Supplementary Table S1: Comparison (rmsd) of energy minimised structures, the relative accessible surface area and the change of

	WT vs Mutant rmsd (Å)		UDP-Glc vs	Relative Accessible Surface Area of Residue (%)						
hGALE	UDP-Glc	UDP-GlcNAc	UDP-GlcNAc	WT UDP-Glc	p.A89V UDP-Glc	$\Delta^{ ext{UDP-Glc}}$	WT UDP-GlcNAc	p.A89V UDP-GleNAc	Δ UDP-GlcNAc	
Variant			rmsd (Å)							
WT	NA	NA	0.662	NA	NA	NA	NA	NA	NA	
p.A89V	0.297	0.345	0.671	15.4	15.1	-0.3	15.6	14.0	-1.6	

relative accessible surface area of each affected residue

Relative accessible surface area of each residue was determined using the appropriate energy minimised structure and GETAREA and R.M.S.D. was determined using the align function in PyMol. WT, wild-type; UDP-Glc, UDP-glucose; UDP-GlcNAc, UDP-*N*-acetylglucosamine.

	Predictions (TANGO, WALTZ, LIMBO and FoldX)	FoldX kcal/mol UDP-Glc	FoldX kcal/mol UDP- GlcNAc	I-Mutant 3.0 kcal/mol UDP-Glc	I-Mutant 3.0 kcal/mol UDP-GlcNAc
p.A89V	Increased aggregation tendency Decreased stability	-2.27	-2.04	-0.16 (0)	-0.29 (2)

Supplementary Table S2: SNP effect 4.0 and I-Mutant 3.0 predictions for GALE variant monomers

Reliability index of I-Mutant 3.0 predictions is indicated in brackets.

