Supporting Information

Chiral Ion-Pair Photoredox Organocatalyst:

Enantioselective Anti-Markovnikov Hydroetherification of Alkenols

Zhongbo Yang, ${ }^{\text {a }}$ Han Li, ${ }^{\text {b }}$ Sujia Li, ${ }^{\text {a }}$ Ming-Tian Zhang, ${ }^{\text {b }}$ and Sanzhong Luo, *a
${ }^{\text {a }}$ Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing, 100190 (China)
${ }^{\mathrm{b}}$ Center of Basic Molecular Science (CBMS) Department of Chemistry, Tsinghua University, Beijing, 100084, China

Table of Contents

1. General Information and Materials S3
2. Optimization of Catalysts and Solvents S4
3. Experimental Section S6
4. ${ }^{1} \mathrm{H}$ NMR Investigation S18
5. Laser Flash Photolysis Studies S18
6. Stern-Volmer Analysis S18
7. References S19
8. NMR Spectrums S21
9. HPLC Charts S51

General Information.

All commercial reagents were used without further purification unless otherwise noted. Proton and carbon magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded on Bruker UltraShield 300 MHz or 400 MHz spectrometer with solvent resonance as the internal standard (${ }^{1} \mathrm{H}$ NMR: CDCl_{3} at $7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: CDCl_{3} at 77.16 ppm$) . .{ }^{1} \mathrm{H}$ NMR data were reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{td}=$ triplet of doublet, $\mathrm{dt}=$ doublet of triplet, dd = doublet of doublet), coupling constants (Hz), and integration. Infrared Spectroscopy was conducted on Thermo Fisher Nicolet 6700. High resolution mass spectra were obtained using electrospray ionization (ESI) mass spectrometer. Silica gel (300-400 mesh) was for column chromatography. Irradiation of photochemical reactions were carried out using $32 \times 0.2 \mathrm{~W}$ blue LED floodlamp, with Pyrex glass schlenk tube purchased from Synthware. Stern-Volmer Analyses was performed using the commercially available LP920 system by Edinburgh Instruments, Inc., and laser excitation was provided by a pulsed Nd:YAG laser in combination with an optical parametric oscillator (OPO) for wavelength selection. The enantiomeric excesses were determined by HPLC analysis on Chiral Daicel Chiralpak OD-H, AD-H, AS-H. Optical rotations were measured on a commercial polarimeter and reported as follows: $[\alpha]_{\mathrm{D}}{ }^{25}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$, solvent) . NOTE: A couple of racemic and chiral samples were determined by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR. For several samples, the slight deviation of retention time in HPLC most possibly due to the low polarity of eluent.

Materials.

Compound 1a ${ }^{[1]}, \mathbf{S} 7-\mathbf{S 1 1}{ }^{[2]}$ were prepared according to reported process. Substrate $\mathbf{2 a}-\mathbf{2 n}$ were prepared through method I. Solvents were freshly dried according to the purification handbook Purification of Laboratory Chemicals before using. 1,2-dichloroethane (DCE) was degassed by "pump-freeze-thaw" cycles $(\times 2)$ before using. Other reagents were obtained from commercial sources and used without further purification. Unless otherwise noted, the reactions were taken under argon.

S_{4} : $\mathrm{R}_{1}=\mathrm{Br}, \mathrm{R}_{2}=\mathrm{H}$
$S X_{5}: R_{1}=$ TIPS, $R_{2}=H$
$S_{6}: R_{1}=H, R_{2}=C_{6} F_{5}$
$S X_{7}: R_{1}=H, R_{2}=2,4-F_{2}-C_{6} H_{3}$
$\mathrm{SX}_{8}: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=2-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
$S X_{g}: R_{1}=H, R_{2}=3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{SX}_{10}: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=2,4-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}$
$\mathrm{SX}_{11}: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}(\mathrm{Ph})_{2}$
$S X_{12}: R_{1}=H, R_{2}=2,4,6-(i \operatorname{Pr})_{3} C_{6} H_{3}$
$S X_{13}: R_{1}=H, R_{2}=9$-anthracene
$X_{4}: R_{1}=H, R_{2}=\mathrm{SiPh}_{3}$

$S X_{2}$

$X_{1}: R_{1}=H, R_{2}=P h$
$X_{2}: R_{1}=H, R_{2}=O M e$
$X_{3}: R_{1}=H, R_{2}=C l$
$X_{5}: \mathrm{R}_{1}=\mathrm{SiPh}_{3}, \mathrm{R}_{2}=\mathrm{Cl}$
$X_{6}: R_{1}=$ TISP, $R_{2}=C I$
$S_{14}: R_{1}=H, R_{2}=C_{6} F_{5}$
$S X_{15}: R_{1}=H, R_{2}=B r$
$S_{16}: R_{1}=H, R_{2}=\mathrm{NO}_{2}$
$\mathrm{SX}_{17}: \mathrm{R}_{1}=\mathrm{C}_{8} \mathrm{H}_{17}, \mathrm{R}_{2}=\mathrm{Cl}$
$\mathrm{SX}_{18}: \mathrm{R}_{1}=2,4,6^{-}(\mathrm{iPr})_{3} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}_{2}=\mathrm{Cl}$

Table S1. Solvent Optimization on Substrate 2a.

${ }^{a}$ Determined by isolation after chromatographic purification.. ${ }^{b}$ Determined by HPLC analysis.

Table S2. H-atom Donor Optimization on Substrate 2a.

${ }^{a}$ Determined by isolation after chromatographic purification.. ${ }^{b}$ Determined by HPLC analysis.

Table S3. Catalyst Optimization on Substrate 2a.

[^0]
Experimental Section.

a) $\mathrm{PBr}_{3}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$. b) $\left.\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{RT}, 4 \mathrm{~h} . \mathrm{c}\right) \mathrm{KOH}$ (aq.), EtOH, reflux, 2 h .
d) $n \mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}-\mathrm{RT}$, overnight.

Method I: To a solution of allylic alcohol $\mathbf{S 1}$ (1.0 eq.) dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was added PBr_{3} (1.2 eq., in 5 mL of $\mathrm{Et}_{2} \mathrm{O}$) and the mixture was stirred at this temperature for 30 min . The reaction mixture was quenched with saturated NaHCO_{3} carefully at $0^{\circ} \mathrm{C}$. It was partitioned between EtOAc and water. The organic phase was separated. The aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was successively washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to allylic bromide $\mathbf{S 2}$, which was used in the next step without further purification.

To a solution of β-ketocarbonyl $\mathbf{S 3}$ (1.0 eq.) in dry THF at $0^{\circ} \mathrm{C}$ was added NaH (1.5 eq .) and the mixture was stirred at this temperature for 30 min . A solution of allylic bromide $\mathbf{S 2}$ (1.0 eq ., in 5 mL of THF) was added via cannula. The resulting solution was warmed to room temperature and stirred overnight, which was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The mixture was partitioned between EtOAc and water. The organic phase was separated and the aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel chromatography to give the desired product β-ketocarbonyl $\mathbf{S 4}$.

To a solution of β-ketocarbonyl $\mathbf{S 4}$ (1.0 eq.) in EtOH at room temperature was added aqueous KOH (4.0 eq., 7.0 M in $\mathrm{H}_{2} \mathrm{O}$) and the mixture was heated to reflux $\left(92^{\circ} \mathrm{C}\right)$ for 2 h . The resulting solution was cooled to room temperature and removed most EtOH in vacuo. It was partitioned between EtOAc and water. The organic phase was separated. The aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was successively washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel chromatography to give the desired product ketone $\mathbf{S 5}$.

To a solution of aryl bromide $\mathbf{S 6}$ (2.0 eq.) in dry THF at $-78^{\circ} \mathrm{C}$ was slowly added ${ }^{n} \mathrm{BuLi}$ (2.0 eq., 2.4 M in hexane) and the mixture was stirred at this temperature for 1 h . A solution of ketone $\mathbf{S 5}$ (1.0 eq., in 5 mL of THF) was added via cannula. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for further 1 h and slowly warmed to room temperature overnight. The resulting solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was partitioned between EtOAc and water. The organic phase was separated and the aqueous phase was extracted three times with EtOAc. The combined EtOAc extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel chromatography to give the desired substrate 2.

[^1]

2a: following general method I , compound $\mathbf{2 a}$ (45% for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.09$ $(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.15,132.69,128.26,126.86,126.11,124.25,78.64,41.87,25.86$, 22.95, 17.75. IR (thin film, cm^{-1}): 3475, 2956, 2925, 2854, 1447, 699. HRMS (ESI-): calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OCl}\right]^{-} 265.1598$, found 265.1596.

1,1-bis(4-chlorophenyl)-5-methylhex-4-en-1-ol (2b)

2b
2b: following general method I, compound $\mathbf{2 b}$ (40% for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 8 \mathrm{H}), 5.15(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.28-2.25$ $(\mathrm{m}, 2 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.28$, 133.26, 132.94, 128.47, 127.51, 123.77, 78.04, 41.61, 25.84, 22.83, 17.80. IR (thin film, cm^{-1}): 3471, 2957, 2926, 2854, 1655, 1489, 821. HRMS (ESI): calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{OCl}_{2}\right]^{-} 333.0818$, found 333.0818 .

5-methyl-1,1-di-o-tolylhex-4-en-1-ol (2c)

2c: following general method I, compound 2c (48% for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{dd}, \mathrm{J}=7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.15(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 9 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} 13 \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.97,136.25,132.40,132.30,127.21,127.11,125.33,124.46$, $78.76,40.93,25.84,22.88,21.52,17.76$. IR (thin film, cm^{-1}): 3359, 2957, 2921, 2851, 1659, 1633, 1457, 1377, 754. HRMS (ESI'): calcd for [$\left.\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}\right]^{-} 293.1911$, found 293.1908.

5-methyl-1,1-di-m-tolylhex-4-en-1-ol (2d)

2d
2d: following general method I, compound $\mathbf{2 d}$ (46% for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36-2.27(\mathrm{~m}, 9 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.16,137.76,132.53,128.09,127.56,126.71,124.37,123.17,78.54,41.95,25.86,22.97,21.77$, 17.74. IR (thin film, cm^{-1}): $3476,3020,2956,2924,2855,1605,1456,789$. HRMS (ESI $^{-}$): calcd for [$\left.\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}\right]^{-} 293.1911$, found 293.1908

5-methyl-1,1-di-p-tolylhex-4-en-1-ol (2e)

$\mathbf{2 e}$: following general method I, compound $\mathbf{2 e}$ (50% for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 5.17(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 9 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.46,136.34,132.50,128.93,125.99,124.38,78.42,41.94,25.86,23.01,21.11,17.80$. IR (thin film, cm^{-1}): 3473, 3023, 2970, 2923, 2856, 1510, 1448, 817. HRMS (ESI'): calcd for [$\left.\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}\right]^{-}$293.1911, found 293.1908.

1,1-bis(4-chlorophenyl)-4-cyclopentylidenebutan-1-ol (2f)

2f: following general method I, compound $\mathbf{2 f}\left(40 \%\right.$ for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 4 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ $(\mathrm{s}, 1 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.28,145.15,132.88,128.43,127.48,119.17,78.08,41.38,33.75$, 28.72, 26.42, 26.35, 24.42. IR (thin film, cm^{-1}): 3478, 2954, 2927, 2855, 1671, 1489, 1400, 1093, 1013, 819. HRMS (ESI-): calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OCl}_{2}\right]^{-} 359.0975$, found 359.0971.

