Supporting Information

© Copyright Royal Society of Chemistry.

Self-assembled Pd₆L₄ Cage and Pd₄L₄ Square using hydrazide based ligands: Synthesis, characterisation and catalytic activity in Suzuki-Miyaura Coupling Reaction

Subhashis Pradhan and Rohith P. John*

Department of Applied Chemistry, Indian School of Mines, Dhanbad-826 004, Jharkhand, India

Table of contents

Figure S1: ¹ H NMR of ligand L ¹ in dmso- <i>d</i> ₆	(p2)
Figure S2: ¹³ C-NMR spectrum of the ligand L^1 in dmso- d_6	(p2)
Figure S3: ESI-MS of L^1 equilibrium in dmso- d_6	(p3)
Figure S4: ¹ H NMR spectrum of L ² in dmso-d ₆	(p3)
Figure S5: ¹³ C-NMR spectrum of the ligand L^2 in dmso- d_6	(p4)
Figure S6: ESI-MS of L^2 equilibrium in dmso- d_6	(p4)
Figure S7: ¹ H NMR of Pd (2, 2'-bipyridyl)(NO ₃) ₂ in dmso- <i>d</i> ₆	(p5)
Figure S8: ¹³ C NMR of Pd(2, 2'-bipyridyl)(NO ₃) ₂ in dmso-d ₆	(p5)
Figure S9: ¹ H NMR of 1 in dmso- d_6	(p6)
Figure S10: ¹ H- ¹ H COSY spectrum of 1 in dmso- d_6	(p6)
Figure S11: ESI-MS of 1 in dmso-d ₆	(p7)
Figure S12. ESI-MS spectra, expanded peaks of [2-12NO ₃ ⁻⁺ Na] ¹³⁺ and [2-8NO ₃ ⁻] ⁸⁺ ions	(p7)
Figure S13: ¹ H NMR of 2 in dmso- d_6	(p8)
Figure S14: ¹ H- ¹ H COSY spectrum of 2 in dmso- d_6	(p8)
Figure S15: ESI-MS of 2 in dmso-d ₆	(p9)
Figure S16: ESI-MS spectra, expanded peaks of $[2-6NO_3^-+NH_4]^{7+}$ and $[2-4NO_3^-]^{4+}$ ions	(p9)
Figure S17: Optimized structure of Td symmetric assembly 1	(p10)
Figure S18: Optimized structure of square assembly 2	(p10)
Figure S19a & 19b: ICP-AES of filtered reaction mixture of Suzuki coupling reactions catalyzed by 1 and 2	(p11)
Figure S20a & 20b: EDX spectra and FE-SEM images of 1 and 2 after each reaction cycle (up to 2 nd cycle).	(p12)
Figure 21: Suggested catalytic mechanism for the Suzuki-Miyaura cross-coupling reaction	(p13)
Products of Suzuki-Miyaura coupling and their characterisation data	. (p14-p15)
References	(p15)
¹ H & ¹³ C NMR data of the coupling products	(p16-p27)

Fig. S2. ¹³C-NMR spectrum of the ligand L^1 in DMSO- d_6 (100MHz)

Fig. S4. ¹H NMR spectrum of L² in DMSO- d_6 (400 MHz)

Fig.S6 ESI-MS of L² in DMSO

Fig. S7.¹H NMR of $Pd^{II}(2,2$ '-bipy)(NO₃)₂ in DMSO- d_6 (400 MHz)

Fig. S8.¹³C NMR of Pd^{II}(2,2'-bipy)(NO₃)₂ in DMSO-*d*₆ (100 MHz)

Fig. S9.¹H NMR of cage 1 in DMSO- d_6 (400 MHz)

Fig. S10.¹H-¹H COSY spectrum of 1 in DMSO- d_6 (400 MHz)

Fig. S12. ESI-MS spectra of [1-12NO₃⁻⁺Na]¹³⁺ (Left) and [1-8NO₃⁻]⁸⁺ (Right, Experimental in black and their simulated spectra in red).

Fig.S13. ¹H NMR of square assembly 2 in DMSO-*d*₆ (400 MHz)

Fig. S14. ¹H-¹H COSY spectrum of square assembly 2 in DMSO-d₆ (400MHz)

Figure S17. Optimised structure and dimensions of T_d -symmetric assembly 1.

Figure S18. Optimised structure and dimensions of the square assembly 2.

Fig.S19a. ICP-AES of filtered reaction mixture of Suzuki coupling reactions catalysed by 1

Fig.S19b. ICP-AES of filtered reaction mixture of Suzuki coupling reactions catalysed by 2.

Fig.S20a. EDX spectra (top) and FE-SEM (bottom) images of 1 after each reaction cycle (up to 2nd cycle)

Fig.S20b. EDX (top) spectra and FE-SEM (bottom) images of 2 after each reaction cycle (up to 2nd cycle)

Figure 21. Suggested catalytic mechanism for the Suzuki-Miyaura cross-coupling reaction. ^[1, 2]

Products of Suzuki-Miyaura coupling and their characterization data:

Biphenyl (1):^[2] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.59 (d, J=7.08Hz, 4H), 7.44 (t, J=6Hz, 4H), 7.34 (t, J=8Hz, 2H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 141.21, 128.75, 127.25, 127.16.

4-Cyanobiphenyl (2):^[2] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.74 (d, J=6.4Hz, 2H), 7.69 (d, J=8.4Hz, 2H), 7.57 (d, J=8.4Hz, 2H), 7.49 (t, J=6.8Hz, 2H) 7.43 (t, J=4.8Hz, 1H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 145.70, 139.19, 132.63, 129.14, 128.68, 127.76, 127.26, 119.00, 110.90.

H₃COC-⟨____

4-Acetylbiphenyl (3):^[2] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 8.03 (d, J=8Hz, 2H), 7.68 (d, J=8Hz, 2H), 7.63 (d, J=7.7Hz, 2H), 7.47(t, J=7.6Hz, 2H), 7.40 (t, J=4Hz, 1H), 2.64(s, 3H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 197.86, 145.01, 139.88, 135.83, 128.99, 128.95, 128.27, 127.30, 127.26, 26.74.

Me-

4-Methylbiphenyl (4):^[3] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.57(d, J=8.4Hz, 2H), 7.49 (d, J=6.4Hz, 2H), 7.42 (t, J=7.6Hz, 2H), 7.32 (t, J=7.2Hz, 1H), 7.25(d, J=6.4Hz, 2H), 2.39(s, 3H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 141.22, 138.42, 137.11, 129.56, 128.79, 127.07, 127.06, 21.19.

MeO-

4-Methoxybiphenyl (5):^[2] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.53 (t, J=8Hz, 4H), 7.41 (t, J=6.4Hz, 2H), 7.29 (t, J=7.6Hz, 1H), 6.98(d, J=6.4Hz, 2H), 3.84(s, 3H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 159.14, 140.84, 133.78, 128.76, 128.19, 126.77, 126.69, 114.21, 55.38.

4-Aminobiphenyl (6):^[3] White solid. Eluent: Petether/ethylacetate. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.53(d, J=5.2Hz, 2H), 7.43-7.36(m, 4H), 7.27(t, J=4.4Hz, 1H), 7.76(d, J=4.4Hz, 2H), 3.72(brs,2H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 145.80, 141.12, 131.56, 128.65, 128.00, 126.39, 126.24, 115.37.

4-tert-Butyl-biphenyl (7):^[4] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃ 25°C, TMS) 7.58 (d, J= 6Hz, 2H), 7.54 (d, J=6Hz, 2H), 7.48-7.40 (m, 4H), 7.32(t, J=8Hz, 1H), 1.36(s, 9H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 150.27, 141.08, 138.38, 128.72, 127.06, 127.01, 126.82, 125.74, 34.56, 31.40.

NC-

4'-tert-Butyl-biphenyl-4-carbonitrile (8):^[4] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.69 (q, J=8Hz, 4H), 7.52 (q, J=8Hz, 4H), 1.36 (s, 9H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 151.97, 145.52, 136.23, 132.60, 127.52, 126.92, 126.12, 119.11, 110.55, 34.71, 31.30.

1-(4'-tert-Butyl-biphenyl-4-yl)-ethanone (9):^[4] White solid. Eluent: Petether/ethyl acetate. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 8.02 (d, J=4.8Hz, 2H), 7.67 (d, J=5.2Hz, 2H), 7.57 (d, J=4.4Hz, 2H), 7.49(d, J=4.8Hz, 2H), 2.62(s, 3H), 1.36(s, 9H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 197.85, 151.48, 145.64, 136.92, 135.61, 128.95, 127.03, 126.96, 125.98, 34.67, 31.34, 26.71.

Me -tBu

4'-tert-Butyl-4-methyl-biphenyl (10):^[5] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.53-7.43(m, 6H), 7.23 (d, J=8Hz, 2H), 2.38 (s, 3H), 1.35(s, 9H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 149.96, 138.28, 138.20, 136.74, 129.46, 126.90, 126.63, 125.70, 34.54, 31.42, 21.15.

MeO--tBu

4'-tert-Butyl-4-methoxy-biphenyl(11):^[4] White solid. Eluent: Petether/dichloromethane. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.51 (t, J=6.8Hz, 4H), 7.44 (d, J=6.6Hz, 2H), 6.96 (d, J=6.8Hz, 2H), 3.84(s, 3H), 1.36(s, 9H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 158.93, 149.63, 137.95, 133.64, 128.03, 126.39, 125.70, 114.14, 55.35, 34.50, 31.41.

-tBu H_2N

4'-tert-Butyl-biphenyl-4-ylamine (12):^[6] White solid. Eluent: Petether/ethylacetate. ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS) 7.47(d, J=8.4, 2H), 7.43-7.39 (m, 4H), 6.74(d, J=6.4Hz, 2H), 3.73(brs, 2H), 1.34 (s, 9H).¹³C-NMR (100 MHz, CDCl₃, 25°C, TMS) 149.19, 145.57, 138.29, 131.52, 127.90, 126.05, 125.62, 115.41, 34.46, 31.42.

REFERENCES:

- [1] D. J. M. Snelders, G. van Koten, R. J. M. K.Gebbink, J.Am. Chem. Soc., 2009, 131, 11407.
- [2] Y. Dong, C. Zhao, J. Ma, Q. Liu, Y. Yu, P. Wang, Y. Li, Green Chem., 2013, 15, 3150
- [3] Y.M.A. Yamada, S.M. Sarkar, Y. Uozumi, J. Am. Chem. Soc., 2012, 134, 3190.
- [4] H. Wang, L. Li, X.-F. Bai, W.-H. Deng, Z.-J. Zheng, K.-F. Yang, L.-W. Xu, Green Chem., 2013, 15, 2349.
- [5] R. Martinez, I.M. Pastor, M. Yus, Synthesis., 2014, 46, 2965.
- [6] G.G. Cash, B. Anderson, K. Mayoa, S. Bogaczyk, J.Tunkel, Mutation Research., 2005, 508, 170.

¹H-NMR and ¹³C-NMR spectra of the products of Suzuki coupling reactions in CDCl₃

Table 1, Entry 1:

