 – 1.43 (m, 1H), 1.21 – 0.97 (m, 3H). ¹³ C NMR (101 MHz, CDCl₃) δ 145.78, 145.29, 132.71, 132.60, 128.51, 128.33, 127.41, 127.27, 86.67, 83.79, 43.41, 39.05, 30.07, 29.24, 29.15, 26.73, 26.15, 26.10. IR (thin film, cm⁻¹): 3359, 2923, 2852, 1633, 1489, 1092, 1013, 822. HRMS (APCI⁺): calcd for [C₂₂H₂₅OCl₂]⁺ 375.1277, found 375.1272.

2,2-bis(4-chlorophenyl)-5-cycloheptyltetrahydrofuran (**4h**): the product **4h** (80% yield, 54% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -2.4^\circ$ (c = 0. 50, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 0.1% *iso*-propanol/hexane, flow rate = 0.3 mL/min, λ = 213 nm, retention time: 17.9 min (major), 19.0 min (minor). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.32 (m, 4H), 7.26 – 7.22 (m, 4H), 3.79 (q, J = 7.2 Hz, 1H), 2.57 (dt, J = 12.6, 7.5 Hz, 1H), 2.44 – 2.39 (m, 1H), 2.03 – 2.01 (m, 1H), 1.92 (dd, J = 12.7, 6.2 Hz, 1H), 1.72 - 1.62 (m, 6H), 1.52 – 1.34 (m, 6H), 1.19 – 1.17 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.75, 145.23, 132.71, 132.58, 128.52, 128.32, 127.43, 127.26, 86.69, 83.73, 44.74, 39.21, 30.86, 30.49, 29.36, 28.74, 28.55, 26.99, 26.89. IR (thin film, cm⁻¹): 2920, 2851, 1663, 1631, 1489, 1457, 1394, 1096, 824. HRMS (APCI⁺): calcd for [C₂₃H₂₇OCl]⁺ 389.1434, found 389.1428.

5-benzhydryl-2,2-diphenyltetrahydrofuran (**4i**): the product **4i** (80% yield, 13% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -2.4^\circ$ (c = 0.25, CHCl₃). HPLC analysis: Daicel Chiralpak AD-H, 0.5% *iso*-propanol/hexane, flow rate = 1.0 mL/min, λ = 218 nm, retention time: 6.0 min (minor), 6.4 min (major). ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.15 (m, 20H), 4.84 (q, J = 7.5 Hz, 1H), 4.05 (d, J = 8.4 Hz, 1H), 2.64 – 2.59 (m, 1H), 2.40 – 2.34 (m, 1H), 1.88 (dd, J = 12.8, 6.5 Hz, 1H), 1.76 (dd, J = 12.9, 6.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.35, 146.95, 143.06, 143.00, 129.03, 128.77, 128.53, 128.31, 128.24, 128.05, 126.72, 126.58, 126.52, 126.26, 125.89, 125.84, 88.58, 80.82, 57.40, 38.71, 30.90. IR (thin film, cm⁻¹): 3650, 3567, 1721, 1505, 1644, 1541. HRMS (APCI⁺): calcd for [C₂₉H₂₇O]⁺ 391.2056, found 391.2052.

5-(bis(4-chlorophenyl)methyl)-2,2-diphenyltetrahydrofuran (**4j**): the product **4j** (80% yield, 9% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -2.0^\circ$ (c = 0.35, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 1.0% *iso*-propanol/hexane, flow rate = 1.0 mL/min, λ = 223 nm, retention time: 7.0 min (minor), 8.2 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.8 Hz, 2H), 7.32 – 7.14 (m, 16H), 4.74 (q, J = 7.1 Hz, 1H), 3.98 (d, J = 8.2 Hz, 1H), 2.62 (dt, J = 12.7, 7.2 Hz, 1H), 2.36 (ddd, J = 12.5, 8.2, 6.7 Hz, 1H), 1.90 (td, J = 13.9, 7.0 Hz, 1H), 1.72 (dt, J = 15.1, 7.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.99, 146.62, 141.05, 140.86, 132.60, 132.32, 130.38, 130.00, 128.80, 128.47, 128.40, 128.14, 126.86, 126.75, 125.76, 125.73, 88.82, 80.44, 56.02, 38.45, 30.78. IR (thin film, cm⁻¹): 3360, 2920, 2850, 1659, 1633, 1490, 1471, 1091. HRMS (APCI⁺): calcd for [C₂₉H₂₅OCl₂]⁺ 459.1278, found 459.1273.

5-(bis(4-fluorophenyl)methyl)-2,2-diphenyltetrahydrofuran (**4k**): the product **4k** (77% yield, 10% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -0.9^\circ$ (c = 0.45, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 1.0% *iso*-propanol/hexane, flow rate = 1.0 mL/min, λ = 227 nm, retention time: 7.5 min (minor), 8.8 min (major). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.7 Hz, 2H), 7.33 – 7.14 (m, 12H), 6.95 (dt, J = 15.3, 8.7 Hz, 4H), 4.74 (q, J = 7.2 Hz, 1H), 4.01 (d, J = 8.1

Hz, 1H), 2.64 - 2.58 (m, 1H), 2.35 - 2.30 (m, 1H), 1.89 (dq, J = 14.0, 7.0 Hz, 1H), 1.73 (dt, J = 14.9, 7.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl3) δ 162.64, 160.69, 147.08, 146.72, 138.64, 138.31, 130.47, 130.41, 130.13, 130.07, 128.38, 128.12, 126.83, 126.71, 125.78, 125.77, 115.50, 115.33, 115.14, 114.97, 88.75, 80.76, 55.68, 38.48, 30.77. IR (thin film, cm⁻¹): 3839, 3649, 1603, 1507, 1224, 824. HRMS (APCI⁺): calcd for [C₂₉H₂₅OF₂]⁺ 427.1868, found 427.1863.

5-(bis(4-methoxyphenyl)methyl)-2,2-diphenyltetrahydrofuran (**4**I): the product **4I** (90% yield, 8% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = 0.5^\circ$ (c = 0.65, CHCl₃). HPLC analysis: Daicel Chiralpak AS-H, 2.5% *iso*-propanol/hexane, flow rate = 1.0 mL/min, λ = 190 nm, retention time: 7.7 min (major), 9.1 min (minor). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 7.8 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 7.30 – 7.13 (m, 10H), 6.82 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.5 Hz, 2H), 4.74 (q, J = 7.3 Hz, 1H), 3.96 (d, J = 8.3 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 2.62 – 2.57 (m, 1H), 2.37 – 2.31 (m, 1H), 1.87 (dd, J = 12.8, 6.6 Hz, 1H), 1.74 (dd, J = 12.5, 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.13, 157.97, 147.39, 147.00, 135.68, 135.53, 129.88, 129.62, 128.30, 128.03, 126.69, 126.56, 125.90, 125.88, 113.86, 113.59, 88.55, 81.14, 55.58, 55.33, 38.68, 30.85. IR (thin film, cm⁻¹): 2921, 2834, 1608, 1509, 1463, 1447, 1246, 1176, 1033, 703. HRMS (APCI⁺): calcd for [C₃₁H₃₁O₃]⁺ 451.2268, found 451.2261.

5-(4-methoxybenzyl)-2,2-diphenyltetrahydrofuran (**4m**): the product **4m** (88% yield, 3% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -0.6^\circ$ (c = 0.50, CHCl₃). HPLC analysis: Daicel Chiralpak AS-H, 1.0% *iso*-propanol/hexane, flow rate = 1.0 mL/min, λ = 214 nm, retention time: 6.4 min (minor), 7.4 min (major). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (t, J = 8.6 Hz, 4H), 7.29 – 7.25 (m, 4H), 7.20 – 7.15 (m, 4H), 6.82 (d, J = 8.4 Hz, 2H), 4.32 (p, J = 6.7 Hz, 1H), 3.78 (s, 3H), 3.07 (dd, J = 13.6, 5.9 Hz, 1H), 2.73 (dd, J = 13.6, 7.2 Hz, 1H), 2.63 – 2.58 (m, 1H), 2.50 – 2.45 (m, 1H), 1.91 (dd, J = 12.5, 6.8 Hz, 1H), 1.72 (dd, J = 12.4, 7.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.17, 147.41, 146.87, 131.07, 130.45, 128.26, 128.11, 126.70, 126.67, 126.03, 125.99, 113.80, 88.36, 80.20, 55.38, 41.75, 38.77, 30.90. IR (thin film, cm⁻¹): 3445, 2920, 2849, 1634, 1608, 1510, 1246, 700. HRMS (APCI⁺): calcd for [C₂₄H₂₅O₂]⁺ 345.1849, found 345.1844.

