Supporting Information

In Situ Generation and Trapping of Thioimidates: An Intermolecular Tandem Reaction to 4-Acylimino-4*H*-3,1-benzothiazines †

Christian Steinebach,^a Anna-Christina Schulz-Fincke,^a Gregor Schnakenburg,^b and Michael Gütschow^{*a}

- ^a Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- ^b Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany

¹ H NMR and ¹³ C NMR Spectra of Ring Closure Experiments	S 2
Color Change in the Course of the Formation of Acyliminum Salts	S6
Calculations of Molecular Planarity and Plane Deviations	S 7
HRMS-ESI of the Product of the Treatment of $2c$ with Ac_2O/H_2SO_4 and Workup with H_2O	S 9
HRMS-ESI of the Product of the Treatment of $2c$ with Ac_2O/H_2SO_4 and Workup with $H_2^{18}O$	S10
Enzymatic Studies	S11
¹ H NMR and ¹³ C NMR Spectra of All Compounds	S12

¹H NMR and ¹³C NMR Spectra of Ring Closure Experiments

Figure S1. ¹H NMR spectrum (600 MHz, CD_3CO_2D) recorded of a reaction mixture of **1a** (10 mg) dissolved in CD_3CO_2D (0.6 mL) after in incubation of 2 h at room temperature. The spectrum contains signals of **1a** (gray, left) and **3a** (yellow, right). Integration of the signals indicated a **3a** to **1a** ratio of 3:2.

Figure S2. ¹³C NMR spectrum (151 MHz, CD_3CO_2D) recorded of a reaction mixture of **1a** (10 mg) dissolved in CD_3CO_2D (0.6 mL) after in incubation of 2 h at room temperature. The spectrum contains signals of **1a** (gray, left) and **3a** (yellow, right).

Figure S3. ¹H NMR spectrum (600 MHz, CD_3CO_2D) recorded of a reaction mixture of **2b** (10 mg) dissolved in CD_3CO_2D (0.6 mL) after in incubation of 2 h at room temperature. The spectrum contains only signals of **2b**.

Figure S4. ¹³C NMR spectrum (151 MHz, CD_3CO_2D) recorded of a reaction mixture of **2b** (10 mg) dissolved in CD_3CO_2D (0.6 mL) after in incubation of 2 h at room temperature. The spectrum contains only signals of **2b**.

Color Change in the Course of the Formation of Acyliminum Salts

4-Acyliminothiazinium salts **9** are red colored while acylimino-4*H*-3,1-benzothiazines **11-16** gave yellow solutions. To illustrate this, compound **12a** (10 mg) was dissolved in MeCN (5 mL) in a small reaction tube containing a stirring bar (left). After addition of concd H_2SO_4 (1 drop), a red solution was formed (right).

Figure S5: Bathochromic shift upon protonation of 12a.

Calculations of Molecular Planarity and Plane Deviations

The equation $P \times x + Q \times y + R \times z - S = 0$ was used, where P, Q, R, S are constants and x, y, z are fractional coordinates (see CIF file for more detail). Least-squares solution of the equation was P = -5.2029, Q = 6.7332, R = 0.5685, S = -0.9415. Calculation was performed with PLATON for Windows (A. L. Spek, *J. Appl. Cryst.*, 2003, **36**, 7; A. L. Spek, *Acta Cryst.*, 2009, **D65**, 148).

Atom	Distance (Å)	Х	У	Z	Х	Y	Z
S	-0.09205	0.5006	0.2145	0.2232	4.4314	2.7811	1.9978
N(1)	0.05970	0.3428	0.1323	0.0187	2.9966	1.2979	0.1671
C(2)	0.04935	0.3551	0.1289	0.1537	3.1296	1.7405	1.3756
C(4)	-0.01463	0.6034	0.3193	0.0595	5.3306	3.1824	0.5328
C(4a)	0.03077	0.5626	0.3063	-0.0814	4.9443	2.5670	-0.7284
C(5)	0.05823	0.6496	0.3885	-0.2100	5.7034	2.8806	-1.8798
C(6)	0.01567	0.6245	0.3742	-0.3450	5.4520	2.2731	-3.0882
C(7)	-0.05477	0.5108	0.2768	-0.3559	4.4266	1.3276	-3.1866
C(8)	-0.05627	0.4224	0.1978	-0.2329	3.6562	1.0248	-2.0846
C(8a)	0.00402	0.4442	0.2119	-0.0936	3.8806	1.6448	-0.8380

Table S1: Plane deviation of the benzothiazine skeleton of 12a.

The equation $P \times x + Q \times y + R \times z - S = 0$ was used (see CIF file for more detail). Least-squares solution of the equation was P = -5.0320, Q = 7.1351, R = 1.9429, S = -0.5952.

Atom	Distance (Å)	х	у	Z	Х	Y	Z
S	0.04018	0.5006	0.2145	0.2232	4.4314	2.7811	1.9978
Ο	-0.05528	0.7245	0.3328	0.3193	6.4252	4.2207	2.8588
N(3)	0.00604	0.7167	0.4062	0.0614	6.3443	3.9981	0.5497
C(4)	-0.04760	0.6034	0.3193	0.0595	5.3306	3.1824	0.5328
C(13)	0.05665	0.7689	0.4136	0.1951	6.8219	4.5372	1.7465

Table S2: Plane deviation of the atoms S, C(4), N(3), C(13) and O of 12a.

HRMS-ESI of the Product of the Treatment of 2c with Ac₂O/H₂SO₄ and Workup with H₂O

ł

S9

HRMS-ESI of the Product of the Treatment of 2c with Ac₂O/H₂SO₄ and Workup with H₂¹⁸O

· .		

S10

Enzymatic Studies

 Table S3. Protease inhibition by 4-acylimino-2-amino-4H-3,1-benzothiazines.

Compd	NR ¹ R ²	R ³	$IC_{50} (\mu M)^a$					
			HLE	chymotrypsin	cathepsin B	cathepsin L		
11a	N(Et) ₂	Me	>100	>100	>20	>20		
11b	morpholino	Me	>100	>100	>20	>20		
11c	N(Me)Bn	Me	>20	>20	>20	>20		
12a	N(Et) ₂	Et	>100	>100	>20	>20		
12b	morpholino	Et	>100	>100	>20	>20		
12c	N(Me)Bn	Et	$4.16\pm1.52^{\text{b}}$	>100	>20	>20		
13a	N(Et) ₂	<i>i</i> -Pr	>20	>20	>20	>100		
13b	morpholino	<i>i</i> -Pr	>100	>100	>20	>20		
13c	N(Me)Bn	<i>i</i> -Pr	$6.45\pm0.50^{\text{b}}$	$10.4\pm0.2^{\rm b}$	>100	>100		
14a	N(Et) ₂	<i>i</i> -Bu	$6.85\pm2.08^{\text{b}}$	>20	>20	>100		
14b	morpholino	<i>i</i> -Bu	>20	>100	>20	>20		
14c	N(Me)Bn	<i>i</i> -Bu	$3.88\pm0.78^{\text{b}}$	>20	>20	>100		
15a	N(Et) ₂	CH ₂ Cl	>20	>20	>20	>100		
15b	morpholino	CH ₂ Cl	>20	>20	>20	>100		
15c	N(Me)Bn	CH ₂ Cl	>20	>100	>20	>100		
16a	N(Et) ₂	OBn	$5.50\pm1.92^{\text{b}}$	>20	>100	>100		
16b	morpholino	OBn	$15.5\pm2.4^{\text{b}}$	>20	>100	>100		
16c	N(Me)Bn	OBn	3.17 ± 1.63^{b}	>20	>100	>100		

^a IC_{50} values obtained from duplicate measurements at a single inhibitor concentration. ^b IC_{50} values \pm standard errors obtained from duplicate measurements with five different inhibitor concentrations (0.5-10 µM).

¹H NMR and ¹³C NMR Spectra of All Compounds 2-(3-Diethylthioureido)benzonitrile (1a), DMSO-*d*₆

$\label{eq:constraint} 2- (Morpholinothiocarbonylamino) benzonitrile~(1b), DMSO-d_6$

2-(3-Benzyl-3-methylthioureido)benzonitrile (1c), DMSO-d₆

N-(2-Cyanophenyl)phenylcarbamate, DMSO-d₆

2-(3-Diethylureido)benzonitrile (2a), DMSO-d₆

$\label{eq:constraint} 2- (Morpholinothiocarbonylamino) benzonitrile~(2b), DMSO-d_6$

2-(3-Benzyl-3-methylureido)benzonitrile (2c), DMSO-d₆

2-(Diethylamino)-4H-3,1-benzoxazin-4-one (8a), DMSO-d₆

2-(Morpholino)-4H-3,1-benzoxazin-4-one (8b), DMSO-d₆

2-[N-Benzyl(methylamino)]-4H-3,1-benzoxazin-4-one (8c), DMSO-d₆

4-Acetylimino-2-diethylamino-4H-3,1-benzothiazine (11a), DMSO-d₆

4-Acetylimino-2-morpholino-4H-3,1-benzothiazine (11b), DMSO-d₆

4-Acetylimino-2-benzylmethylamino-4H-3,1-benzothiazine (11c), DMSO-d₆

2-Diethylamino-4-propionylimino-4H-3,1-benzothiazine (12a), DMSO-d₆

2-Morpholino-4-propionylimino-4H-3,1-benzothiazine (12b), DMSO-d₆

2-Benzylmethylamino-4-propionylimino-4H-3,1-benzothiazine (12c), DMSO-d₆

2-Diethylamino-4-isobutyrylimino-4H-3,1-benzothiazine (13a), DMSO-d₆

4-Isobutyrylimino-2-morpholino-4H-3,1-benzothiazine (13b), DMSO-d₆

2-Benzylmethylamino-4-isobutyrylimino-4H-3,1-benzothiazine (13c), DMSO-d₆

2-Diethylamino-4-(3-methylbutyrylimino)-4H-3,1-benzothiazine (14a), DMSO-d₆

4-(3-Methylbutyrylimino)-2-morpholino-4H-3,1-benzothiazine (14b), DMSO-d₆

2-Benzylmethylamino-4-(3-methylbutyrylimino)-4H-3,1-benzothiazine (14c), DMSO-d₆

4-Chloroacetylimino-2-diethylamino-4H-3,1-benzothiazine (15a), DMSO-d₆

4-Chloroacetylimino-2-morpholino-4H-3,1-benzothiazine (15b), DMSO-d₆

2-Benzylmethylamino-4-chloroacetylimino-4H-3,1-benzothiazine (15c), DMSO-d₆

4-Benzyloxycarbonylimino-2-diethylamino-4H-3,1-benzothiazine (16a), DMSO-d₆

4-Benzyloxycarbonylimino-2-morpholino-4*H*-3,1-benzothiazine (16b), DMSO-d₆

 $\label{eq:2-Benzylmethylamino-4-benzyloxycarbonylimino-4H-3,1-benzothiazine~(16c), DMSO-d_6$