Biomimetic Total Synthesis of (±)-Berkeleyamide D

Deokhee Jo^{ab} and Sunkyu Han*^{ab}

^a Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

^b Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea

Supporting Information

General Procedures	<u>S2</u>
Materials and Instrumentations	<u>S2</u>
Positional Numbering System	<u>S2</u>
tert-Butyl 5-hydroxy-3-oxo-6-phenylhexanoate (21)	<u>S3</u>
tert-Butyl 3,5-dioxo-6-phenylhexanoate (22)	<u>S4</u>
(S)-N-(1-((tert-Butyldimethylsilyl)oxy)-4-methylpentan-2-yl)-3,5-dioxo-6-phenyl (S1):	<u>hexanamide</u> <u>S5</u>
(S)-N-(1-Hydroxy-4-methylpentan-2-yl)-3,5-dioxo-6-phenylhexanamide (24)	<u>S6</u>
4-Hydroxy-7-isobutyl-5-(2-phenylacetyl)-1 <i>H</i> -azepin-2(3 <i>H</i>)-one (26)	<u>S7</u>
tert-Butyl 5-((tert-butyldimethylsilyl)oxy)-3-oxo-6-phenylhexanoate (27)	<u>S8</u>
5-((<i>tert</i> -Butyldimethylsilyl)oxy)- <i>N</i> -((<i>S</i>)-1-hydroxy-4-methylpentan-2-yl)-3-oxo-6 phenylhexanamide (28)	<u>-</u>
(Z)-3-(3-((<i>tert</i> -Butyldimethylsilyl)oxy)-1-hydroxy-4-phenylbutylidene)-5-isobuty 2(3H)-one (29)	<u>l-1<i>H</i>-pyrrol-</u> <u>S10</u>
(1R,4S,5R)-1-(3-Hydroxy-4-phenylbutanoyl)-4-isobutyl-4-methoxy-6-oxa-3- azabicyclo[3.1.0]hexan-2-one (32)	<u>S11</u>
(±)-Berkeleyamide D (3)	<u>S13</u>
Comparison of our data for (±)-berkeleyamide D (3) with literature	<u>S15</u>
Attempted Asymmetric Epoxidations of (±)-29	<u>S17</u>
HPLC Traces	<u>S18</u>
Copy of ¹ H, ¹³ C NMR Spectra	S22

General Procedures

All reactions were performed in oven-dried or flame-dried round-bottomed flasks. Unless otherwise noted, the flasks were fitted with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash column chromatography was performed as described by Still et al. using silica gel (60-Å pore size, 40–63 μ m, 4-6% H₂O content, Merck).¹ Analytical thin–layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to an aqueous solution of ceric ammonium molybdate (CAM).

Materials and Instrumentations

Unless otherwise stated, all commercial reagents and solvents were used without additional purification with the following exceptions: dichloromethane and tetrahydrofuran were purchased from Merck and Daejung Inc., respectively and were purified by the method of Grubbs et al. under positive argon pressure.²

Proton and carbon nuclear magnetic resonance spectra were recorded with Bruker Ascend 400 (400 MHz), Varian Inova 600 (600 MHz), or Agilent Technologies DD2 (600 MHz) spectrometers. Proton nuclear magnetic resonance spectra are referenced from the residual protium in the NMR solvent (CDCl₃: δ 7.24 (CHCl₃)). Data are reported in the following manners: chemical shift in ppm [multiplicity (s = singlet, d = doublet, m = multiplet, app = apparent, br = broad), coupling constant(s) in Hertz, integration]. Carbon-13 nuclear magnetic resonance spectra are referenced from the carbon resonances of the solvent (CDCl₃: δ 77.23). Data are reported in the following manners: chemical shift in ppm [multiplicity chemical shift in ppm. High resolution mass spectra were obtained from KAIST Research Analysis Center (Daejeon) by using ESI method.

Positional Numbering System

berkeleyamide D (3)

¹ W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, **43**, 2923.

² A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518.

tert-Butyl 5-hydroxy-3-oxo-6-phenylhexanoate (21):

To a suspension of sodium hydride (NaH, 60% dispersion in mineral oil, 704 mg, 17.6 mmol, 1.10 equiv) in THF (40 mL) at 0 °C was added *tert*-butyl acetoacetate (**20**, 2.69 mL, 16.0 mmol, 1 equiv) dropwise under argon. After stirring the reaction mixture at 0 °C for 30 min, a solution of *n*-BuLi (2.45 M in *n*-hexane, 7.18 mL, 17.6 mmol, 1.10 equiv) was added dropwise to the reaction mixture. The reaction mixture was stirred at 0 °C for 30 min. The resulting milky solution was cooled to -78 °C. Subsequently, phenylacetaldehyde (**19**, 1.88 mL, 16.0 mmol, 1.00 equiv) in THF (40 mL) was transferred by cannula to the reaction mixture. The reaction mixture was allowed to warm to 23 °C. After 3 h, saturated aqueous ammonium chloride solution (60 mL) was added to the reaction mixture and the resulting mixture was diluted with ethyl acetate (120 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 120 mL), and the combined organic layers were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 5 cm, ht. 13 cm; eluent: ethyl acetate : hexanes = 1 : 4 to 1 : 3) to afford (±)-**21** (3.65 g, 82%) as a yellow oil.