2,2-diphenyl-5-(thiophen-2-ylmethyl)tetrahydrofuran (**4n**): the product **4n** (75% yield, 2% *ee*) was synthesized according to the general procedure I. $[\alpha]_D^{25} = -3.1^\circ$ (c = 0.35, CHCl₃). HPLC analysis: Daicel Chiralpak OD-H, 1.0% *iso*-propanol/hexane, flow rate = 1.0 mL/min, λ = 231 nm, retention time: 6.6 min (minor), 7.4 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 4H), 7.31 – 7.26 (m, 4H), 7.20 – 7.14 (m, 3H), 6.94 (dd, J = 5.1, 3.4 Hz, 1H), 6.88 - 6.87 (m, 1H), 4.37 (p, J = 6.6 Hz, 1H), 3.27 (dd, J = 14.7, 6.1 Hz, 1H), 3.05 (dd, J = 14.7, 6.7 Hz, 1H), 2.69 – 2.63 (m, 1H), 2.54 – 2.47 (m, 1H), 2.02 (tt, J = 14.3, 7.1 Hz, 1H), 1.81 – 1.75 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.18, 146.60, 141.06, 128.32, 128.17, 126.77, 126.77, 126.73, 125.94, 125.94, 125.71, 123.97, 88.64, 79.46, 38.63, 36.83, 31.03, 0.15. IR (thin film, cm⁻¹): 3359, 2920, 2850, 1659, 1633, 1471, 1447, 1049, 696. HRMS (APCI⁺): calcd for [C₂₁H₂₁OS]⁺ 321.1308, found 321.1303.

¹H NMR Investigation

Figure 2b: To a solution of X_6Na (0.01 mmol) in CD₂Cl₂ (0.5 mL) at room temperature was added Mes-AcrBF₄ (0.01 mmol). The mixture was stirred under dark for 15 min. The reaction mixture was conducted to ¹H NMR detection without further purification.

Figure 2c: To a solution of HX_6 (0.01 mmol) in CD_2Cl_2 (0.5 mL) at room temperature was added Mes-AcrBF₄ (0.01 mmol). The mixture was stirred under dark for 15 min. The reaction mixture was conducted to ¹H NMR detection without further purification.

Laser Flash Photolysis Studies.

Laser Flash Photolysis/Transient Absorption was performed using the commercially available LP920 system by Edinburgh Instruments, Inc. Laser excitation was provided by a pulsed Nd:YAG laser in combination with an optical parametric oscillator (OPO) for wavelength selection. Probe light was generated by a 450 W Xe lamp. Typical experiments employed laser excitation at 435 nm with single wavelength transient absorption monitored at the indicated wavelengths (1.0 nm bandwidths) with a photomultiplier tube (PMT) and transient spectra recorded using a gated CCD at the indicated time delays (10 ns gate width) unless otherwise indicated. Laser Flash photolysis experiments were performed on a 50 μ M solution of **Mes-AcrBF**₄ and chiral photocatalyst **Mes-AcrX**₆ in DCE. Pure argon was bubbled through the solution for 20 min before test. Transient absorption kinetics were conducted at 480 nm corresponding to the the transient absorption spectrum for triplet **Mes-Acr**⁺. Transient absorption kinetics were fit in Origin.

Figure 3. a) Transient absorption spectrum for **Mes-AcrX**₆ taken at 10 ns. b) Transient absorption kinetics for **Mes-AcrX**₆ measured at 480 nm. Conditions: [**Mes-AcrX**₆]= 50 μ M in DCE; $\lambda_{ex} = 435$ nm; Ar atmosphere.

Stern-Volmer Analyses.

Stern-Volmer experiments^[3] were conducted with detection at 510 nm, where the solutions in DCE contained **Mes-AcrBF**₄ (1.6×10^{-5} M) or **Mes-AcrX**₆ (1.6×10^{-5} M) and the quencher **2a** ranging from 3.0×10^{-4} to 1.6×10^{-3} M in concentration. Stern-Volmer analysis was conducted according to the following relationship:

$$\frac{\tau_0}{\tau} = 1 + K_{SV}[Q] = 1 + k_q \tau_0[Q]$$

where τ_0 and τ are the fluorescence lifetime in the absence and presence of quencher Q, K_{SV} is the Stern-Volmer constant, k_q is the bimolecular quenching constant, and [Q] is the concentration of quencher.

[Q] [2a] (mM)	$k_{\rm obs} ({\rm ns}^{-1})$	[Q] [2a] (mM)	$k_{\rm obs} ({\rm ns}^{-1})$
Mes N BF ₄ Mes-AcrBF ₄		TIPS O P O P O P O Mes N I I Mes-AcrX ₆	
0	0.1107	0	0.1106
0.300	0.1109	0.657	0.1135
0.900	0.1142	1.201	0.1143
1.500	0.1172	1.562	0.1166

Table S4. Fluorescence lifetime of Mes-AcrBF₄ (16 μ M in DCE) and Mes-AcrX₆ (16 μ M in DCE) measured at 510 nm at the concentrations of quencher 2a. Pseudo-first-order rate constants $k_{obs} = 1/\tau$.

Figure S1. Stern–Volmer plots of quenching of Mes-Acr⁺ (in DCE) fluorescence lifetime for quencher 2a studied. Mes-Acr⁺ fluorescence lifetime was measured with the laser flash photolysis spectrometer at 510 nm. a) Stern-Volmer plots for Mes-AcrBF₄; b) Stern-Volmer plots for Mes-AcrX₆. The Stern–Volmer quenching constant, K_{SV} , was determined by the slope of the linear regression, where the bimolecular quenching constant, k_q , is equal to K_{SV}/τ_0 . Conditions: [Mes-Acr⁺] = 16 µm; $\lambda_{ex} = 435$ nm; Ar atmosphere.

References.

- [1] D. S. Hamilton; D. A. Nicewicz. J. Am. Chem. Soc. 2012, 134, 18577.
- [2] F. Romanov-Michailidis; L. Guénée; A. Alexakis. Org. Lett. 2013, 15, 5890.
- [3] N. Romero,; D. A. Nicewicz, J. Am. Chem. Soc, 2014, 136, 17024.

7.25 7.25 7.25 7.25

5.12 5.12 5.12

S38

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

1

RECENSES NO.

REAR BREAKEN

858889993

HPLC Charts

mAU

<Peak Results> PDA Ch1 216nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	14.118	554136	13973099	49.522
2	18.959	146446	14243116	50.478

mAU

<Peak Results> PDA Ch1 216nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	15.453	271368	7477985	20.051
2	22.097	153954	29816818	79.949

<Peak Results> PDA Ch1 221nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	19.581	1196793	24361433	49.424
2	20. 485	1089015	24929696	50.576

mAU

〈Peak Results〉 PDA Ch1 221nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	19.082	519821	9650532	76.231
2	19.963	151511	3008984	23.769

<Peak Results> PDA Ch1 218nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	27.674	363887	11644395	49.935
2	29.440	322545	11674498	50.065

<Peak Results> PDA Ch2 218nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	29.394	512944	17592214	33.605
2	31.367	812325	34757314	66.395

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	9.029	366243	3476329	49.463
2	9.573	292822	3551773	50.537

mAU

<Peak Results> PDA Ch2 214nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	7.944	271139	1944982	20.382
2	8.182	909439	7597646	79.618

<Peak Results> PDA Ch1 223nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	16.395	57607	957056	47.961
2	17.046	59666	1038435	52.039

<Peak Results> PDA Ch2 223nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	16.386	14836	246173	25.223
2	17.004	39690	729796	74.777

<Peak Results> PDA Ch2 223nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	17.981	1309002	26280953	49.337
2	18.893	1190602	26986929	50.663

mAU

<Peak Results> PDA Ch2 223nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	19.838	1532511	32923453	74.761
2	20.875	487556	11115091	25.239

〈Peak Results〉 PDA Ch2 207nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.530	874914	7680842	49.994
2	7.104	759638	7682567	50.006

mAU

<Peak Results> PDA Ch2 207nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.147	2960635	21863060	81.929
2	6.711	501686	4822224	18.071

<Peak Results> PDA Ch2 213nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	19.574	1902640	41360332	49.631
2	20.934	1702383	41975472	50.369

mAU

<Peak Results> PDA Ch2 213nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	17.853	571290	10358754	76.891
2	18.957	162485	3113177	23.109

〈Peak Results〉 PDA Ch2 218nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	5.899	454043	2595308	50.162
2	6.184	586516	2578594	49.838

mAU

<Peak Results> PDA Ch1 218nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	5.963	139622	945553	43.319
2	6.385	191274	1237218	56.681

<Peak Results> PDA Ch2 223nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.962	329616	7371687	50.447
2	8.243	277970	7240953	49.553

<Peak Results> PDA Ch2 223nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.974	95959	2042472	45.429
2	8.211	97341	2453477	54.571

<Peak Results>

 PDA
 Ch1
 227nm

 Index
 Time/min
 Height/mAU
 Quantity/Area
 Area %/%

 1
 7.498
 84434
 2020158
 45.714

 2
 8.779
 101989
 2398964
 54.286

<Peak Results> PDA Ch2 190nm Index Time/mi

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	7.688	622840	18398018	50.195
2	9.026	372805	18254966	49.805

<Peak Results> PDA Ch2 190nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	7.697	689380	20218739	53.948
2	9.083	347484	17259520	46.052

<Peak Results> PDA Ch1 214nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.578	396131	10963077	49.645
2	7.752	298017	11119955	50.355

mAU

<Peak Results> PDA Ch2 214nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.361	311641	7854614	48.721
2	7.446	217515	8267050	51.279

〈Peak Results〉 PDA Ch1 231nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.596	207107	3531754	50.015
2	7.372	195759	3529678	49.985

mAU

<Peak Results> PDA Ch2 231nm

Index	Time/min	Height/mAU	Quantity/Area	Area %/%
1	6.641	256789	4540435	48.918
2	7.406	273140	4741239	51.082