1,1-bis(4-chlorophenyl)-4-cyclohexylidenebutan-1-ol (2g)

$\mathbf{2 g}$: following general method I, compound $\mathbf{2 g}$ (45% for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ $(\mathrm{s}, 1 \mathrm{H}), 2.24(\mathrm{dd}, \mathrm{J}=8.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 6 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.31,141.48,132.92,128.46,127.51,120.52,78.22,41.91,37.26,28.76,28.64$, 27.83, 26.91, 21.98. IR (thin film, cm^{-1}): 3578, 3489, 2927, 2853, 1593, 1489, 1093, 822. HRMS (ESI): calcd for [$\left.\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{OCl}_{2}\right]^{-}$373.1131, found 373.1127.

1,1-bis(4-chlorophenyl)-4-cycloheptylidenebutan-1-ol (2h)

$\mathbf{2 h}$: following general method I, compound $\mathbf{2 h}\left(40 \%\right.$ for 4 steps) was prepared as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.12(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{dd}, \mathrm{J}=8.9,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.49-$ $1.43(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.31,143.12,132.95,128.48,127.53,123.96,78.13$, $41.65,37.95,30.12,29.97,29.40,29.29,27.10,22.43$. IR (thin film, cm^{-1}): $3727,2956,2923,2852$, 1489, 1094, 821. HRMS (ESI-): calcd for [$\left.\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{OCl}_{2}\right]^{-} 387.1288$, found 387.1284.

1,1,5,5-tetraphenylpent-4-en-1-ol (2i)

2i: following general method I, compound $\mathbf{2 i}(50 \%$ for 4 steps) was prepared as colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.08(\mathrm{~m}, 18 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.91,142.70,142.39,140.01,129.87,129.24,128.35,128.28,128.21,127.28,127.05,127.02$, $126.93,126.07,78.35,42.10,24.61$. IR (thin film, cm^{-1}): 3559, 3359, 2921, 2851, 1659, 1633, 1598, 1494, 1446, 761, 699. HRMS (ESI $)$: calcd for [$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}^{-}$389.1911, found 389.1915.

5,5-bis(4-chlorophenyl)-1,1-diphenylpent-4-en-1-ol (2j)

$\mathbf{2} \mathbf{j}$: following general method I , compound $\mathbf{2} \mathbf{j}$ ($\mathbf{3 0 \%}$ for 4 steps) was prepared as colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.19(\mathrm{~m}, 14 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.08(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.71,140.73,140.10,137.90,133.16,133.06,131.16,130.43,128.70,128.49,128.43$, $128.34,127.07,126.03,78.29,41.87,24.61$. IR (thin film, cm^{-1}): 3059, 3027, 2957, 2926, 2854, 1722, 1491, 1447, 1288, 1091, 829, 700. HRMS (ESI-): calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{OCl}_{2}\right]^{-} 457.1131$, found 457.1128.

5,5-bis(4-fluorophenyl)-1,1-diphenylpent-4-en-1-ol (2k)

$\mathbf{2 k}$: following general method I , compound $\mathbf{2 k}(25 \%$ for 4 steps) was prepared as colorless viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-6.90(\mathrm{~m}, 6 \mathrm{H}), 6.02(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.37(\mathrm{~m}$, 2H), $2.13-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.18,162.99,161.22$, $161.04,146.79,140.30,138.71,138.68,135.65,135.62,131.42,131.36,129.55,128.81,128.75$, $128.32,127.04,126.04,115.44,115.27,115.16,114.99,78.32,41.97,24.60$. IR (thin film, cm^{-1}): 3359, 2921, 2851, 1601, 1508, 1223, 835, 700. HRMS (ESI-): calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{OF}_{2}\right]^{-} 425.1722$, found 425.1718 .

5,5-bis(4-methoxyphenyl)-1,1-diphenylpent-4-en-1-ol (21)

21: following general method I, compound $\mathbf{2 1}$ (30% for 4 steps) was prepared as light yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 4 \mathrm{H}), 5.97(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.84$, $158.60,146.97,141.41,135.80,132.51,130.96,128.42,128.26,127.28,126.89,126.08,113.71$, 113.56, 78.40, 55.41, 55.37, 42.20, 24.55. IR (thin film, cm^{-1}): $3559,2921,2850,1660,1633,1606$, 1511, 1245, 1033, 831, 701. HRMS (ESI-): calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{O}_{3}\right]^{-} 449.2122$, found 449.2119.
(E)-5-(4-methoxyphenyl)-1,1-diphenylpent-4-en-1-ol (2m)

$\mathbf{2 m}$: following general method I, compound $\mathbf{2 m}(40 \%$ for 4 steps) was prepared as slight yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.19-$ $7.15(\mathrm{~m}, 4 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-6.00(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $2.42-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.84,147.01,130.59$, $129.64,128.38,128.33,127.14,127.01,126.16,114.05,78.41,55.40,41.70,27.70$. IR (thin film, cm^{-1}): 3445, 2920, 2849, 1634, 1608, 1510, 1246, 700. HRMS (ESI $)$: calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{2}\right]^{-}$ 343.1704, found 343.1708 .

(E)-1,1-diphenyl-5-(thiophen-2-yl)pent-4-en-1-ol (2n)

$\mathbf{2 n}$: following general method I , compound $\mathbf{2 n}(28 \%$ for 4 steps) was prepared as colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, \mathrm{J}=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dt}, \mathrm{J}=15.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.93,143.01,130.57,128.38,127.34,127.09,126.17,124.48,123.53$, 123.38, 78.33, 41.53, 27.55. IR (thin film, cm^{-1}): 3359, 3024, 2955, 2922, 2851, 1717, 1447, 1287, 697. HRMS (ESI ${ }^{-}$): calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{OSS}^{-} 319.1162\right.$, found 319.1158.

(S)-(3,3'-bis(4-chlorophenyl)-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-6,6'diyl)bis(triisopropylsilane) (S12)

In a flask, $\mathbf{S 1 1}(1.0 \mathrm{~g}, 1.07 \mathrm{mmol})$, (4-chlorophenyl)boronic acid $(0.40 \mathrm{~g}, 2.57 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.185 \mathrm{~g}, 0.16 \mathrm{mmol})$, and $\mathrm{Ba}(\mathrm{OH})_{2}(1.69 \mathrm{~g}, 5.35 \mathrm{mmol})$ were combined and purged with nitrogen. A mixture of $3: 1$ dioxane : $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$ was added and then stirred with reflux for 24 h . The resulting reaction was cooled to room temperature, then diluted with 1 M HCl and DCM until a homogeneous biphasic solution resulted. The aqueous layer was extracted twice with DCE. The combined organic layers were washed with water and brine. The organic layer was then dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum form the reaction residue, which was dissolved in DCE (16 $\mathrm{mL}) .12 \mathrm{M} \mathrm{HCl}(5.0 \mathrm{~mL})$ was added into above mixture at room temperature. The reaction was heated to reflux for 6 h , then cooled to room temperature. The mixture was partitioned between DCE and water. The organic phase was separated and the aqueous phase was extracted three times with DCE. The combined DCE extract was washed with saturated aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel chromatography to give the desired product $\mathbf{S 1 2}(0.526 \mathrm{~g}, 60 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, \mathrm{~J}=$ $20.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 1.47$ $(\mathrm{dt}, \mathrm{J}=14.9,7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.11(\mathrm{dd}, \mathrm{J}=7.5,3.8 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.54$, $136.59,136.24,133.84,133.81,133.01,132.03,131.18,131.11,129.32,129.15,128.65,122.88$, 111.86, 18.79, 18.77, 11.05. HRMS (ESI): calcd for [$\left.\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Si}_{2}\right]^{-} 817.3436$, found 817.3427.
(4R,11bS)-2,6-bis(4-chlorophenyl)-4-hydroxy-9,14-bis(triisopropylsilyl)dinaphtho[2,1-d:1',2'f] [1,3,2]dioxaphosphepine 4-oxide ($\mathbf{H X}_{\mathbf{6}}$)

To a solution of $\mathbf{S 1 2}(0.5 \mathrm{~g}, 0.61 \mathrm{mmol})$ in pyridine $(5.0 \mathrm{~mL})$ was added dropwise freshly distilled $\mathrm{POCl}_{3}(170 \mu \mathrm{~L}, 1.83 \mathrm{mmol})$ over 1 min . The resultant mixture was stirred at $95^{\circ} \mathrm{C}$ for 12 h , upon which $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was cautiously added. Heating was continued at $70^{\circ} \mathrm{C}$ for an additional 12 h . The reaction mixture was then cooled to ambient temperature and poured into chilled 6 M aqueous HCl . The reaction mixture was extracted with DCE. The organic phase was separated and the aqueous phase was extracted three times with DCE. The combined DCE extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel chromatography to give the desired product $\mathbf{H X}_{6}(0.484 \mathrm{~g}, 90 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 2 \mathrm{H}), 7.99(\mathrm{~s}, 2 \mathrm{H}), 7.55-7.26(\mathrm{~m}, 12 \mathrm{H}), 1.50(\mathrm{dt}, \mathrm{J}=14.9,7.4 \mathrm{~Hz}, 6 \mathrm{H})$, $1.12(\mathrm{dd}, \mathrm{J}=7.4,1.6 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.29,136.34,135.36,133.89$, $133.49,132.72,132.61,132.59,132.22,131.71,131.18,131.08,128.49,125.80,122.44,18.72$, 18.70, 10.98. HRMS (ESI-): calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{Cl}_{2} \mathrm{PSi}_{2}\right]^{-}$879.2994, found 879.2984.

General procedure I for photoinduced enantioselective anti-Markovnikov hydroetherification of 2a. To a flame-dried Schlenk tube equipped with a magnetic stir bar was added Mes-AcrBF 4 ($5 \mathrm{~mol} \%$) and $\mathbf{N a X}_{6}(5 \mathrm{~mol} \%)$. The mixture was diluted with 0.5 mL of anhydrous chloroform. After stirring for 15 min under dark, the solvent was removed in vacuo. Then 2a (0.05 mmol) and 2-phenylmalononitrile ($100 \mathrm{~mol} \%$) was added. Following the mixture diluted with 0.25 mL DCE in glove box, the reaction was irradiated with Blue LEDs in $-15^{\circ} \mathrm{C}$ for 24 h . Upon completion, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel chromatography (1% EtOAc in Petroleum ether) to give $\mathbf{4 a}(11.0 \mathrm{mg}, 83 \%$ yield, 56% ee.

Reaction temperature was $-25^{\circ} \mathrm{C}, 70 \%$ yield, $60 \% \mathrm{ee}$).

5-isopropyl-2,2-diphenyltetrahydrofuran (4a): $[\alpha]_{\mathrm{D}}{ }^{25}=-2.6^{\circ}\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}, 60 \% e e\right)$. HPLC analysis: Daicel Chiralpak OD-H, 0.1% iso-propanol/hexane, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=216 \mathrm{~nm}$, retention time: 15.5 min (minor), 22.1 min (major). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.44$ (m, $4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.50-$ $2.44(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.62,147.04,128.25,128.08,126.64$, $126.55,126.05,125.91,87.65,84.45,39.23,33.65,29.20,19.68,18.69$. IR (thin film, cm^{-1}): 3444 , 2956, 2922, 2851, 1633, 1470, 1055, 701. HRMS (APCI ${ }^{+}$): calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}\right]^{+} 267.1743$, found 267.1738.

2,2-bis(4-chlorophenyl)-5-isopropyltetrahydrofuran (4b): the product $\mathbf{4 b}(82 \%$ yield, $53 \% \mathrm{ee})$ was synthesized according to the general procedure $\mathrm{I} .[\alpha]_{\mathrm{D}}{ }^{25}=-4.0^{\circ}\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 0.1% iso-propanol/hexane, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=221 \mathrm{~nm}$, retention time: 19.1 min (major), 20.0 min (minor). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.27$ $-7.22(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{td}, \mathrm{J}=13.4$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.70,145.22,132.71,132.60,128.51,128.32,127.40,127.26,86.87,84.78,39.13$, 33.61, 29.19, 19.57, 18.67.. IR (thin film, cm^{-1}): 2962, 2923, 2876, 2848, 1488, 1091, 1055, 1008, 825. HRMS $\left(\mathrm{APCI}^{+}\right)$: calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OCl}_{2}\right]^{+} 335.0964$, found 355.0968 .

