Supporting Information

Synthesis of 3-Acylquinolines through Cu-Catalyzed Double C(sp ${ }^{\mathbf{3}}$)-HBond Functionalization of Saturated Ketones
Ze Wang, Guang Chen, Xinying Zhang*, and Xuesen Fan*
School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Henan Province for
Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
E-mail: xuesen.fan@htu.cn; xinyingzhang@htu.cn
Table of Contents
I. General experimental information 2
II. Experimental procedures and spectroscopic sata 3
III. References 18
IV. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a - 3 r}$ 19
V. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 a - 5 I}$ 37
VI. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of intermediates \mathbf{C}, \mathbf{D} and \mathbf{G} 49

I. General experimental information

Commercial reagents were used without further purification, and solvents were dried before using. Melting points were recorded with a micro melting point apparatus and uncorrected. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz or 600 MHz . The ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz or 150 MHz . Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane, and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), m (multiplet), br s (broad singlet), etc. The coupling constants J were given in Hz . High resolution mass spectra (HRMS) were obtained via ESI mode by using a MicrOTOF mass spectrometer. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F 2540.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

II. Experimental procedures and spectroscopic sata

1. Typical procedure for the synthesis of $\mathbf{3 a}$ and spectroscopic data of $\mathbf{3 a - 3 r}$

To a 15 mL reaction tube equipped with a stir bar were added 2 -aminobenzaldehyde ($\mathbf{1 a}, 60.5 \mathrm{mg}, 0.5$ $\mathrm{mmol})$, toluene $(3.0 \mathrm{~mL}), \mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}), 2,2^{\prime}-$ bipyridine $(15.6 \mathrm{mg}, 0.1 \mathrm{mmol})$, TEMPO ($156.1 \mathrm{mg}, 1 \mathrm{mmol}$) and propiophenone ($\mathbf{2 a}, 80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 14 h . Upon completion, the resulting mixture was diluted with DCM (20 mL), and washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give $\mathbf{3 a}$ ($90.9 \mathrm{mg}, 78 \%$). 3b-3r were obtained in a similar manner.

Phenyl(quinolin-3-yl)methanone (3a) ${ }^{1}$

Eluent: petroleum ether/ethyl acetate (10:1). White solid ($90.9 \mathrm{mg}, 78 \%$), mp $74-76^{\circ} \mathrm{C}\left(\right.$ (lit. ${ }^{1} 73-75{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.85\left(\mathrm{dd}, J_{l}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.32$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 126.6,127.6,128.6,129.2,129.5,130.0,131.8,133.1$, 137.0, 138.8, 149.5, 150.3, 194.8. MS: m/z $234[\mathrm{M}+\mathrm{H}]^{+}$.

(6-Chloroquinolin-3-yl)(phenyl)methanone (3b)

Eluent: petroleum ether/ethyl acetate (10:1). White solid ($100.1 \mathrm{mg}, 75 \%$), mp $121-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76\left(\mathrm{dd}, J_{l}=8.8 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.29$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 127.3,127.6,128.7,130.1,130.9,131.1,132.7,133.3$, 133.5, 136.8, 137.6, 147.8, 150.5, 194.5. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClNO}: 268.0524[\mathrm{M}+\mathrm{H}]{ }^{+}$, found: 268.0528 .

[1,3]Dioxolo[4,5-g]quinolin-7-yl(phenyl)methanone (3c)

Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid (109.4 mg, 79\%), mp 119-120 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.15(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 102.3,103.7,105.9,123.9,128.56,128.59,130.0,132.8,137.2,137.3,148.4,148.6,148.7,152.8,194.9$. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{3}$: $278.0812[\mathrm{M}+\mathrm{H}]^{+}$, found: 278.0820 .
(7-Methoxyquinolin-3-yl)(phenyl)methanone (3d) ${ }^{2}$
Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid ($110.5 \mathrm{mg}, 84 \%$), mp $84-85^{\circ} \mathrm{C}$ (lit. ${ }^{2} 79-80{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.97(\mathrm{~s}, 3 \mathrm{H}), 7.25\left(\mathrm{dd}, J_{l}=7.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.47(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.25(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.7,107.4,120.9$, 121.7, 128.0, 128.6, 129.9, 130.3, 132.8, 137.3, 138.5, 150.9, 151.6, 162.7, 194.8. MS: m/z $264[\mathrm{M}+\mathrm{H}]^{+}$.
(6,7-Dimethoxyquinolin-3-yl)(phenyl)methanone (3e) ${ }^{2}$
Eluent: petroleum ether/ethyl acetate (3:1). Yellow solid ($126.0 \mathrm{mg}, 86 \%$), mp $144-145{ }^{\circ} \mathrm{C}$ (lit. ${ }^{2} 142-$ $\left.143{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.86(\mathrm{~m}, 2 \mathrm{H}), 8.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 56.1,56.3,106.1,107.9,122.3,128.5,129.9,132.7,136.8,137.5,147.1,148.6$, 150.5, 154.4, 195.1. MS: m/z $294[\mathrm{M}+\mathrm{H}]^{+}$.
(4-Bromophenyl)(quinolin-3-yl)methanone (3f) ${ }^{1}$
Eluent: petroleum ether/ethyl acetate (10:1). White solid (110.4 mg, 71\%), mp 118-119 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} 115-$ $\left.117{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 9.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 126.5,127.7,128.3,129.2,129.5,129.6$, 131.5, 132.01, 132.04, 135.7, 138.7, 149.6, 150.1, 193.8. MS: m/z $312[\mathrm{M}+\mathrm{H}]^{+}$.

Quinolin-3-yl(4-(trifluoromethyl)phenyl)methanone (3g)

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid (108.4 mg, 72\%), mp 116-117 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 123.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.5 \mathrm{~Hz}\right), 126.5,127.9,129.2$, 129.3, 129.6, 130.2, 132.3, $134.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.9 \mathrm{~Hz}\right), 139.1,140.1,149.7,150.1,193.8$. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}: 302.0787[\mathrm{M}+\mathrm{H}]^{+}$, found: 302.0807.

Quinolin-3-yl(p-tolyl)methanone (3h) ${ }^{3}$

Eluent: petroleum ether/ethyl acetate (10:1). White solid (97.6 mg, 79\%), mp 93-94 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.45(\mathrm{~s}, 3 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.84$ $(\mathrm{m}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7$, 126.6, 127.5, 129.1, 129.3, 129.5, 130.3, 130.4, 131.7, 134.4, 138.5, 144.0, 149.4, 150.4, 194.5. MS: m/z $248[\mathrm{M}+\mathrm{H}]^{+}$.
(4-Methoxyphenyl)(quinolin-3-yl)methanone (3i) ${ }^{3}$
Eluent: petroleum ether/ethyl acetate (5:1). White solid (109.2 mg, 83\%), mp $132-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.01\left(\mathrm{dt}, J_{l}=8.8 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.61-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.85(\mathrm{~m}, 1 \mathrm{H})$, $7.88\left(\mathrm{dd}, J_{I}=6.8 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 9.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.6,114.0,126.7,127.5,129.0,129.5$, 129.7, 130.8, 131.6, 132.6, 138.2, 149.3, 150.3, 163.7, 193.5. MS: m/z $264[\mathrm{M}+\mathrm{H}]^{+}$.

Pyridin-3-yl(quinolin-3-yl)methanone (3j)

Eluent: petroleum ether/ethyl acetate (3:1). Brown yellow solid ($73.7 \mathrm{mg}, 63 \%$), mp $81-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88\left(\mathrm{td}, J_{l}=8.4 \mathrm{~Hz}\right.$,
$\left.J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.88\left(\mathrm{dd}, J_{l}=4.8\right.$ $\left.\mathrm{Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 123.7, 126.4, 127.9, 129.1, 129.2, 129.6, 132.3, 132.6, 137.1, 139.0, 149.7, 149.9, 150.8, 153.4, 193.1. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}: 235.0866[\mathrm{M}+\mathrm{H}]^{+}$, found: 235.0878.