¹**H** NMR (600.0 MHz, CDCl₃) δ 7.31–7.17 (m, 5H), 4.32–4.26 (m, 1H), 3.32 (s, 2H), 2.87 (br-s, 1H), 2.82 (dd, J = 13.6, 7.2 Hz, 1H), 2.72 (dd, J = 13.6, 6.3 Hz, 1H), 2.67 (dd, J = 17.5, 3.4 Hz, 1H), 2.61 (dd, J = 17.5, 8.6 Hz, 1H), 1.42 (s, 9H).

¹³C NMR (150.7 MHz, CDCl₃) δ 203.6, 166.2, 137.8, 129.4, 128.4, 126.5, 82.0, 68.5, 51.1, 48.6, 42.9, 27.9.

HRMS (ESI): Calculated for C₁₆H₂₂O₄ [M+Na]⁺: 301.1410, found: 301.1412.

TLC (ethyl acetate : hexanes = 1 : 2) Rf: 0.42 (CAM, UV).

tert-Butyl 3,5-dioxo-6-phenylhexanoate (22):

To a stirred solution of (\pm) -21 (668 mg, 2.40 mmol, 1 equiv) in dichloromethane (24 mL) was added Dess–Martin periodinane (DMP, 1.53 g, 3.60 mmol, 1.50 equiv) at 23 °C. After 30 min, a mixture of saturated aqueous sodium thiosulfate solution and saturated aqueous sodium bicarbonate solution (1:1, 35 mL) was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with dichloromethane (3 × 35 mL), and the combined organic layers were washed with brine (35 mL), were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 3 cm, ht. 13 cm; eluent: ethyl acetate : hexanes = 1 : 19 to 1 : 6) to afford 22 (439 mg, 66%) as a yellow oil. 22 was obtained as a mixture of keto/enol tautomers (keto/enol = 1/7).

¹**H NMR** (599.3 MHz, CDCl₃, major enol tautomer) δ 7.34–7.16 (m, 5H), 5.50 (s, 1H), 3.59 (s, 2H), 3.19 (s, 2H), 1.40 (s, 9H).

¹**H NMR** (599.3 MHz, CDCl₃, minor keto tautomer) δ 7.34–7.16 (m, 5H), 3.78 (s, 2H), 3.69 (s, 2H), 3.38 (s, 2H), 1.43 (s, 9H).

¹³C NMR (150.7 MHz, CDCl₃, major enol tautomer) δ 191.5, 187.9, 166.7, 134.9, 129.5, 128.9, 127.3, 100.1, 82.1, 46.5, 44.8, 28.0.

¹³C NMR (150.7 MHz, CDCl₃, minor keto tautomer) δ 201.7, 197.5, 166.2, 133.3, 129.8, 129.0, 127.5, 82.5, 55.6, 50.8, 50.7, 28.1.

HRMS (ESI): Calculated for C₁₆H₂₀O₄ [M+Na]⁺: 299.1254, found: 299.1255.

TLC (ethyl acetate : hexanes = 1 : 4) Rf: 0.54 (CAM, UV).

(S)-N-(1-((*tert*-Butyldimethylsilyl)oxy)-4-methylpentan-2-yl)-3,5-dioxo-6-phenylhexanamide (S1):

To a stirred solution of **22** (735 mg, 2.66 mmol, 1 equiv) and (*S*)-1-((*tert*-butyldimethylsilyl)oxy)-4-methylpentan-2-amine^{3,4} (**23**, 727 μ L, 2.66 mmol, 1.00 equiv) in toluene (266 mL) was added DMAP (164 mg, 1.33 mmol, 0.50 equiv) at 23 °C and the reaction flask was equipped with a reflux condenser. The resulting reaction mixture was heated to 120 °C. After 3 h, the reaction mixture was cooled to 23 °C and was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 4 cm, ht. 18 cm; eluent: ethyl acetate : hexanes = 1 : 3) to afford **S1** (756 mg, 65%) as a yellow oil. **S1** was obtained as a mixture of keto/enol tautomers (keto/enol = 1/12).

¹**H NMR** (400.1 MHz, CDCl₃) δ 7.35–7.15 (m, 5H), 6.59 (d, J = 8.9 Hz, 1H), 5.54 (s, 1H), 4.05–3.95 (m, 1H), 3.58 (s, 2H), 3.54 (dd, J = 3.4, 1.9 Hz, 2H), 3.19 (d, J = 3.1 Hz, 2H), 1.60–1.48 (m, 1H), 1.35 (ddd, J = 7.7, 6.3, 3.4 Hz, 2H), 0.89 (d, J = 2.3 Hz, 3H), 0.87 (d, J = 2.6 Hz, 3H), 0.86 (s, 9H), 0.00 (s, 3H), -0.01 (s, 3H).

¹³C NMR (150.7 MHz, CDCl₃) δ 191.2, 190.2, 165.3, 134.7, 129.5, 129.0, 127.5, 100.7, 64.8, 49.2, 47.0, 44.6, 40.6, 26.0, 25.1, 23.2, 22.7, 18.4, -5.4, -5.4.

HRMS (ESI): Calculated for C₂₄H₃₉NO₄Si [M+Na]⁺: 456.2541, found: 456.2547.