5-isopropyl-2,2-di-o-tolyltetrahydrofuran (4c): the product $\mathbf{4 c}(54 \%$ yield, $33 \% \mathrm{ee}$) was synthesized according to the general procedure $\mathrm{I} .[\alpha]_{\mathrm{D}}{ }^{25}=-11.0^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 0.1% iso-propanol/hexane, flow rate $=0.2 \mathrm{~mL} / \mathrm{min}, \lambda=218 \mathrm{~nm}$, retention time: $29.4 \min$ (major), $31.4 \min$ (minor). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.63$ $(\mathrm{m}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 7 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.84(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.02,143.44,136.85,136.32,132.32$, $132.07,127.02,126.98,126.80,126.38,124.99,124.86,88.37,84.08,36.65,33.69,29.50,21.77$,
$21.67,19.67,18.87 .$. IR (thin film, cm^{-1}): 2958, 2927, 2871, 1460, 1046, 753. $\mathrm{HRMS}^{2}\left(\mathrm{APCI}^{+}\right)$: calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3}\right]^{+}$295.2056, found 295.2054.

5-isopropyl-2,2-di-m-tolyltetrahydrofuran (4d): the product 4d (50\% yield, 59% ee) was synthesized according to the general procedure I. $[\alpha]_{\mathrm{D}}{ }^{25}=-4.3^{\circ}\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 0.2% iso-propanol/hexane, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, retention time: 7.9 min (minor), 8.2 min (major). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.16$ $(\mathrm{dtd}, \mathrm{J}=10.3,7.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.61(\mathrm{~m}, 1 \mathrm{H})$, $2.45-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 3 \mathrm{H}) . .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 147.64$, $147.05,137.74,137.52,128.08,127.91,127.38,127.28,126.73,126.59,123.09,122.97,87.63$, $84.33,39.15,33.60,29.85,29.07,21.80,19.71,18.63$. IR (thin film, cm^{-1}): 2922, 2851, 1727, 1467, 1284, 1121, 1073. HRMS (APCI^{+}): calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}\right]^{+}$295.2056, found 295.2059.

5-isopropyl-2,2-di-p-tolyltetrahydrofuran (4e): the product $\mathbf{4 e}(77 \%$ yield, 50% ee) was synthesized according to the general procedure I. $[\alpha]_{\mathrm{D}}{ }^{25}=-5.0^{\circ}\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak AD-H x 2, 0.5% iso-propanol/hexane, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=223 \mathrm{~nm}$, retention time: 16.4 min (minor), 17.0 min (major). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.08$ (dd, J $=17.4,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.29$ $(\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{dd}, \mathrm{J}=6.6$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{dd}, \mathrm{J}=6.7,1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.93,144.24,136.09$, $135.99,128.94,128.75,125.96,125.80,87.47,84.29,39.20,33.63,29.85,29.19,21.12,19.68$, 18.66. IR (thin film, cm^{-1}): 3358, 3192, 2956, 2851, 1659, 1633, 1470. HRMS (APCI ${ }^{+}$): calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}\right]^{+}$295.2056, found 295.2051.

2,2-bis(4-chlorophenyl)-5-cyclopentyltetrahydrofuran (4f): the product $\mathbf{4 f}$ (80% yield, $50 \% \mathrm{ee}$) was synthesized according to the general procedure I. $[\alpha]_{D}{ }^{25}=-9.1^{\circ}\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right)$. HPLC analysis:

Daicel Chiralpak OD-H, 0.1% iso-propanol/hexane, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=223 \mathrm{~nm}$, retention time: 19.8 min (major), 20.9 min (minor). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.26$ $-7.22(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{dd}, \mathrm{J}=14.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.02-$ $1.89(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.84,145.30,132.70,132.59,128.49,128.31,127.43,127.30,86.90,83.77,45.51$, $39.21,30.55,30.12,29.16,25.77,25.72$. IR (thin film, cm^{-1}): 2951, 2920, 2873, 2854, 1489, 1089, 1055, 819. HRMS (APCI^{+}): calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{OCl}_{2}\right]^{+} 366.1121$, found 366.1117 .

2,2-bis(4-chlorophenyl)-5-cyclohexyltetrahydrofuran ($\mathbf{4 g}$): the product $\mathbf{4 g}(85 \%$ yield, $64 \% e e)$ was synthesized according to the general procedure I. $[\alpha]_{\mathrm{D}}{ }^{25}=-5.4^{\circ}\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 0.1% iso-propanol/hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}$, retention time: 6.1 min (major), 6.7 min (minor). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, \mathrm{J}=12.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, \mathrm{J}=12.5,8.3,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.47-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.21-0.97(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.78,145.29,132.71,132.60,128.51,128.33,127.41,127.27,86.67$, $83.79,43.41,39.05,30.07,29.24,29.15,26.73,26.15,26.10$. IR (thin film, cm^{-1}): $3359,2923,2852$, 1633, 1489, 1092, 1013, 822. HRMS (APCI ${ }^{+}$): calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{OCl}_{2}\right]^{+} 375.1277$, found 375.1272.

2,2-bis(4-chlorophenyl)-5-cycloheptyltetrahydrofuran (4h): the product $\mathbf{4 h}$ (80% yield, $54 \% \mathrm{ee}$) was synthesized according to the general procedure $\mathrm{I} .[\alpha]_{\mathrm{D}}{ }^{25}=-2.4^{\circ}\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 0.1% iso-propanol/hexane, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=213 \mathrm{~nm}$, retention time: 17.9 min (major), 19.0 min (minor). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.32(\mathrm{~m}$, $4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dt}, \mathrm{J}=12.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}$, $1 \mathrm{H}), 2.03-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, \mathrm{J}=12.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.34(\mathrm{~m}, 6 \mathrm{H})$, $1.19-1.17(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.75,145.23,132.71,132.58,128.52,128.32$, $127.43,127.26,86.69,83.73,44.74,39.21,30.86,30.49,29.36,28.74,28.55,26.99,26.89$. IR (thin film, cm^{-1}): 2920, 2851, 1663, 1631, 1489, 1457, 1394, 1096, 824. HRMS (APCI $)$: calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{OCl}\right]^{+} 389.1434$, found 389.1428.

