Cubic and Tetragonal Ferrite Crystal Structures for Copper Ion Immobilization in Iron-rich Ceramic Matrix

Yuanyuan Tang^{a,*}, Kaimin Shih^b, Chengshuai Liu^c, Changzhong Liao^b

^a School of Environmental Science and Engineering, Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China

^b Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China

^c State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009, P. R. China

* Corresponding author: Tel: +86-88015460; E-mail address: tangyy@sustc.edu.cn

Supporting Information

Including 1 table and 8 figures in 10 pages

Criteria of fit	Definition
"R-pattern", <i>R</i> _p	$R_{P} = \frac{\sum Y_{\text{o,m}} - Y_{\text{c,m}} }{\sum Y_{\text{o,m}}}$
"R-weighted pattern", R _{wp}	$R_{WP} = \sqrt{\frac{\sum w_{\rm m} (Y_{\rm o,m} - Y_{\rm c,m})^2}{w_{\rm m} Y_{\rm o,m}^2}}$
"R-expected", <i>R</i> _{exp}	$R_{\rm exp} = \sqrt{\frac{\sum M - P}{\sum w_{\rm m} Y_{\rm o,m}^{2}}}$
"Goodness of fit", GOF	$GOF = chi^{2} = \frac{R_{WP}}{R_{exp}} = \sqrt{\frac{\sum w_{m}(Y_{o,m} - Y_{c,m})^{2}}{M - P}}$

Table S1. Factors used as goodness-of-fit criteria in the Rietveld refinement.

where $Y_{o,m}$ and $Y_{c,m}$ are the observed and calculated data, respectively, at data point m; M is the number of data points; P is the number of parameters; and w_m is the weighting given to data point m. The counting statistics is given by $w_m = 1/\delta(Y_{o,m})^2$, where $\delta(Y_{o,m})$ is the error in $Y_{o,m}$. The R_{WP}/R_{exp} ratio or the "goodness of fit (GOF)" value will be equal to one in an ideal refinement. However, in an actual situation, the background and peak profile mismatch lead to GOF>1. A GOF value between 1.0 and 2.9 is generally considered satisfactory*.

* Fansuri, H.; Zhang, D. K.; French, D.; Elcombe, M.; Studer, A. An X-ray and neutron diffraction study of the structure of α -Bi₂Mo₃O₁₂ as a catalyst for partial oxidation of propylene to acrolein. *In Proceedings of the CHEMECA symposium.* **2004**, *234*.

Figure S1. Weight losses of the dried Hong Kong sewage sludge. The dried sludge was prepared by heating the sludge samples overnight at 105 °C. Weight loss measurements were then carried out by heating the dried sludge at designated temperatures for 30 min.

Figure S2. Major compositions of the calcined sewage sludge used in the study. The elemental compositions of the 900 °C and 30-min calcined sewage sludge were analyzed by X-ray fluorescence spectrometry and expressed as the basic oxide forms.

Figure S3. XRD pattern of sewage sludge calcined at 900 °C for 30 min. The crystalline phases are identified as: e_{T} hematite (α -Fe₂O₃, PDF#85-0599); & anhydrite (CaSO₄, PDF#37-1496); • quartz (SiO₂, PDF#79-1910); • hauyne (Na₆Ca₂Al₆Si₆O₂₄(SO₄)₂, PDF#73-1920); • unnamed zeolite (Na₆(AlSiO₄)₆, PDF#42-0217); □ anorthite (Ca(Al₂Si₂O₈), PDF#89-1473); □ calcium magnesium phosphate (Ca₇Mg₂P₆O₂₄, PDF#20-0348); □ olympite (Na₃PO₄, PDF#33-1272); □ andalusite (Al₂(SiO₄)O, PDF#39-0376); • calcium aluminum oxide (Ca₅Al₆O₁₄, PDF#11-0357).

Figure S4. XRD patterns of the CuO + sludge ash (Cu:(Al+Fe) = 1:2) system show the reaction at 950 °C for 3 h. The crystalline phases are identified as: CuO (PDF#80-1268), α -Fe₂O₃ (PDF#85-0599), CuFe₂O₄ (PDF#77-0010), anhydrite (CaSO₄, PDF#37-1496), quartz (PDF#79-1910), hauyne (Na₆Ca₂Al₆Si₆O₂₄(SO₄)₂, PDF#73-1920), unnamed zeolite (Na₆(AlSiO₄)₆, PDF#42-0217), anorthite (Ca(Al₂Si₂O₈), PDF#89-1473), calcium magnesium phosphate (Ca₇Mg₂P₆O₂₄, PDF#20-0348), calcium aluminum oxide (Ca₅Al₆O₁₄, PDF#11-0357), andalusite (Al₂(SiO₄)O, PDF#39-0376).

Figure S5. XRD patterns of the single-phase c-CuFe₂O₄ (cubic) and t-CuFe₂O₄ (tetragonal) samples synthesized for the leaching experiments. The vertical bars at the bottom of the pattern are the standard Bragg positions of c-CuFe₂O₄ (PDF#77-0010) and t-CuFe₂O₄ (PDF#34-0425).

Figure S6. pH values of the CuO, tetragonal CuFe₂O₄, and cubic CuFe₂O₄ leachates. The leaching solution was TCLP extraction fluid no. 2 (acetic acid solution) with a pH of 2.9. Each leaching vial was filled with 10 ml of extraction fluid and 0.5 g of powder samples, and then rotated end-over-end between 0.75 and 22 d.

Figure S7. Rietveld refinement result for the product sintered at 750 °C for 3 h from Fe₂O₃ precursor and CuO. The scanned value (obs.), the refined value (cal.) and the difference (diff) are indicated. The standard XRD patterns retrieved from the ICDD database include t-CuFe₂O₄ (PDF#34-0425), CuO (PDF#80-1268), and hematite (α -Fe₂O₃, PDF#85-0599). The goodness-of-fit of this refinement is 1.73.

Figure S8. Rietveld refinement result for the product sintered at 1000 °C for 3 h from Fe₂O₃ precursor and CuO. The scanned value (obs.), the refined value (cal.) and the difference (diff) are indicated. The standard XRD patterns retrieved from the ICDD database include t-CuFe₂O₄ (PDF#34-0425), c-CuFe₂O₄ (PDF#77-0010), CuO (PDF#80-1268), and hematite (α -Fe₂O₃, PDF#85-0599). The goodness-of-fit of this refinement is 1.54.