TLC (ethyl acetate : hexanes = 1 : 2) Rf: 0.49 (CAM, UV).

³ 23 was synthesized using a procedure reported by the Park group: E. Kim, M. Koh, J. Ryu and S. B. Park, *J. Am. Chem. Soc.*, 2008, 130, 12206.

⁴ Spectroscopic data of **23** was consistent with those reported by the TenBrink group: R. E. TenBrink, *J. Org. Chem.*, 1987, **52**, 418.

(S)-N-(1-Hydroxy-4-methylpentan-2-yl)-3,5-dioxo-6-phenylhexanamide (24):

To a stirred solution of **S1** (542 mg, 1.25 mmol, 1 equiv) in a 1:1 mixture of THF/H₂O (14.2 mL) was added glacial acetic acid (10.7 mL) at 23 °C. After 2.5 h, saturated aqueous sodium bicarbonate solution (19 mL) was added to the reaction mixture and the resulting mixture was diluted with ethyl acetate (120 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (3×75 mL), and the combined organic layers were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 3 cm, ht. 18 cm; eluent: methanol : dichloromethane = 1 : 99 to 1 : 15) to afford **24** (338 mg, 85%) as an orange oil. **24** was obtained as a mixture of keto/enol tautomers (keto/enol = 1/9).

¹**H NMR** (599.3 MHz, CDCl₃) δ 7.36–7.16 (m, 5H), 6.61 (br-s, 1H), 5.52 (s, 1H), 4.04–3.96 (m, 1H), 3.65 (dd, J = 11.1, 3.5 Hz, 1H), 3.59 (s, 2H), 3.50 (dd, J = 11.0, 6.1 Hz, 1H), 3.24 (s, 2H), 1.64–1.52 (m, 1H), 1.38 (ddd, J = 14.8, 9.2, 5.8 Hz, 1H), 1.31 (ddd, J = 14.0, 8.5, 5.5 Hz, 1H), 0.90 (d, J = 6.5 Hz, 3H), 0.88 (d, J = 6.6 Hz, 3H).

¹³C NMR (150.7 MHz, CDCl₃) δ 190.8, 190.4, 166.9, 134.7, 129.4, 128.9, 127.4, 100.5, 65.5, 50.3, 46.8, 44.2, 40.1, 24.9, 23.1, 22.2.

HRMS (ESI): Calculated for C₁₈H₂₅NO₄ [M+Na]⁺: 342.1676, found: 342.1683.

TLC (methanol : dichloromethane = 1 : 10) Rf: 0.49 (CAM, UV).

4-Hydroxy-7-isobutyl-5-(2-phenylacetyl)-1H-azepin-2(3H)-one (26):

To a stirred solution of **24** (57.9 mg, 0.181 mmol, 1 equiv) in DMSO (1.1 mL) and toluene (1.1 mL) were added EDC (177 mg, 0.906 mmol, 5.00 equiv) and dichloroacetic acid (30.2 μ L, 0.363 mmol, 2.00 equiv) at 23 °C. After 18 h, aqueous hydrochloric acid solution (2 M, 2.2 mL) was added to the reaction mixture and the resulting mixture was diluted with ethyl acetate (4 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 4 mL), and the organic layers were combined. Aqueous sodium hydroxide solution (1 M, 15 mL) was added to the combined organic layers and stirred vigorously at 23 °C. After 20 min, the reaction mixture was diluted with diethyl ether (15 mL), and the layers were separated. The aqueous layer were separated. The aqueous layer were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 3 cm, ht. 7 cm; eluent: ethyl acetate : hexanes = 1 : 2) to afford **26** (17.8 mg, 33%) as a yellow oil.

¹**H NMR** (400.1 MHz, CDCl₃) δ 7.41 (br-s, 1H), 7.34–7.17 (m, 5H), 5.84 (s, 1H), 3.84 (s, 2H), 3.23 (s, 2H), 2.10 (d, J = 7.5 Hz, 2H), 1.83–1.72 (m, 1H), 0.91 (d, J = 6.6 Hz, 6H).

¹³**C NMR** (150.7 MHz, CDCl₃) δ 197.0, 174.9, 165.4, 134.1, 133.6, 129.5, 129.0, 127.4, 108.8, 108.7, 46.1, 45.7, 44.5, 27.2, 22.4.

HRMS (ESI): Calculated for C₁₈H₂₁NO₃ [M+Na]⁺: 322.1414, found: 322.1412.

TLC (ethyl acetate : hexanes = 1 : 2) Rf: 0.40 (CAM, UV).

tert-Butyl 5-((*tert*-butyldimethylsilyl)oxy)-3-oxo-6-phenylhexanoate (27):

To a stirred solution of (\pm)-**21** (1.50 g, 5.38 mmol, 1 equiv) and 2,6-lutidine (956 µL, 8.07 mmol, 1.50 equiv) in CH₂Cl₂ (26.9 mL) was added *tert*-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf, 1.39 mL, 5.92 mmol, 1.10 equiv) dropwise at -78 °C. After 1.5 h, saturated aqueous sodium bicarbonate solution (20 mL) was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with dichloromethane (2 × 30 mL), and the combined organic layers were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 4 cm, ht. 12 cm; eluent: ethyl acetate : hexanes = 1 : 40) to afford (\pm)-**27** (1.72 g, 82%) as a colorless oil.

¹**H** NMR (400.1 MHz, CDCl₃) δ 7.28–7.13 (m, 5H), 4.39–4.30 (m, 1H), 3.31 (s, 2H), 2.75 (d, J = 6.3 Hz, 2H), 2.64 (dd, J = 16.1, 6.4 Hz, 1H), 2.55 (dd, J = 16.1, 5.5 Hz, 1H), 1.43 (s, 9H), 0.83 (s, 9H), -0.04 (s, 3H), -0.13 (s, 3H).

¹³C NMR (150.7 MHz, CDCl₃) δ 202.3, 166.4, 138.3, 129.9, 128.5, 126.6, 82.0, 70.3, 52.3, 49.8, 44.3, 28.1, 26.0, 18.1, -4.8, -4.8.

HRMS (ESI): Calculated for C₂₂H₃₆O₄Si [M+Na]⁺: 415.2275, found: 415.2264.

TLC (ethyl acetate : hexanes = 1 : 10) Rf: 0.44 (CAM, UV).

<u>5-((*tert*-Butyldimethylsilyl)oxy)-*N*-((*S*)-1-hydroxy-4-methylpentan-2-yl)-3-oxo-6phenylhexanamide (28):</u>

To a stirred solution of (\pm)-27 (1.01 g, 2.57 mmol, 1 equiv) and L-leucinol (18, 339 μ L, 2.57 mmol, 1.00 equiv) in toluene (129 mL) was added DMAP (159 mg, 1.29 mmol, 0.50 equiv) at 23 °C and the reaction flask was equipped with a reflux condenser. The resulting reaction mixture was heated to 140 °C. After 3 h, the reaction mixture was cooled to 23 °C and was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 4 cm, ht. 12 cm; eluent: ethyl acetate : hexanes = 1 : 3 to 1 : 1) to afford **28** (1:1 mixture of diastereomers, 871 mg, 78%) as a pale yellow oil.

¹H NMR and ¹³C NMR of **28** were taken with sample containing 1:1 mixture of unseparable diastereomers.

¹**H NMR** (400.1 MHz, CDCl₃) δ 7.31–7.11 (m, 10H), 4.40–4.32 (m, 2H), 4.08–3.96 (m, 2H), 3.63 (dd, *J*=11.1, 3.7 Hz, 2H), 3.49 (ddd, *J*=11.1, 5.8, 1.2 Hz, 2H), 3.37 (s, 2H), 3.36 (d, *J*=1.5 Hz, 2H), 2.85–2.77 (m, 2H), 2.73 (ddd, *J*=13.4, 6.9, 1.6 Hz, 2H), 2.64 (ddd, *J*=15.8, 6.7, 1.1 Hz, 2H), 2.55 (ddd, *J*=15.8, 8.6, 5.2 Hz, 2H), 1.72–1.54 (m, 2H), 1.46–1.28 (m, 4H), 0.92 (dd, *J*=6.6, 2.5 Hz, 6H), 0.90 (dd, *J*=6.6, 1.3 Hz, 6H), 0.85 (s, 9H), 0.85 (s, 9H), -0.01 (s, 3H), -0.02 (s, 3H), -0.08 (s, 3H).

¹³**C NMR** (150.7 MHz, CDCl₃) δ 206.0, 205.9, 166.4, 166.4, 137.9, 137.9, 129.8, 129.7, 128.5, 128.4, 126.6, 126.6, 70.3, 70.2, 65.7, 65.7, 50.5, 50.4, 50.4, 50.3, 50.3, 50.2, 44.3, 44.2, 40.1, 40.1, 25.9, 25.9, 24.9, 24.9, 23.2, 23.2, 22.2, 22.1, 18.0, 18.0, -4.8, -4.8, -4.8, -4.9.

HRMS (ESI): Calculated for C₂₄H₄₁NO₄Si [M+Na]⁺: 458.2697, found: 458.2705.

TLC (ethyl acetate : hexanes = 1 : 1) Rf: 0.26 (CAM, UV).

(Z)-3-(3-((*tert*-Butyldimethylsilyl)oxy)-1-hydroxy-4-phenylbutylidene)-5-isobutyl-1*H*-pyrrol-2(3*H*)-one (29):

To a stirred solution of **28** (719 mg, 1.65 mmol, 1 equiv) in DMSO (9.7 mL) and toluene (9.7 mL) were added EDC (1.61 g, 8.25 mmol, 5.00 equiv) and dichloroacetic acid (275 μ L, 3.30 mmol, 2.00 equiv) at 23 °C. After 18 h, saturated aqueous ammonium chloride solution (20 mL) was added to the reaction mixture and the resulting mixture was diluted with ethyl acetate (33 mL) and water (5 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 33 mL), and the organic layers were combined. Aqueous sodium hydroxide solution (0.3 M, 120 mL) was added to the combined organic layers and stirred vigorously at 23 °C. After 5 h, the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 100 mL), and the combined organic layers were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 4 cm, ht. 7 cm; eluent: ethyl acetate : hexanes = 1 : 6) to afford (\pm)-**29** (562 mg, 82%) as a blue oil. We observed severe streaking during the flash column chromatography.

¹**H** NMR (400.1 MHz, CDCl₃) δ 7.29–7.13 (m, 5H), 5.42 (s, 1H), 4.34–4.26 (m, 1H), 2.79 (app-dd, J = 6.1, 1.7 Hz, 2H), 2.52 (dd, J = 13.6, 7.3 Hz, 1H), 2.46 (dd, J = 13.6, 5.5 Hz, 1H), 2.18 (app-s, 2H), 1.78 (app-s, 1H), 0.91 (d, J = 5.1 Hz, 6H), 0.78 (s, 9H), -0.12 (s, 3H), -0.23 (s, 3H).

¹³**C NMR** (150.7 MHz, CDCl₃) δ 171.5, 171.3, 138.5, 133.4, 130.1, 128.5, 126.6, 108.9, 98.6, 71.6, 44.8, 41.2, 37.8, 27.6, 26.0, 22.6, 22.6, 18.1, -4.9, -4.9.

HRMS (ESI): Calculated for C₂₄H₃₇NO₃Si [M+Na]⁺: 438.2435, found: 438.2431.

TLC (ethyl acetate : hexanes = 1 : 4) Rf: 0.44 (CAM, UV).

(1R,4S,5R)-1-(3-Hydroxy-4-phenylbutanoyl)-4-isobutyl-4-methoxy-6-oxa-3azabicyclo[3.1.0]hexan-2-one (32):

To a stirred solution of (\pm) -**29** (65.2 mg, 0.157 mmol, 1 equiv) in a 1:1 mixture of THF/methanol (7.8 mL) was added magnesium monoperoxyphthalate hexahydrate (MMPP·6H₂O, 80%, 107 mg, 0.173 mmol, 1.10 equiv) at 0 °C. After 30 min, a mixture of saturated aqueous sodium thiosulfate solution and saturated aqueous sodium bicarbonate solution (1:1, 6 mL) was added to the reaction mixture and the resulting mixture was diluted with ethyl acetate (5 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 4 mL), and the combined organic layers were washed with brine (2 mL), were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue of (\pm)-**31** was used in the next step without further purification.

To a stirred solution of (\pm) -**31** in methanol (1.6 mL) were added 10-camphorsulfonic acid (18.4 mg, 0.078 mmol, 0.50 equiv) and trimethyl orthoformate (17.4 µL, 0.157 mmol, 1.00 equiv) at 23 °C. After 4 h, saturated aqueous sodium bicarbonate solution (1 mL) was added to the reaction mixture and the resulting mixture was diluted with ethyl acetate (5 mL) and water (3 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (3 × 4 mL), and the combined organic layers were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5 cm, ht. 11 cm; eluent: ethyl acetate : hexanes = 1 : 2 to 2 : 3) to afford (\pm)-**32** (1:1 mixture of diastereomers, 18.3 mg, 34%) as a pale yellow oil. ¹H NMR and ¹³C NMR of **32** were taken with sample containing 1:1 mixture of unseparable diastereomers.

¹**H NMR** (400.1 MHz, CDCl₃) δ 7.32–7.16 (m, 10H), 6.10 (br-s, 2H), 4.41–4.31 (m, 2H), 4.04 (d, J = 2.7 Hz, 1H), 3.95 (d, J = 2.7 Hz, 1H), 3.22 (s, 3H), 3.18 (s, 3H), 2.85–2.50 (m, 10H), 1.96–1.83 (m, 2H), 1.73–1.59 (m, 4H), 1.00 (dd, J = 6.6, 3.1 Hz, 6H), 0.96 (dd, J = 6.7, 1.3 Hz, 6H).

¹³**C NMR** (150.7 MHz, CDCl₃) δ 200.3, 200.0, 168.7, 168.5, 137.7, 137.6, 129.6, 129.6, 128.9, 128.8, 127.0, 126.9, 89.1, 89.0, 68.8, 68.7, 64.0, 63.4, 61.8, 61.7, 49.9, 49.8, 46.4, 45.5, 43.4, 43.2, 42.7, 42.6, 24.3, 24.3, 24.1, 24.0, 23.8, 23.7.

HRMS (ESI): Calculated for C₁₉H₂₅NO₅ [M+Na]⁺: 370.1625, found: 370.1641.

TLC (ethyl acetate : hexanes = 1 : 1) Rf: 0.33 (CAM).

(±)-Berkeleyamide D (3):

To a stirred solution of (\pm) -**32** (39.6 mg, 0.114 mmol, 1 equiv) in dichloromethane (14.2 mL) was added Dess-Martin periodinane (DMP, 121 mg, 0.285 mmol, 2.50 equiv) at 23 °C. After 1.5 h, a mixture of saturated aqueous sodium thiosulfate solution and saturated aqueous sodium bicarbonate solution (1:1, 12 mL) was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with dichloromethane (3 × 6 mL), and the combined organic layers were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue of (\pm)-**14** was used in the next step without further purification.

To a stirred solution of (\pm) -14 in dichloromethane (22 mL) was added triethylamine (257 μ L, 1.82 mmol, 16.0 equiv) at 23 °C. After 15 min, the reaction mixture was concentrated under reduced pressure. The resulting crude residue of (\pm) -34 was used in the next step without further purification.