$4 i$
5-benzhydryl-2,2-diphenyltetrahydrofuran (4i): the product $\mathbf{4 i}(80 \%$ yield, $13 \% \mathrm{ee})$ was synthesized according to the general procedure I. $[\alpha]_{\mathrm{D}}{ }^{25}=-2.4^{\circ}\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak AD-H, 0.5% iso-propanol $/$ hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=218 \mathrm{~nm}$, retention time: 6.0 min (minor), 6.4 min (major). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.15$ (m, 20H), 4.84 (q, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dd}, \mathrm{J}=12.8$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, \mathrm{J}=12.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.35,146.95,143.06$, $143.00,129.03,128.77,128.53,128.31,128.24,128.05,126.72,126.58,126.52,126.26,125.89$, 125.84, $88.58,80.82,57.40,38.71,30.90$. IR (thin film, cm^{-1}): $3650,3567,1721,1505,1644,1541$. HRMS (APCI ${ }^{+}$): calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}\right]^{+} 391.2056$, found 391.2052.

5-(bis(4-chlorophenyl)methyl)-2,2-diphenyltetrahydrofuran ($\mathbf{4 j}$): the product $\mathbf{4 j}$ (80% yield, 9% ee) was synthesized according to the general procedure $\mathrm{I} .[\alpha]_{\mathrm{D}}{ }^{25}=-2.0^{\circ}\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 1.0% iso-propanol/hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=223 \mathrm{~nm}$, retention time: 7.0 min (minor), 8.2 min (major). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 16 \mathrm{H}), 4.74(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, \mathrm{J}=12.7,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, \mathrm{J}=12.5,8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{td}, \mathrm{J}=13.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dt}, \mathrm{J}=15.1,7.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.99,146.62,141.05,140.86,132.60,132.32,130.38$, $130.00,128.80,128.47,128.40,128.14,126.86,126.75,125.76,125.73,88.82,80.44,56.02,38.45$, 30.78. IR (thin film, cm^{-1}): $3360,2920,2850,1659,1633,1490,1471,1091 . \mathrm{HRMS}^{\left(\mathrm{APCI}^{+}\right): ~ c a l c d ~}$ for $\left[\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{OCl}_{2}\right]^{+} 459.1278$, found 459.1273 .

5-(bis(4-fluorophenyl)methyl)-2,2-diphenyltetrahydrofuran (4k): the product 4k (77\% yield, 10\% $e e)$ was synthesized according to the general procedure I. $[\alpha]_{\mathrm{D}}{ }^{25}=-0.9^{\circ}\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 1.0% iso-propanol/hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=227 \mathrm{~nm}$, retention time: 7.5 min (minor), 8.8 min (major). ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.41(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, 2H), $7.33-7.14(\mathrm{~m}, 12 \mathrm{H}), 6.95(\mathrm{dt}, \mathrm{J}=15.3,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.74(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=8.1$
$\mathrm{Hz}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dq}, \mathrm{J}=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dt}, \mathrm{J}=14.9$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 162.64,160.69,147.08,146.72,138.64,138.31,130.47$, $130.41,130.13,130.07,128.38,128.12,126.83,126.71,125.78,125.77,115.50,115.33,115.14$, 114.97, 88.75, 80.76, 55.68, 38.48, 30.77. IR (thin film, cm^{-1}): 3839, 3649, 1603, 1507, 1224, 824. HRMS (APCI^{+}): calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{OF}_{2}\right]^{+} 427.1868$, found 427.1863.

5-(bis(4-methoxyphenyl)methyl)-2,2-diphenyltetrahydrofuran (4I): the product $\mathbf{4 I}(90 \%$ yield, 8% $e e)$ was synthesized according to the general procedure $\mathrm{I} .[\alpha]_{\mathrm{D}}{ }^{25}=0.5^{\circ}\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak AS-H, 2.5\% iso-propanol/hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=190 \mathrm{~nm}$, retention time: 7.7 min (major), 9.1 min (minor). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44$ (d, J=7.8 Hz, $2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.13(\mathrm{~m}, 10 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.74(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.57(\mathrm{~m}$, $1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=12.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, \mathrm{J}=12.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.13,157.97,147.39,147.00,135.68,135.53,129.88,129.62,128.30$, $128.03,126.69,126.56,125.90,125.88,113.86,113.59,88.55,81.14,55.58,55.33,38.68,30.85$. IR (thin film, cm^{-1}): 2921, 2834, 1608, 1509, 1463, 1447, 1246, 1176, 1033, 703. HRMS (APCI ${ }^{+}$): calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{3}\right]^{+} 451.2268$, found 451.2261 .

5-(4-methoxybenzyl)-2,2-diphenyltetrahydrofuran (4m): the product $\mathbf{4 m}(88 \%$ yield, $3 \% e e)$ was synthesized according to the general procedure I. $[\alpha]_{\mathrm{D}}{ }^{25}=-0.6^{\circ}\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak AS-H, 1.0% iso-propanol/hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, retention time: 6.4 min (minor), 7.4 min (major). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.29$ $-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{p}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.07(\mathrm{dd}, \mathrm{J}=13.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.45(\mathrm{~m}$, $1 \mathrm{H}), 1.91(\mathrm{dd}, \mathrm{J}=12.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, \mathrm{J}=12.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 158.17,147.41,146.87,131.07,130.45,128.26,128.11,126.70,126.67,126.03,125.99,113.80$, $88.36,80.20,55.38,41.75,38.77,30.90$. IR (thin film, cm^{-1}): 3445, 2920, 2849, 1634, 1608, 1510, 1246, 700. HRMS $\left(\mathrm{APCI}^{+}\right)$: calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{2}\right]^{+} 345.1849$, found 345.1844.

2,2-diphenyl-5-(thiophen-2-ylmethyl)tetrahydrofuran (4n): the product $\mathbf{4 n}(75 \%$ yield, $2 \% \mathrm{ee})$ was synthesized according to the general procedure I. $[\alpha]_{\mathrm{D}}{ }^{25}=-3.1^{\circ}\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right)$. HPLC analysis: Daicel Chiralpak OD-H, 1.0% iso-propanol/hexane, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=231 \mathrm{~nm}$, retention time: 6.6 min (minor), 7.4 min (major). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.31-$ $7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.87(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{p}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, \mathrm{J}=14.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, \mathrm{J}=14.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 1 \mathrm{H})$, $2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{tt}, \mathrm{J}=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.18,146.60,141.06,128.32,128.17,126.77,126.77,126.73,125.94,125.94,125.71$, $123.97,88.64,79.46,38.63,36.83,31.03,0.15$. IR (thin film, cm^{-1}): 3359, 2920, 2850, 1659, 1633, 1471, 1447, 1049, 696. HRMS (APCI $)$: calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OS}\right]^{+} 321.1308$, found 321.1303 .

${ }^{1} \mathrm{H}$ NMR Investigation

Figure 2b: To a solution of $\mathbf{X}_{\mathbf{6}} \mathbf{N a}(0.01 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at room temperature was added $\mathbf{M e s}^{\mathbf{A c r B F}} 4 \mathbf{4}$ (0.01 mmol). The mixture was stirred under dark for 15 min . The reaction mixture was conducted to ${ }^{1} \mathrm{H}$ NMR detection without further purification.

Figure 2c: To a solution of $\mathbf{H} \mathbf{X}_{6}(0.01 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at room temperature was added $\mathbf{M e s}^{-A c r B F} 4$ (0.01 mmol). The mixture was stirred under dark for 15 min . The reaction mixture was conducted to ${ }^{1} \mathrm{H}$ NMR detection without further purification.

Laser Flash Photolysis Studies.

Laser Flash Photolysis/Transient Absorption was performed using the commercially available LP920 system by Edinburgh Instruments, Inc. Laser excitation was provided by a pulsed Nd:YAG laser in combination with an optical parametric oscillator (OPO) for wavelength selection. Probe light was generated by a 450 W Xe lamp. Typical experiments employed laser excitation at 435 nm with single wavelength transient absorption monitored at the indicated wavelengths $(1.0 \mathrm{~nm}$ bandwidths) with a photomultiplier tube (PMT) and transient spectra recorded using a gated CCD at the indicated time delays (10 ns gate width) unless otherwise indicated. Laser Flash photolysis experiments were performed on a $50 \mu \mathrm{M}$ solution of Mes-AcrBF \mathbf{H}_{4} and chiral photocatalyst Mes$\mathbf{A c r}_{\mathbf{6}}$ in DCE. Pure argon was bubbled through the solution for 20 min before test. Transient absorption kinetics were conducted at 480 nm corresponding to the the transient absorption spectrum for triplet Mes-Acr ${ }^{+}$. Transient absorption kinetics were fit in Origin.

Figure 3. a) Transient absorption spectrum for Mes-Acr \mathbf{X}_{6} taken at 10 ns . b) Transient absorption kinetics for Mes-AcrX \mathbf{X}_{6} measured at 480 nm . Conditions: [Mes-AcrX \mathbf{X}_{6}] $=50 \mu \mathrm{M}$ in DCE; $\lambda_{\text {ex }}=435$ nm ; Ar atmosphere.

Stern-Volmer Analyses.

Stern-Volmer experiments ${ }^{[3]}$ were conducted with detection at 510 nm , where the solutions in DCE contained Mes-AcrBF $\mathbf{H}_{4}\left(1.6 \times 10^{-5} \mathrm{M}\right)$ or $\mathbf{M e s}-\mathbf{A c r}_{\mathbf{6}}\left(1.6 \times 10^{-5} \mathrm{M}\right)$ and the quencher 2a ranging from 3.0×10^{-4} to $1.6 \times 10^{-3} \mathrm{M}$ in concentration. Stern-Volmer analysis was conducted according to the following relationship:

$$
\frac{\tau_{0}}{\tau}=1+K_{S V}[Q]=1+k_{q} \tau_{0}[Q]
$$

where τ_{o} and τ are the fluorescence lifetime in the absence and presence of quencher Q, K_{SV} is the Stern-Volmer constant, k_{q} is the bimolecular quenching constant, and [Q] is the concentration of quencher.

[Q] [2a] (mM)	$k_{\text {obs }}\left(\mathrm{ns}^{-1}\right)$	[Q] [2a] (mM)	$k_{\text {obs }}\left(\mathrm{ns}^{-1}\right)$
0	0.1107	0	0.1106
0.300	0.1109	0.657	0.1135
0.900	0.1142	1.201	0.1143
1.500	0.1172	1.562	0.1166

Table S4. Fluorescence lifetime of Mes-AcrBF 4 ($16 \mu \mathrm{M}$ in DCE) and Mes-AcrX $\mathbf{X}_{6}(16 \mu \mathrm{M}$ in DCE $)$ measured at 510 nm at the concentrations of quencher 2a. Pseudo-first-order rate constants $k_{\mathrm{obs}}=$ $1 / \tau$.

Figure S1. Stern-Volmer plots of quenching of Mes-Acr ${ }^{+}$(in DCE) fluorescence lifetime for quencher 2a studied. Mes-Acr ${ }^{+}$fluorescence lifetime was measured with the laser flash photolysis spectrometer at 510 nm . a) Stern-Volmer plots for Mes-AcrBF 4 ; b) Stern-Volmer plots for MesAcrX \mathbf{X}_{6}. The Stern-Volmer quenching constant, K_{sv}, was determined by the slope of the linear regression, where the bimolecular quenching constant, k_{q}, is equal to $K_{\mathrm{sv}} / \tau_{0}$. Conditions: [Mes-Acr ${ }^{+}$] $=16 \mu \mathrm{~m} ; \lambda_{\mathrm{ex}}=435 \mathrm{~nm} ;$ Ar atmosphere.