Quinolin-3-yl(thiophen-2-yl)methanone (3k) ${ }^{1}$

Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid ($89.6 \mathrm{mg}, 75 \%$), mp $86-87^{\circ} \mathrm{C}$ (lit. ${ }^{1} 89-91{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22\left(\mathrm{dd}, J_{l}=4.8 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.71\left(\mathrm{dd}, J_{l}=\right.$ $\left.4.2 \mathrm{~Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.79\left(\mathrm{dd}, J_{1}=4.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.83-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.94\left(\mathrm{td}, J_{1}=7.8 \mathrm{~Hz}\right.$, $\left.J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 126.6,127.7,128.4,129.1,129.5,130.7,131.8,135.08,135.10,137.7,143.2,149.5$, 149.6, 186.2. MS: m/z $240[\mathrm{M}+\mathrm{H}]^{+}$.

1-(Quinolin-3-yl)ethanone (3I) ${ }^{1}$

Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid ($24.8 \mathrm{mg}, 29 \%$), mp 95-96 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} 98-99{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.74(\mathrm{~s}, 3 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.43(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 26.8,126.8,127.6,129.3,129.4,129.5,132.0,137.4,149.2,149.8,196.8 . \mathrm{MS}: \mathrm{m} / \mathrm{z} 172$ $[\mathrm{M}+\mathrm{H}]^{+}$.

Cyclohexyl(quinolin-3-yl)methanone (3m) ${ }^{3}$

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid ($41.8 \mathrm{mg}, 35 \%$), mp $61-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.90$ $(\mathrm{m}, 2 \mathrm{H}), 1.96(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37\left(\mathrm{tt}, J_{l}=11.4 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ $\left(\mathrm{td}, J_{l}=7.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 9.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.7,25.9,29.2,46.0,126.9,127.4,128.4$, 129.3, 129.4, 131.8, 137.0, 149.5, 149.7, 202.5. MS: m/z $240[\mathrm{M}+\mathrm{H}]^{+}$.

(2-Methylquinolin-3-yl)(phenyl)methanone (3n) ${ }^{4}$

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid ($56.8 \mathrm{mg}, 46 \%$), mp $134-136{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4}$ 131$\left.133{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.75(\mathrm{~s}, 3 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.3,125.3,126.7,128.1,128.7,128.8,130.2,131.1,132.2,133.7,136.8$, 137.3, 148.1, 156.7, 196.7. MS: m/z $248[\mathrm{M}+\mathrm{H}]^{+}$.

Phenyl(2-phenylquinolin-3-yl)methanone (30) ${ }^{5}$

Eluent: petroleum ether/ethyl acetate (10:1). White solid ($123.6 \mathrm{mg}, 80 \%$), mp $138-139{ }^{\circ} \mathrm{C}$ (lit. ${ }^{5} 135-$ $\left.137{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.63$ $\left(\mathrm{dd}, J_{I}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.69-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 125.8,127.3,128.2,128.4,128.9,129.3$, $129.7,130.0,131.2,132.9,133.4,137.1,137.6,139.8,148.4,157.5,196.9 . \mathrm{MS}: \mathrm{m} / \mathrm{z} 310[\mathrm{M}+\mathrm{H}]^{+}$.

11H-Indeno[1,2-b]quinolin-11-one (3p) ${ }^{4}$

Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid ($42.7 \mathrm{mg}, 37 \%$), mp $169-171{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} 172-$ $\left.174{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 121.6$, $124.9,126.2,128.5,129.2,129.5,129.9,130.1,131.7,133.7,134.3,136.1,142.6,148.6,154.3,192.3$. MS: m/z $232[\mathrm{M}+\mathrm{H}]^{+}$.

(1,8-Naphthyridin-3-yl)(phenyl)methanone (3q)

Eluent: petroleum ether/ethyl acetate (1:1). White solid (101.8 mg, 87\%), mp $102-103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{q}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 8.34\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.24(\mathrm{q}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.51$
(d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 121.4,123.2,128.8,130.0,131.1,133.4,136.6,138.4$, 139.7, 153.6, 155.7, 157.1, 194.1. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}: 257.0685[\mathrm{M}+\mathrm{Na}]^{+}$, found: 257.0692.

(1,8-Naphthyridin-3-yl)(pyridin-3-yl)methanone (3r)

Eluent: petroleum ether/ethyl acetate (1:2). White solid (96.4 mg, 82\%), mp 97-98 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22\left(\mathrm{dt}, J_{l}=7.6 \mathrm{~Hz}, J_{2}\right.$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.66(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.62\left(\mathrm{dd}, J_{1}=4.8 \mathrm{~Hz}, J_{2}=\right.$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.28\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.54(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 121.4,123.4,123.8,130.2,132.3,137.2,138.5,140.0,150.8,153.2,153.7$, 156.1, 157.3, 192.4. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}: 236.0818[\mathrm{M}+\mathrm{H}]^{+}$, found: 236.0819.

2. Typical procedure for the synthesis of 5 a and spectroscopic data of 5a-51

To a 15 mL reaction tube equipped with a stir bar were added (2-aminophenyl)(phenyl)methanone ($\mathbf{4 a}$, $98.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene (3.0 mL), $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}$,), 2,2'-bipyridine ($15.6 \mathrm{mg}, 0.1$ mmol), TEMPO ($156.1 \mathrm{mg}, 1 \mathrm{mmol}$) and propiophenone ($2 \mathrm{a}, 80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 36 h . Upon completion, the resulting mixture was diluted with $\operatorname{DCM}(20 \mathrm{~mL})$, and washed with water (10 mL) and brine (10 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give $\mathbf{5 a}$ ($142.2 \mathrm{mg}, \mathbf{9 2 \%}$). $\mathbf{5 b} \mathbf{b} \mathbf{5 1}$ were obtained in a similar manner.

Phenyl(4-phenylquinolin-3-yl)methanone (5a) ${ }^{1}$

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid (142.2 mg, 92\%), mp $105-107{ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} 108-$ $\left.110{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 126.5,126.8,127.6,128.3,128.6,129.76,129.85,130.1,130.5,131.9,133.3,135.0$, 137.4, 147.0, 148.6, 148.9, 196.9. MS: m/z $310[\mathrm{M}+\mathrm{H}]^{+}$.
(4-Methoxyphenyl)(4-phenylquinolin-3-yl)methanone (5b) ${ }^{6}$
Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid (159.4 mg, 94%), mp $118-120{ }^{\circ} \mathrm{C}$ (lit. ${ }^{6} 115-$ $\left.116{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.5,113.6,126.6,126.7,127.5,128.2,128.5,129.8,130.0,130.3,132.2$, 132.3, 135.1, 146.6, 148.5, 148.7, 163.8, 195.1. MS: m/z $340[\mathrm{M}+\mathrm{H}]^{+}$.

(4-Phenylquinolin-3-yl)(4-(trifluoromethyl)phenyl)methanone (5c)

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid (147.1 mg, 78\%), mp $139-141{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $123.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.4 \mathrm{~Hz}\right), 125.2\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 126.2,126.8,127.8,128.4,128.8,129.7,129.9$, 130.2, 130.9, 131.1, $134.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.9 \mathrm{~Hz}\right), 134.7,140.3,147.4,148.5,149.2,196.1$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NNaO}: 400.0920[\mathrm{M}+\mathrm{Na}]^{+}$, found: 400.0949.

(4-Phenylquinolin-3-yl)(thiophen-2-yl)methanone (5d) ${ }^{6}$

Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid (141.8 mg, 90\%), mp $123-124{ }^{\circ} \mathrm{C}$ (lit. ${ }^{6} 128-$ $\left.130{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97\left(\mathrm{dd}, J_{l}=4.8 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28\left(\mathrm{dd}, J_{l}=4.0 \mathrm{~Hz}, J_{2}=\right.$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.60\left(\mathrm{dd}, J_{l}=4.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78-7.82(\mathrm{~m}$, $2 \mathrm{H}), 8.23\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 126.5,126.9$, 127.6, 128.1, 128.4, 128.7, 129.8, 130.1, 130.6, 131.9, 134.9, 135.4, 135.6, 144.5, 146.8, 148.1, 148.8, 188.3. MS: m/z $316[\mathrm{M}+\mathrm{H}]^{+}$.

1-(4-Phenylquinolin-3-yl)ethanone (5e) ${ }^{7}$

Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid ($63.0 \mathrm{mg}, 51 \%$), mp $75-76{ }^{\circ} \mathrm{C}$ (lit. ${ }^{7} 69-71{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 7.38\left(\mathrm{dd}, J_{l}=6.6 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~s}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.6,126.3,127.1,127.5,128.9,129.2,129.69,129.72,130.8,132.2$, 135.8, 146.8, 148.9, 149.0, 202.3. MS: m/z $248[\mathrm{M}+\mathrm{H}]^{+}$.

(6-Chloro-4-phenylquinolin-3-yl)(phenyl)methanone (5f) ${ }^{6}$

Eluent: petroleum ether/ethyl acetate (10:1). White solid ($154.4 \mathrm{mg}, 90 \%$) , mp $175-177{ }^{\circ} \mathrm{C}$ (lit. ${ }^{6}$ 181$\left.182{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.73\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~s}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 125.5,127.3,128.3,128.5,128.9,129.7,130.0,131.4,131.5,132.6$, 133.4, 133.6, 134.3, 137.1, 146.1, 147.3, 148.7, 196.4. MS: m/z $344[\mathrm{M}+\mathrm{H}]^{+}$.

(4-Methylquinolin-3-yl)(phenyl)methanone (5g) ${ }^{5}$

Eluent: petroleum ether/ethyl acetate (10:1). White solid ($70.4 \mathrm{mg}, 57 \%$), mp $87-89^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{5} 82-86{ }^{\circ} \mathrm{C}\right.$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.67(\mathrm{~s}, 3 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.83(\mathrm{~m}$, $1 \mathrm{H}), 7.84-7.86(\mathrm{~m}, 2 \mathrm{H}), 8.13\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.9,124.5,127.3,127.6,128.8,130.1,130.2,130.4,131.9,133.9,137.5$, 143.6, 148.1, 148.6, 197.0. MS: m/z $248[\mathrm{M}+\mathrm{H}]^{+}$.

(4-Methylquinolin-3-yl)(p-tolyl)methanone (5h)

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid ($73.1 \mathrm{mg}, 56 \%$), mp $118-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.9,21.8,124.4,127.3,127.7,129.6,130.2,130.31,130.34,132.2,135.0$, 143.3, 145.0, 148.0, 148.6, 196.6. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}: 262.1226[\mathrm{M}+\mathrm{H}]^{+}$, found: 262.1248.

(4-Methoxyphenyl)(4-methylquinolin-3-yl)methanone (5i)

Eluent: petroleum ether/ethyl acetate (5:1). White solid ($80.4 \mathrm{mg}, 58 \%$), mp $91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.65(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 15.8,55.6,114.1,124.4,127.3,127.7,130.2,130.5,132.4,132.6,142.9$, 147.9, 148.5, 164.3, 195.5. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2}: 278.1176[\mathrm{M}+\mathrm{H}]^{+}$, found: 278.1202.

(4-Chlorophenyl)(4-methylquinolin-3-yl)methanone (5j)

Eluent: petroleum ether/ethyl acetate (10:1). White solid ($73.1 \mathrm{mg}, 52 \%$), mp $150-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.69(\mathrm{~s}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.9,124.5,127.5,127.6,129.2,130.3,130.6,131.4,131.5,135.9,140.5,143.8,148.2$, 148.4, 195.7. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClNO}: 282.0680[\mathrm{M}+\mathrm{H}]^{+}$, found: 282.0695 .

(4-Methylquinolin-3-yl)(4-(trifluoromethyl)phenyl)methanone (5k)

Eluent: petroleum ether/ethyl acetate (10:1). White solid ($77.2 \mathrm{mg}, 49 \%$), mp $140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.69(\mathrm{~s}, 3 \mathrm{H}), 7.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 16.0,123.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.2 \mathrm{~Hz}\right), 124.5,125.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.4 \mathrm{~Hz}\right), 127.56,127.60,130.3,130.4$, 130.8, 131.0, $135.0\left(\mathrm{q}^{2}{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=31.8 \mathrm{~Hz}\right), 140.3,144.3,148.3,148.5,195.9$. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}$: $316.0944[\mathrm{M}+\mathrm{H}]^{+}$, found: 316.0968 .

1-Benzoyl-7H-naphtho[1,2,3-de] quinolin-7-one (51)

Eluent: petroleum ether/ethyl acetate (5:1). Orange solid ($77.3 \mathrm{mg}, 46 \%$), mp $188-189{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 123.1,128.7,128.8,129.0,129.1$, $130.1,130.4,130.5,130.8,131.3,132.8,132.9,133.2,133.5,134.6,136.1,136.5,147.6,150.0,182.1$, 197.9. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{NNaO}_{2}: 358.0838[\mathrm{M}+\mathrm{Na}]^{+}$, found: 358.0864 .

3. Control experiments (I)

3.1. To a 15 mL reaction tube equipped with a stir bar were added $\mathbf{4 a}(98.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene (3.0 $\mathrm{mL}), \mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}), 2,2^{\prime}-$ bipyridine ($15.6 \mathrm{mg}, 0.1 \mathrm{mmol}$), TEMPO ($156.2 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathbf{2 a}(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 16 h . Afterwards, the resulting mixture was diluted with $\mathrm{DCM}(20 \mathrm{~mL})$, and washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give 1-phenylprop-2-en-1-one (C, $7.2 \mathrm{mg}, 9 \%$), 3-((2-benzoyl phenyl)amino)-1-phenylpropan-1-one (D, $98.7 \mathrm{mg}, 60 \%$), and $\mathbf{5 a}(23.2 \mathrm{mg}, 15 \%)$.

1-Phenylprop-2-en-1-one (C) ${ }^{8}$

Eluent: petroleum ether/ethyl acetate (50:1). Colorless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93$ (dd, J_{l} $\left.=10.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.44\left(\mathrm{dd}, J_{l}=16.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{dd}, J_{l}=16.8 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.48\left(\mathrm{td}, J_{l}=6.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.58\left(\mathrm{tt}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.94-7.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 128.6,128.7,130.2,132.4,133.0,137.3,191.1 . \mathrm{MS}: \mathrm{m} / \mathrm{z} 133[\mathrm{M}+\mathrm{H}]^{+}$.

3-((2-Benzoylphenyl)amino)-1-phenylpropan-1-one (D)

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid, mp $88-89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.51(\mathrm{~m}, 7 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 37.8,38.1,111.4,114.0,117.5,128.1,128.7,129.1,130.8,133.4,135.1,135.7,136.7,140.5$, 151.5, 198.2. 199.3. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaO}_{2}: 352.1308[\mathrm{M}+\mathrm{Na}]^{+}$, found: 352.1326.
3.2. To a 15 mL reaction tube equipped with a stir bar were added $\mathbf{4 a}(98.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene (3.0 $\mathrm{mL}), \mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}), 2,2^{\prime}$-bipyridine ($15.6 \mathrm{mg}, 0.1 \mathrm{mmol}$), TEMPO ($78.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{C}(79.2 \mathrm{mg}, 0.6 \mathrm{mmol})$ with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 24 h . Afterwards, the resulting mixture was diluted with DCM (20 mL), and washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give $\mathbf{5 a}$ ($142.2 \mathrm{mg}, \mathbf{9 2 \%}$).

3.3. To a 15 mL reaction tube equipped with a stir bar were added $\mathbf{4 a}(98.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene (3.0 $\mathrm{mL}), \mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}), 2,2^{\prime}$-bipyridine ($15.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathbf{C}(79.2 \mathrm{mg}, 0.6 \mathrm{mmol})$ with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 36 h . Afterwards, the resulting mixture was diluted with $\operatorname{DCM}(20 \mathrm{~mL})$, and washed with water (10 mL) and brine $(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give $\mathbf{D}(154.7 \mathrm{mg}, 94 \%)$.

3.4. To a 15 mL reaction tube equipped with a stir bar were added \mathbf{D} ($164.6 \mathrm{mg}, 0.5 \mathrm{mmol}$), toluene (3 $\mathrm{mL}), \mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}), 2,2^{\prime}-$ bipyridine $(15.6 \mathrm{mg}, 0.1 \mathrm{mmol})$ and TEMPO $(78.1 \mathrm{mg}, 0.5$ mmol) with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at
$120{ }^{\circ} \mathrm{C}$ for 24 h . Afterwards, the resulting mixture was diluted with DCM (20 mL), and washed with water (10 mL) and brine $(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give $\mathbf{5 a}(142.2 \mathrm{mg}, 92 \%)$.

3.5. To a 15 mL reaction tube equipped with a stir bar were added $\mathbf{D}(164.6 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene (3.0 mL) , $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 2, 2^{\prime}-bipyridine $(15.6 \mathrm{mg}, 0.1 \mathrm{mmol})$ with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 36 h . From the resulting mixture, 95% of \mathbf{D} were recovered.

4. Control experiments (II)

4.1. To a 50 mL reaction tube equipped with a stir bar were added 1-phenylprop-2-yn-1-one ($\mathbf{6}, 130.0$ $\mathrm{mg}, 1 \mathrm{mmol}), \mathrm{DCM}(10 \mathrm{~mL}), 4 \mathrm{a}(394.2 \mathrm{mg}, 2 \mathrm{mmol})$ and $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(13.5 \mathrm{mg}, 0.05 \mathrm{~mol})$. The mixture was then stirred at $30^{\circ} \mathrm{C}$ for 5 h . The resulting mixture was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to afford 3-((2-benzoylphenyl)amino)-1-phenylprop-2-en-1-one (G, $229.0 \mathrm{mg}, 70 \%$). ${ }^{3}$

3-((2-Benzoylphenyl)amino)-1-phenylprop-2-en-1-one (G)

Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid, mp 104-105 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8$
$\mathrm{Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 13.38(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 96.4,115.1$, 121.2, 124.0, 127.8, 128.1, 128.3, 130.3, 131.6, 132.3, 133.7, 133.8, 138.6, 139.1, 142.4, 190.4, 197.1. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NNaO}_{2}: 350.1151[\mathrm{M}+\mathrm{Na}]^{+}$, found: 350.1162 .
4.2. To a 15 mL reaction tube equipped with a stir bar were added $\mathbf{G}(163.6 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene (3.0 mL) , $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 2,2'-bipyridine ($15.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 10 min . Afterwards, the resulting mixture was diluted with $\operatorname{DCM}(20 \mathrm{~mL})$, and washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give 5a ($143.7 \mathrm{mg}, 93 \%$).

5. Gram scale synthesis of 5a

To a 100 mL reaction tube equipped with a stir bar were added $\mathbf{4 a}(985.4 \mathrm{mg}, 5 \mathrm{mmol}$), toluene (20 $\mathrm{mL}), \mathrm{Cu}(\mathrm{OAc})_{2}(90.8 \mathrm{mg}, 0.5 \mathrm{mmol}), 2,2^{\prime}$-bipyridine ($156.1 \mathrm{mg}, 1 \mathrm{mmol}$), TEMPO ($1.56 \mathrm{~g}, 10 \mathrm{mmol}$) and $2 \mathbf{2 a}(0.80 \mathrm{~mL}, 6 \mathrm{mmol})$ with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 40 h . Upon completion, the resulting mixture was diluted with $\mathrm{DCM}(50 \mathrm{~mL})$, and washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and contentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give $\mathbf{5 a}(1.313 \mathrm{~g}, 85 \%)$.

6. The formation of $\mathbf{5 g}$ ' along with the formation of $\mathbf{5 g}$

The fact that $\mathbf{5 g} \mathbf{- 5 k}$ were obtained only in moderate yields (see Table 3 of the main text) is mainly due to the formation of TEMPO-related side products. Taking $\mathbf{5 g}$ as an example, under the standard reaction conditions, the formation of $\mathbf{5 g}$ is along with the formation of phenyl(4-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)quinolin-3-yl)methanone (5g') in a yield of 25%.

To a 15 mL reaction tube equipped with a stir bar were added 1-(2-aminophenyl)ethan-1-one (4c, 67.5 $\mathrm{mg}, 0.5 \mathrm{mmol})$, toluene (3.0 mL), $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 0.05 \mathrm{mmol}$), 2,2'-bipyridine ($15.6 \mathrm{mg}, 0.1 \mathrm{mmol}$), TEMPO ($156.1 \mathrm{mg}, 1 \mathrm{mmol}$) and propiophenone ($\mathbf{2 a}, 80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) with stirring. After being flushed with N_{2}, the tube was sealed, and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 36 h . Upon completion, the resulting mixture was diluted with $\mathrm{DCM}(20 \mathrm{~mL})$, and washed with water (10 mL) and brine (10 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give $\mathbf{5 g}$ ($70.4 \mathrm{mg}, \mathbf{5 7 \%}$) and $\mathbf{5 g}$ ($50.2 \mathrm{mg}, \mathbf{2 5 \%}$).

Phenyl(4-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)quinolin-3-yl)methanone (5g'): Eluent: petroleum ether/ethyl acetate (10:1). Yellow solid, mp 112-114 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.75$ $(\mathrm{s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}), 1.23-1.45(\mathrm{~m}, 6 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63-7.66(m, 1H), 7.78-7.81(m, 1H), $7.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 17.0,20.3,32.7,39.7,60.0,124.7,125.5,127.4,128.5,130.21,130.24,130.3$, 131.4, 133.6, 137.3, 142.3, 148.2, 148.6, 195.8. MS: m/z $403[\mathrm{M}+\mathrm{H}]^{+}$.

III. References

(1) S. Khong and O. Kwon, J. Org. Chem., 2012, 77, 8257.
(2) P.-K. Mahata, C. Venkatesh, U.-K.-S. Kumar, H. Ila and H. Junjappa, J. Org. Chem., 2003, 68, 3966.
(3) H. Li, X. Xu, J. Yang, X. Xie, H. Huang and Y. Li, Tetrahedron Lett., 2011, 52, 530.
(4) E. Cini, E. Petricci, G.-I. Truglio, M. Vecchio and M. Taddei, RSC Adv., 2016, 6, 31386.
(5) N. Anand, T. Chanda, S. Koley, S. Chowdhury and M.-S.Singh, RSC Adv., 2015, 5, 7654.
(6) L. Luo, Z. Zhou, J. Zhu, X. Lu and H. Wang, Tetrahedron Lett., 2016, 57, 4987.
(7) W.-Y. Gao, K. Leng, L. Cash, M. Chrzanowski, C.-A. Stackhouse, Y. Sun and S. Ma, Chem. Commun., 2015, 51, 4827.
(8) X. Jie, Y. Shang, X. Zhang and W. Su, J. Am. Chem. Soc., 2016, 138, 5623.
IV. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3a-3r

NO
NO
-
$\xrightarrow{1}$

3f

$3 g$

3h

3 j

$\stackrel{\Gamma}{N}$

[7] 11

$3 r$

V. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $5 \mathrm{a}-51$

5a

5b

5 e

$5 g$

5j

\qquad

VI. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of intermediates C, D and G