A solution of (±)-**34** and *p*-toluenesulfonic acid monohydrate (TsOH·H₂O, 44.2 mg, 0.228 mmol, 2.00 equiv) in THF (9.2 mL) and H₂O (2.3 mL) was stirred at 23 °C. After 5 h, water (5 mL) was added to the reaction mixture and the resulting mixture was diluted with ethyl acetate (5 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (3 × 5 mL), and the combined organic layers were dried over anhydrous sodium sulfate and were concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5 cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 1 : 2) to afford (±)-berkeleyamide D (**3**) (22.3 mg, 59%) as a white solid.

¹**H** NMR (599.3 MHz, CDCl₃) δ 7.37–7.27 (m, 5H), 6.64 (br-s, 1H), 5.47 (br-s, 1H), 5.35 (s, 1H), 4.41 (s, 1H), 4.00 (d, J = 17.4 Hz, 1H), 3.94 (d, J = 17.5 Hz, 1H), 2.99 (br-s, 1H), 1.96–1.88 (m, 1H), 1.86 (dd, J = 14.4, 6.0 Hz, 1H), 1.59 (dd, J = 14.3, 6.8 Hz, 1H), 1.01 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6.6 Hz, 3H).

¹³**C NMR** (150.7 MHz, CDCl₃) δ 199.6, 198.0, 164.3, 133.5, 129.4, 129.2, 128.0, 104.6, 95.6, 85.1, 75.4, 45.8, 37.7, 24.3, 24.2, 24.0.

HRMS (ESI): Calculated for C₁₈H₂₁NO₅ [M+Na]⁺: 354.1312, found: 354.1313.

TLC (ethyl acetate : hexanes = 1 : 1) Rf: 0.49 (CAM, UV).

Table S1. Comparison of our data for (±)-berkeleyamide D (3) with literature:

berkeleyamide D (3)

Assignment	Stierle's Report	This Work
	¹ H NMR, 300 MHz, CDCl ₃	¹ H NMR, 599.3 MHz, CDCl ₃
C3	5.35 (br-s, 1H)	5.35 (s, 1H)
N7	6.78 (br-s, 1H)	6.64 (br-s, 1H)
С9	4.41 (d, J = 10.0 Hz, 1H)	4.41 (s, 1H)
C10′	3.98 (d, J = 17.4 Hz, 1H)	4.00 (d, J = 17.4 Hz, 1H)
C10"	3.96 (d, J = 17.4 Hz, 1H)	3.94 (d, J = 17.5 Hz, 1H)
C12(C16)	7.33 (m, 2H)	7.37-7.27 (m, 2H)
C13(C15)	7.33 (m, 2H)	7.37-7.27 (m, 2H)
C14	7.33 (m, 1H)	7.37-7.27 (m, 1H)
C17′	1.88 (m. 2H) ⁵	1.86 (dd, J = 14.4, 6.0 Hz, 1H)
C17"		1.59 (dd, J = 14.3, 6.8 Hz, 1H)
C18	1.92 (m, 1H)	1.96-1.88 (m, 1H)
C19	1.00 (d, J = 5.2 Hz, 3H)	1.01 (d, J = 6.6 Hz, 3H)
C20	0.98 (d, J = 5.2 Hz, 3H)	0.99 (d, J = 6.6 Hz, 3H)
O21	3.04 (d, J = 10.0 Hz, 1H)	2.99 (br-s, 1H)
O22	5.48 (br-s, 1H)	5.47 (br-s, 1H)

⁵ A peak at 1.6 ppm appears in the copy of NMR spectrum of berkeleyamide D attached in the original isolation paper. Proton assignment at C17 requires revision.

Assignment	Stierle's Report ⁶	This Work ⁷			
	¹³ C NMR, 75 MHz, CDCl ₃	¹³ C NMR, 150.7 MHz, CDCl ₃			
C2	197.8	198.0			
C3	104.4	104.6			
C4	199.4	199.6			
C5	95.3	95.6			
C6	164.1	164.3			
C8	84.9	85.1			
С9	75.1	75.4			
C10	37.4	37.7			
C11	133.2	133.5			
C12(C16)		129.4 ⁸			
C13(C15)	129.2, 129.0, 127.0	129.2 ⁸			
C14		128.0 ⁸			
C17	45.5	45.8			
C18	24.0	24.3			
C19	23.9	24.2			
C20	23.8	24.0			

 $^{^{6}}$ The chemical shifts were recorded with respect to the deuterated solvent shift (CDCl₃, δ 77.0 for the carbon).

⁷ The chemical shifts were recorded with respect to the deuterated solvent shift (CDCl₃, δ 77.23 for the carbon).

⁸ Assignments are based on 2D-NMR experiments including COSY, HSQC and HMBC.

Attempted Asymmetric Epoxidations of (±)-29

entry	epoxidation conditions	results (% ee) ^a
1	Shi's catalyst 1, Na ₂ EDTA, Oxone, NaHCO ₃ MeCN, H ₂ O, CH ₂ Cl ₂ , 0 °C	12% ee, 7% ee
2	Shi's catalyst 2, Na ₂ EDTA, Oxone, NaHCO ₃ MeCN, H ₂ O, CH ₂ Cl ₂ , 0 to 23 °C	23% ee, 18% ee
3	(+)-(8,8-Dichlorocamphorylsulfonyl)oxaziridine CH ₂ Cl ₂ , 23 °C	17% ee, 17% ee

a. Relative stereochemistry of each stereoisomer is not determined. Data are % ee values of two diastereomers.

(+)-(8,8-Dichlorocamphorylsulfonyl) oxaziridine

Shi's catalyst 1

Shi's catalyst 2

HPLC Traces of Racemic Compounds

Fig. S1 A. HPLC trace of mixture of **S2–S5**. B. HPLC trace of racemic mixture of one diastereomer (mixture of S2/S5 or S3/S4). C. HPLC trace of racemic mixture of one diastereomer (mixture of S3/S4 or S2/S5). CHIRALPAK IC-3, hexanes : i-PrOH = 98 : 2, 1.0 mL/min.

HPLC Traces of Asymmetric Epoxidation Products Derivatives

Fig. S2 HPLC trace of **S2–S5** after asymmetric epoxidation of **29** using Shi's catalyst 1 (CHIRALPAK IC-3, hexanes : *i*-PrOH = 98 : 2, 1.0 mL/min).

Fig. S3 HPLC trace of **S2–S5** after asymmetric epoxidation of **29** using Shi's catalyst 2 (CHIRALPAK IC-3, hexanes : *i*-PrOH = 98 : 2, 1.0 mL/min).

Fig. S4 HPLC trace of **S2–S5** after asymmetric epoxidation of **29** using (+)-(8,8dichlorocamphorylsulfonyl)oxaziridine (CHIRALPAK IC-3, hexanes : *i*-PrOH = 98 : 2, 1.0 mL/min).

Biomimetic Total Synthesis of (±)-Berkeleyamide D. Jo and S. Han	D			Page S23/S41
		— 82.00		
ParameterValue1OriginVarian2Spectrometervnmrs3Solventcdcl34Temperature25.05Pulse Sequences2pul6Experiment1D7Probeoneprobe8Number of Scans5669Receiver Gain6010Relaxation Delay2.000011Pulse Width0.000012Acquisition Time0.8651		OH O O OH O O O ^t Bu (±)- 21		
13 Spectrometer Frequency150.7014 Spectral Width37878.815 Lowest Frequency-2372.616 Nucleus13C17 Acquired Size3276818 Spectral Size65536				
210 200 190 180 170 160	150 140 130 12		70 60 50 40	

Biomimetic Total Synthesis D. Jo and S. Han	of (±)-Berkeleyamide D					Page S25/S41
	✓ 166.74 166.21	134.93 139.76 129.76 129.53 129.02 127.53 127.53		≪82.07		^{28.07} ^{28.04} ^{28.04}
ParameterVari1OriginVari2Spectrometervnm3Solventcdci4Temperature25.05Pulse Sequences2pt6Experiment1D7Probeone8Number of Scans5509Receiver Gain6010Relaxation Delay2.0011Pulse Width0.0012Acquisition Time0.8613Spectrometer Frequency150.14Spectral Width378715Lowest Frequency-23416Nucleus13C17Acquired Size327618Spectral Size6553	alue an rs 13 ul probe 00 00 51 70 78.8 12.5		0 ^{-H} -0 1 22	O O ^t Bu		
20 210 200 190 180	170 160 15	50 140 130 120 1	10 100 9 f1 (ppm)	0 80 70	60 50 40	30 20 10 0 -

പന്ത്

0.5

0.0

-0.5 -1

1.0

11.5 11.0 10.5 10.0

9.5

9.0

8.5

3.09 2.19 4

7.0

7.5

8.0

0.95-7

6.5

5.5

f1 (ppm)

6.0

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Biomimetic Total Synthesis of (±)-Berkeleyamide D D. Jo and S. Han					Page S27/S41	
		— 100.71		49.15 7 46.95 7 44.55 40.64	→ 26.00 25.05 18.40 18.40	$<^{-5.36}_{-5.37}$
Parameter Value 1 Origin Varian 2 Spectrometer vnmrs 3 Solvent cdcl3 4 Temperature 25.0 5 Pulse Sequence s2pul 6 Experiment 1D 7 Probe oneprobe 8 Number of Scans 606 9 Receiver Gain 60 10 Relaxation Delay 2.0000 11 Pulse Width 0.0000 12 Acquisition Time 0.8651 13 Spectrometer Frequency 150.70 14 Spectral Width 37878.8 15 Lowest Frequency -233.5 16 Nucleus 13C 17 Acquired Size 32768 18 Spectral Size 65536			S1			
20 210 200 190 180 170 160 150	140 130 120	f1 (ppm)	80 70 60	50 40	30 20 10	0 –

Biomimetic Total Sy D. Jo and S. Han	vnthesis of (±)-Be	erkeleyamide D					Page S29/S41
∧ 190.83 190.38			-134.65 -129.43 -128.86 -127.37	— 100.52		750.33 46.78 44.16 40.08	^{24,91} ^{23,12} ^{22,22}
Parameter	Value						
1 Origin	Varian						
2 Spectrometer	vnmrs						
3 Solvent	cdcl3						
4 Temperature	25.0				Me		
5 Pulse Sequence	s2pul			A H	1		
6 Experiment	1D			00	O Me		
7 Probe	onenrobe				HO. J. J.		
8 Number of Scans	550			$\vee \vee \vee$			
9 Beceiver Gain	60			100			
10 Relaxation Delay	2 0000			24	4		
11 Pulse Width	0.0000						
12 Acquisition Time	0.8651						
13 Spectrometer Frequenci	v 150.69						
14 Spectral Width	37878.8						
15 Lowest Frequency	-2349.6						
16 Nucleus	130				6		
17 Acquired Size	32768		li				
18 Spectral Size	65536						
0 210 200 190	180 17	70 160 150	140 130 120	110 100 90 f1 (ppm)	80 70 60	50 40	30 20 10 0

Biomimetic Total Sy D. Jo and S. Han	nthesis of (±)-Bo	erkeleyamide D						Page S31/S41
	—174.87		∧ 134.12 133.59 129.45 127.38 127.38	<108.78 108.70 108.70			-46.06 -45.71 -44.49	
Parameter	Value							
1 Origin	Varian							
2 Spectrometer	vnmrs							
3 Solvent	cdcl3						^	
4 Temperature	25.0					ſ		рн
5 Pulse Sequence	s2pul							
6 Experiment	1D						~ ~ *	\searrow
7 Probe	oneprobe							
8 Number of Scans	256						Ť	-NH
9 Receiver Gain	60						<	Me
10 Relaxation Delay	2.0000					L		File
11 Pulse Width	0.0000						Me	
12 Acquisition Time	0.8651							
13 Spectrometer Frequency	y 150.71						26	
14 Spectral Width	37878.8							
15 Lowest Frequency	-2329.3							
16 Nucleus	13C							
17 Acquired Size	32768							
18 Spectral Size	65536							
			l					
	İ							
าขนบทูปปูงใช้ระมาจะของรังสะบารจะไขยายจะจะไขยายจะจะไขที่หมายจะสามารถ -	ullukyn-mphilukaan (makynaan	ĸĸĸ₩ĸĸŧĸŢĬĴŶţĊĸĸĸţĸĸŧŔĬţĬţŔĸĸĸĸţĸĸŔţĸŀĸĸĸţ	ornanovlasoviovlootnosistaabilina,opta ^{an v} riiktamoorna ostaataabi	pein-senjanyanyanyanyanyanyanyanyanyanyanyanyanya	งประทุกประทะการเกิดราย - 1985 - 1985 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	d ⁻¹ WR/186481000/vy349v0×v000494f0×v1vaAvv0×v1p44100	ġĸŗĸġĸŢġĸŦĽĸĸŀŔĸġĿſĿĸŀŔġĸĬŔŗĸĬġĸŔĸġĸŎţĸŎſĬŔŎŔĸĸġĸŎċ	สุขสมข้มรือข้างไปที่สามาร์สามาร์สามาร์สมมาร์สามาร์สามาร์สามาร์สามาร์สามาร์สามาร์สามาร์สามาร์สามาร์สามาร์สามาร์
210 200 190	180 17	70 160 150) 140 130 120	110 100 f1 (ppm)	90 80	70 60	50 40	30 20 10 0

-1.43

-0.83

----0.04 ---0.13

Biomimetic Total Syn D. Jo and S. Han	thesis of (±)-Berkeleyamide D							Page S	33/S41
		— 138.30	/ 129.93 / 128.46 / 126.57						-4.79
Parameter1Origin2Spectrometer3Solvent4Temperature5Pulse Sequence6Experiment7Probe8Number of Scans9Receiver Gain10Relaxation Delay11Pulse Width12Acquisition Time13Spectrometer Frequency14Spectral Width15Lowest Frequency16Nucleus17Acquired Size18Spectral Size	Value Varian vnmrs cdcl3 25.0 s2pul 1D oneprobe 606 60 2.0000 0.0000 0.8651 150.70 37878.8 -2335.3 13C 32768 65536			(TBSO (0 ±)-27	O ^t Bu			
				l					l
210 200 190	180 170 160 1	50 140	130 120	110 100 90 f1 (ppm)	80	70 60	50 40	30 20	10 0 -1

Biomimetic Total D. Jo and S. Han	Synthesis of (±)-Berkeleyamide D			Page \$39/\$41
<200.25 200.04	^{168.67} ^{168.67}	137.70 137.59 129.64 128.85 128.81 126.94	68.73 68.73 68.73 69.39 61.73 45.50 45.50 42.22 55.55 45.50 42.22 55.55 45.50 45.55 45.55 45.55 45.55 45.55 45.55 45.73 55 55 55 55 55 55 55 55 55 55 55 55 55	24.28 24.03 23.75 23.72 23.72
Parameter	Value			
1 Origin	Varian			
2 Spectrometer	vnmrs		^	
3 Solvent	cdcl3		OH O O	
4 Temperature	25.0			
5 Pulse Sequence	s2pul		ON NI	H Me
6 Experiment	1D			1
7 Probe	oneprobe		MeO	Me
8 Number of Scans	606			
9 Receiver Gain	60		(+) 22	
10 Relaxation Delay	2.0000		(±)- 32	
11 Pulse Width	0.0000		1	
12 Acquisition Time	0.8651			
10 Chaotromotor Fraguer	001 150 60			

13 Spectrometer Frequency 150.69 14 Spectral Width 37878.8 15 Lowest Frequency -2330.9 16 Nucleus 13C

17 Acquired Size 18 Spectral Size 110 100 f1 (ppm) -1