References.

[1] D. S. Hamilton; D. A. Nicewicz. J. Am. Chem. Soc. 2012, 134, 18577.
[2] F. Romanov-Michailidis; L. Guénée; A. Alexakis. Org. Lett. 2013, 15, 5890.
[3] N. Romero,; D. A. Nicewicz, J. Am. Chem. Soc, 2014, 136, 17024.

NMR Spectrums.

2a

2a

[^2]

[^3]

5igad

HPLC Charts

mAU

\langle Peak Results〉
PDA Ch1 216 nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	14.118	554136	13973099	49.522
2	18.959	146446	14243116	50.478

mAU

〈Peak Results〉
PDA Chl 216 nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	15.453	271368	7477985	20.051
2	22.097	153954	29816818	79.949

〈Peak Results〉
PDA Ch1 221 nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	19.581	1196793	24361433	49.424
2	20.485	1089015	24929696	50.576

maU

〈Peak Results〉
PDA Ch1 221 nm
PDA Ch1 221 nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	19.082	519821	9650532	76.231
2	19.963	151511	3008984	23.769

mAU

〈Peak Results〉
PDA Ch1 218 nm

Index	Time／min	Height $/ \mathrm{mAU}$	Quantity／Area	Area $\% / \%$
1	27.674	363887	11644395	49.935
2	29.440	322545	11674498	50.065

mAU

〈Peak Results〉
PDA Ch2 218nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	29.394	512944	17592214	33.605
2	31.367	812325	34757314	66.395

maU

〈Peak Results〉
PDA Ch2 214nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	9.029	366243	3476329	49.463
2	9.573	292822	3551773	50.537

maU

〈Peak Results〉
PDA Ch2 214nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	7.944	271139	1944982	20.382
2	8.182	909439	7597646	79.618

maU

〈Peak Results〉
PDA Ch1 223 nm

Index	Time $/ \mathrm{min}$	Height／mAU	Quantity／Area	Area $\% / \%$
1	16.395	57607	957056	47.961
2	17.046	59666	1038435	52.039

maU

〈Peak Results〉
PDA Ch2 223nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	16.386	14836	246173	25.223
2	17.004	39690	729796	74.777

〈Peak Results〉
PDA Ch2 223nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	17.981	1309002	26280953	49.337
2	18.893	1190602	26986929	50.663

mAU

〈Peak Results〉
PDA Ch2 223nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	19.838	1532511	32923453	74.761
2	20.875	487556	11115091	25.239

〈Peak Results〉
PDA Ch2 207nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	6.530	874914	7680842	49.994
2	7.104	759638	7682567	50.006

mAU

〈Peak Results〉
PDA Ch2 207 nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	6.147	2960635	21863060	81.929
2	6.711	501686	4822224	18.071

〈Peak Results〉
PDA Ch2 213nm
PDA Ch2 213 nm

Index	Time／min	Height $/ \mathrm{mAU}$	Quantity／Area	Area $\% / \%$
1	19.574	1902640	41360332	49.631
2	20.934	1702383	41975472	50.369

mAU

〈Peak Results〉
PDA Ch2 213nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	17.853	571290	10358754	76.891
2	18.957	162485	3113177	23.109

〈Peak Results〉
PDA Ch2 218nm

Index	Time $/ \mathrm{min}$	Height $/ \mathrm{mAU}$	Quantity／Area	Area $\% / \%$
1	5.899	454043	2595308	50.162
2	6.184	586516	2578594	49.838

mAU

〈Peak Results〉
PDA Ch1 218nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	5.963	139622	945553	43.319
2	6.385	191274	1237218	56.681

mAU

〈Peak Results〉
PDA Ch2 223 nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	6.962	329616	7371687	50.447
2	8.243	277970	7240953	49.553

mAU

〈Peak Results〉
PDA Ch2 223nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	6.974	95959	2042472	45.429
2	8.211	97341	2453477	54.571

mAU

〈Peak Results〉
PDA Ch1 227 nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	7.546	110212	2566586	49.889
2	8.821	108570	2577982	50.111

mAU

〈Peak Results〉
PDA Ch1 227 nm

Index	Time／min	Height $/ \mathrm{mAU}$	Quantity $/$ Area	Area $\% / \%$
1	7.498	84434	2020158	45.714
2	8.779	101989	2398964	54.286

mAU

〈Peak Results〉
PDA Ch2 190 nm

Index	Time／min	Height／mAU	Quantity $/$ Area	Area $\% / \%$
1	7.688	622840	18398018	50.195
2	9.026	372805	18254966	49.805

mAU

〈Peak Results〉
PDA Ch2 190 nm

Index	Time $/ \mathrm{min}$	Height／mAU	Quantity／Area	Area $\% / \%$
1	7.697	689380	20218739	53.948
2	9.083	347484	17259520	46.052

mAU

〈Peak Results〉
PDA Ch1 214nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	6.578	396131	10963077	49.645
2	7.752	298017	11119955	50.355

mAU

〈Peak Results〉
PDA Ch2 214 nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	6.361	311641	7854614	48.721
2	7.446	217515	8267050	51.279

mAU

〈Peak Results〉
PDA Ch1 231nm

Index	Time $/ \mathrm{min}$	Height／mAU	Quantity／Area	Area \％／\％
1	6.596	207107	3531754	50.015
2	7.372	195759	3529678	49.985

mAU

〈Peak Results〉
PDA Ch2 231nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	6.641	256789	4540435	48.918
2	7.406	273140	4741239	51.082

[^0]: ${ }^{a}$ Determined by isolation after chromatographic purification.. ${ }^{b}$ Determined by HPLC analysis.

[^1]: 5-methyl-1,1-diphenylhex-4-en-1-ol (2a)

[^2]:

[^3]:

