New Iboga-Type Alkaloids from Ervatamia hainanensis

Zhi-Wen Liu,^{‡ab} Xiao-Jun Huang,^{‡ab} Han-Lin Xiao,^b Guo Liu,^{ab} Jian Zhang,^{ab} Lei Shi,^b Ren-Wang Jiang,^{ab} Xiao-Qi Zhang^{ab*} and Wen-Cai Ye^{ab*}

^a Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University,

Guangzhou 510632, P. R. China.

^b Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs

Research, Jinan University, Guangzhou 510632, P. R. China.

Corresponding author: Tel. (fax): +86 20 8522 3994

Email: tzhxq01@jnu.com.cn (X. Q. Zhang), chyewc@gmail.com (W. C. Ye)

List of Supporting Information

Contents	Page					
1.Single crystal X-ray data and structure of 1,4,6 and 9	S3-S6					
2. Effects of the compounds on cell viability						
 3. Effect of the compouds on corticosterone-induced neurotoxicity in PC12 cells 4. UV, IR, HRESIMS, ECD and NMR spectra of 1-7 						
1D and 2D NMR spectra of 1	S9-S12					
UV, IR, HRESIMS and ECD spectra of 2	S13-S14					
1D and 2D NMR spectra of 2	S14-S17					
UV, IR, HRESIMS and ECD spectra of 3	S18-S19					
1D and 2D NMR spectra of 3	S19-S22					
UV, IR, HRESIMS and ECD spectra of 4	S23-S24					
1D and 2D NMR spectra of 4	S24-S28					
UV, IR, HRESIMS and ECD spectra of 5	S28-S29					
1D and 2D NMR spectra of 5	S29-S33					
UV, IR, HRESIMS and ECD spectra of 6	S34-S35					
1D and 2D NMR spectra of 6	S35-S38					
UV, IR, HRESIMS and ECD spectra of 7	S39-S40					
1D and 2D NMR spectra of 7	S40-S43					

1. Single crystal X-ray crystallographic analysis of 1,4,6 and 9

The structures were solved by direct methods and refined by full-matrix least-squares on F^2 using SHELXL-97 package software. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 1444994 for **1**, CCDC 1444995 for **4**, CCDC 1444996 for **6** and CCDC 1444997 for **9**.

Fig. S1 X-ray crystal structure of 1

X-ray crystallographic data of 1: $C_{21}H_{24}N_2O_4 \cdot C_2H_3N$ (fw = 409.48); Monoclinic, space group $P2_1$; a = 10.07340(18) Å, b = 9.87893(13) Å, c = 11.00555(18) Å, $a = 90^\circ$, $\beta = 107.6571(19)^\circ$, $\gamma = 90^\circ$; V = 1043.61(3) Å³, T = 173(2) K, Z = 2, $D_c = 1.303$ g/cm³, F(000) = 436. A total of 16047 reflections were collected in the range $5.22 \le \theta \le 62.73$, of which 3274 unique reflections with $I > 2\sigma(I)$ were collected for the analysis. Final R = 0.0243 and $R_w = 0.0634$, and the goodness of fit on F^2 was equal to 1.048; Flack parameter = 0.04(13). Crystallographic data for the structure reported in this paper had been deposited at the Cambridge Crystallographic Data Centre under the reference number CCDC

Fig. S2 X-ray crystal structure of 4

X-ray crystallographic data of 4: C₂₃H₃₀N₂O₃ (fw = 382.49); Monoclinic, space group $P2_1$; a = 9.7015(8) Å, b = 10.7426(8) Å, c = 10.0282(10) Å, $a = 90^\circ$, $\beta = 107.663(10)^\circ$, $\gamma = 90^\circ$; V = 995.86(16) Å³, T = 173(2) K, Z = 2, $D_c = 1.276$ g/cm³, F(000) = 418. A total of 4010 reflections were collected in the range $4.63 \le \theta \le 62.72$, of which 2101 unique reflections with $I > 2\sigma(I)$ were collected for the analysis. Final R = 0.0468 and $R_w = 0.1104$, and the goodness of fit on F^2 was equal to 1.071; Flack parameter = 0.0(4).

Fig. S3 X-ray crystal structure of 6

X-ray crystallographic data of 6: $C_{21}H_{24}N_2O_4$ (fw = 368.42); Orthorhombic, space group $P2_12_12_1$; a = 7.44984(14) Å, b = 11.4893(2) Å, c = 21.3736(4) Å, $a = \beta = \gamma = 90^\circ$; V = 1829.44(6) Å³, T = 173(2) K, Z = 4, $D_c = 1.338$ g/cm³, F(000) = 784. A total of 14469 reflections were collected in the range $4.37 \le \theta \le 62.70$, of which 2879 unique reflections with $I > 2\sigma(I)$ were collected for the analysis. Final R = 0.0262 and $R_w = 0.0676$, and the goodness of fit on F^2 was equal to 1.084; Flack parameter = 0.01(6).

Fig. S4 X-ray crystal structures of 9

X-ray crystallographic data of 9: $C_{21}H_{24}N_2O_4$ (fw = 368.42); Orthorhombic, space group $P2_12_12_1$; a = 8.78022(19) Å, b = 13.8217(4) Å, c = 15.0748(4) Å, $a = \beta = \gamma = 90^\circ$; V = 1829.43(8) Å³, T = 173(10) K, Z = 4, $D_c = 1.338$ g/cm³, F(000) = 784. A total of 14636 reflections were collected in the range $4.33 \le \theta \le 62.94$, of which 2827 unique reflections with $I > 2\sigma(I)$ were collected for the analysis. Final R = 0.0289 and $R_w = 0.0703$, and the goodness of fit on F^2 was equal to 1.066; Flack parameter = 0.13(9)

2. Effects of the compounds on cell viability

Fig. S5 Effects of the isolated alkaloids on cell viability. Neuro-2a cells were cultured in MEM (Invitrogen) supplied with 10% FBS plus antibiotics and seeded in 96-well plates (8 × 10³/well). Neuron-2a cells were treated with different alkaloids at 1, 5 and 25 μ M, and cell viability was measured at 24 h later. Data are shown as mean ± SEM of three experiments. **P* < 0.05 vs. DMSO. ***P*< 0.01, ****P* < 0.001, one-way ANOVA followed by Bonferroni's Multiple Comparison Test.

3. Effect of the compounds on corticosterone-induced neurotoxicity in PC12 cells

Fig. S6 The isolated alkaloids have no effects on corticosterone (CORT)-induced toxicity in PC12 cells. PC12 cells (ATCC, Manassas, VA, USA) were grown in DMEM supplemented with 6% FBS, and 6% HS plus antibiotics. Cells were treated with 900 μ M CORT (purchased from Aladdin Reagents Company, Shanghai, China). With or without indicated alkaloid at different concentrations, and cell viability was measured at 24 h later. The results are expressed as mean \pm SEM (n = 3) of three independent experiments. ****P* < 0.001 as compared with control. One-way ANOVA followed by Bonferroni's Multiple Comparison Test.

4. UV, IR, HRESIMS, ECD and NMR spectra of 1-7

Fig. S7 UV spectrum of 1 (CHCl₃)

	m/z	lon	Formula	Abundance						
	369.1808	(M+H)+	C21 H25 N2 O4	967008.8						
	Best	Formula (M)	Ion Formula	Score V	Cross Score	Calc m/z	Diff (ppm)	Mass Match	Abund Match	Spacing Match
		C21 H24 N2 O4	C21 H25 N2 O4	98.71		369.1809	0.35	99.9	95.76	99.88
•		C16 H24 N4 O6	C16 H25 N4 O6	69.83		369.1769	-10.59	39.92	94.62	99.91
0.0		Cull no. n. n. n.		4570 1 3						
/ Chr	matogram Kesult	s MS Formula 1	Kesults: + Scan (U	.456 min)						
¶T∎23	pectrum Result	ts								
2 4	1 🔍 1	8 2 4 2 2	001 -	₩ % %	2 3					
x10	+ESI Scan (0.4	56 min) Frag=175.0V	Eh-A9-13.d							
1					69. 1808				6 -	
0.93					(M+H)+			စ္ ူHO	5	
0.9							10		YO, N	
0.8								7	2121	∖H 19
0. 75							11		~ s /~	$\langle \land \rangle$
0.1	-							12 IS IN 2	- 16 14	1 X20 1
0.65										
0.6										
0.55								23 22	2	
0. 1									1	
0.4										
0. 35										
0. 3									370. 183	8
0. 25									(M+H) +	
0.1									1	
0. 11	1									
0.1						1				
0.03										

Fig. S9 HR-ESI-MS spectrum of 1

Fig. S11 ¹H-NMR spectrum of 1 (DMSO- d_6)

Fig. S12 13 C-NMR spectrum of **1** (DMSO- d_6)

Fig. S13 DEPT-135 spectrum of **1** (DMSO-*d*₆)

Fig. S15 HSQC spectrum of **1** (DMSO-*d*₆)

Fig. S17 NOESY spectrum of **1** (DMSO-*d*₆)

Fig. S19 IR spectrum of 2 (KBr)

Fig. S24 DEPT-135 spectrum of 2 (DMSO-*d*₆)

Fig. S26 HSQC spectrum of **2** (DMSO- d_6)

Fig. S28 NOESY spectrum of **2** (DMSO-*d*₆)

Fig. S29 UV spectrum of 3 (CHCl₃)

Fig. S30 IR spectrum of **3** (KBr)

Fig. S31 HR-ESI-MS spectrum of 3

Fig. S34 13 C-NMR spectrum of **3** (DMSO- d_6)

Fig. S35 DEPT-135 spectrum of **3** (DMSO- d_6)

Fig. S37 HSQC spectrum of **3** (DMSO-*d*₆)

Fig. S39 NOESY spectrum of **3** (DMSO-*d*₆)

Fig. S42 HRESIMS spectrum of 4

Fig. S43 CD spectrum of 4 (CH₃CN)

Fig. S44 ¹H-NMR spectrum of (*S*)-MTPA ester and (*R*)-MTPA ester of **4** (pyridine-*d*₅)

Fig. S46 ¹³C-NMR spectrum of 4 (CD₃OD)

Fig. S53 IR spectrum of 5 (KBr) S28

Fig. S54 HR-ESI-MS spectrum of 5

Fig. S55 CD spectrum of 5 (CH₃CN)

Fig. S59 DEPT-135 spectrum of **5** (CD₃OD)

Fig. S63 NOESY spectrum of 5 (CD₃OD)

Fig. S65 IR spectrum of 6 (KBr)

Fig. S66 HR-ESI-MS spectrum of 6

Fig. S68 ¹H-NMR spectrum of **6** (CD₃OD)

Fig. S70 DEPT-135 spectrum of 6 (CD₃OD)

Fig. S72 HSQC spectrum of 6 (CD₃OD)

Fig. S74 NOESY spectrum of 6 (CD₃OD)

Fig. S75 UV spectrum of 7 (CHCl₃)

Fig. S76 IR spectrum of 7 (KBr)

Fig. S79 ¹H-NMR spectrum of **7** (CD₃OD)

Fig. S81 DEPT-135 spectrum of 7 (CD₃OD)

Fig. S83 HSQC spectrum of 7 (CD₃OD)

Fig. S85 NOESY spectrum of 7 (CD₃OD)