Q45291	REAVPAEEVLSEGGFEGVVHFAAR
P33119	RDAVPLDNVLSSDSFDAVLHFAAR
P21977	RAAVHPDA-IFYQGDLSDQDFMRKVFKENPDVDAVIHFAAY
P96995	RAAVHPAA-KFYQGDLADREFMSMVFRENPDVDAVIHFAAY
Q59745	REFVRWGPAEEGDIRDRARLDEVLAK-HKPAAILHFAAL
P26503	EEFVKWGVLEKGDIRDRQRLDEVLAR-HKPRAILHFAAM
Q14376	LPESLRRVQELTGRSV-EFEEMDILDQGALQRLFKK-YSFMAVIHFAGL
Q5R8D0	LPESLRRVQELTGRSV-EFEEMDILDQGALQRLFKK-HSFMAVIHFAGL
Q8R059	MPESLRRVQELTGRSV-EFEEMDILDQAALQHLFKK-HSFKAVIHFAGL
P18645	MPESLRRVQELTGRSV-EFEEMDILDQAALQHLFKK-HNFKAVIHFAGL
Q42605	IEAVDRVRELVGPDLSKKL-DFNLGDLRNKGDIEKLFSK-QRFDAVIHFAGL
043070	MEAVERVREVVGSNLSQNL-EFTLGDLRNKDDLEKLFSK-SKFDAVIHFAGL
065780	IDAVHRVRLLVGPLLSSNL-HFHHGDLRNIHDLDILFSK-TKFDAVIHHAGL
Q9TOA7	AASLQRVKKLAGENGNRL-SFHQVDLRDRPALEKIFSE-TKFDAVIHFAGL
Q95N58	AVSLQRVKKLAAEHGERL-SFHQVDLRDRSALEKIFSE-TKFDAVIHHAGL
065781	ETAIHRVKELAGKFAGNL-SFHKLDLRDRDALEKIFSS-TKFDSVIHFAGL
P56985	INILPRLKTITGQEI-PFYQGDIRDREILRRIFAE-NRIDSVIHFAGL
P56986	INILPRLKTITGQEI-PFYQGDIRDREILRRIFAE-NRIDSVIHFAGL
P56997	INILPRLKTITGQEI-PFYQGDIRDREILRRIFAE-NRIDSVIHFAGL
Q05026	AAVLPRLRQITGRNI-PFYQGDIRDCQILRQIFSE-HEIESVIHFAGL
P24325	PKSLERVKQITGKEA-KFYEGDILDRALLQKIFAE-NEINSVIHFAGL
Q9CNY5	PKSLERVAQITGKQV-KFYQGDILDTALLQKIFAE-NQIQSVIHFAGL
Q59678	EVSLERVKQITGKSV-KFYQGDILDRDILRKIFAE-NQIESVIHFAGL
P22715	RSVLPVIERLGGKHP-TFVEGDIRNEALITEILHD-HAIDTVIHFAGL
056093	RSVLPVIERLGGKHP-TFVEGDIRNEALITEILHD-HAIDTVIHHAGL
P09147	RSVLPVIERLGGKHP-TFVEGDIRNEALMTEILHD-HAIDTVIHFAGL
Q9F7D4	SSVLARIHSLTGYTP-ELYAGDIRDRTLLDSIFAA-HPIHAVIHFAGL
P04397	YDSVARLEVLTKHHI-PFYEVDLCDRKGLEKVFKE-YKIDSVIHFAGL
P09609	YESVARMELLTGQEI-KFAKIDLCELEPLNKLFDD-YKIDSVLHFAGL
P40801	YDVIVRIEVLTRKQI-PFFKIDLNDHDALDQVFKL-YPIQAVLHFAAL
Q9HDU3	YDAVARVEFIVRKSI-KFFKLDLRDKEGLAQIFDT-FKIKGVIHFAAL
082236	KQEDMRIALNHSKL-KFYIGDVRNYQSIDDAMHGVDYVFHAAAL
092703	KQEDMRIALNNSKL-KFYIGDVRNYQSIDDAMHGVDYVFHAAAL
092163	KQEDMRIALNNPKL-KFYIGDVRNYKSIDEAMHGVDYVFHAAAL
ASFIAS	KQEDMRIAFNNPKL-KCYIGDVRNYKSIDEAMHGVDYVFHAAAL
ABGRN9	KQEDMRIALNNPKL-KFIIGDVKNIKSIDEAMHGVNIVFHAAAL
Q40M33	KQEDMRIALNNPKL-KFIIGDVKNIKSIDEAMHGVDIVFHAAAL
AGGNZI	KQEDMKIALSNPKL-KFIIGDVKNIKSIDEAMKGVDIVFHAAAL
AGEZAS	
ASCWPO	KOEDMRIALNNPRI-KFYIGDVRNINSIDDAMKOVDIVFHAAAL
084903	
P55180	AFALNRVKETTGKDITEVEADI.LDREAVDSVFAE-NETEAVIHEAGI.
09W0P5	-I.PEALSRUGETTGKKV-NEVRUDITDREOVESVEGE-HKIDMVAHEAAL
057301	
07WTB1	
P35673	
055387	
P13226	
09KDV3	
059083	
P75517	
P47364	VIKLIKKIGI-EFYFADILDRHKI.TEVIAA-TOPDWFHFAAK
057664	KNNTNPKA-EFVNADIRDKDLDEKTNFKDVEVVTHOAAO
056623	
P45602	RRILPVIERLGGKEA-TFIEGDIRNEARMTEILHD-HATEAVIHFAGI.
P56600	

A89

<u>Supplementary Figure S1:</u> Multiple sequence alignment of GALE enzymes from different species showing the region around Ala-89. Sequence alignment was carried out using ClustalW2 in combination with reviewed GALE sequences from the

UniProt database (www.uniprot.com).

Supplementary Figure S2: Aligned UDP-Glc and UDP-GlcNAc bound energy minimised structures. (A) Aligned p.A89V and WT UDP-Glc bound structures show few differences in overall fold. (B) Close-up of both aligned structures of p.A89V and wild-type GALE bound to UDP-Glc and UDP-GlcNAc. Original residues are coloured deep teal while altered residue is coloured pink. Highlighted residues, cofactors and substrates are depicted as stick figures or spheres. Wild-type and mutant structures are depicted as cartoon figures and are coloured wheat and light blue respectively. Oxygen, nitrogen and phosphate atoms are coloured red, blue and orange respectively. Figures were created using PyMol (www.pymol.com) and the appropriate energy minimised structures of 1EK5 and 1HZJ.

Supplementary Figure S3: UDP-galactose (1 mM) protects wild-type and p.A89V GALE (16 μM) from proteolysis by trypsin (630 nM). Results were analysed by 10% SDS-PAGE and the sizes of molecular mass markers (left most lane) are 116, 66, 45, 35 and 25 kDa.