Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Phosphonoselenoic Acid Esters from the Reaction between Phosphoroselenoyl Chlorides and Grignard Reagents: Synthetic and Stereochemical Aspects

Toshiaki Murai,^a Yuuki Maekawa,^a Yuuki Hirai,^a Kazuma Kuwabara,^a and Mao Minoura^b

a Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan, e-mail:mtoshi@gifu-u.ac.jp b Department of Chemistry, College of Science, Rikkyo University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

General remarks	S 1
• DFT calculations	S2
• Synthesis of compounds 5, 7–11	S7
• X-ray structure analysis	S20
• References	S21
• ¹ H and ¹³ C NMR spectra of all new compounds	S22
• ³¹ P NMR spectra of 7 , 8 , 9 , and oxygen isologue of 7	S49

General Remarks: The IR spectra were obtained on a JASCO FT/IR 410 spectrometer. The ¹H NMR spectra were recorded on a JEOL α -400 (400 MHz) in CDCl₃. Chemical shifts of protons were reported in δ values referred to tetramethylsilane as an internal standard in CDCl₃, and the following abbreviations were used: s: singlet, d: doublet, t: triplet, m: multiplet. The ¹³C NMR spectra were measured on a JEOL α -400 (100 MHz) in CDCl₃. The ¹⁹F NMR spectra were measured on a JEOL α -400 (376 MHz) in CDCl₃ and with CF₃COOH as an external standard. The ³¹P NMR spectra were measured on a JEOL α -400 (162 MHz) in CDCl₃ and with 85% H₃PO₄ as an external standard. The 77Se NMR spectra were measured on a JEOL α -400 (76 MHz) in CDCl₃ and with Me₂Se as an external standard. All spectra were acquired in the proton-decoupled mode. The mass spectra (MS) and the high-resolution mass spectra (HRMS) were taken on a JMS-700 mass spectrometer. Melting points were determined using a Yanaco seisakusho MP-S2 micro melting point apparatus and are uncorrected.

DFT calculations.

		level of	theory
atom	Х	V	Z
С	-0.08171	-1.08404	-3.42371
С	-0.28892	-1.84507	-2.32473
С	-1.07144	-1.35736	-1.23054
С	-1.65223	-0.07843	-1.31378
С	-1.39459	0.7076	-2.4839
С	-0.6394	0.22403	-3.49758
Н	-0.8044	-3.12656	-0.00246
Н	0.51492	-1.45359	-4.24812
Н	0.13998	-2.83604	-2.2468
С	-1.25079	-2.14092	-0.04588
С	-2.44326	0.41146	-0.20954
Н	-1.804	1.70598	-2.54221
Н	-0.44775	0.83104	-4.37347
С	-2.5263	-0.351	0.92359
С	-1.93843	-1.65039	1.00723
Н	-2.06628	-2.21695	1.92074
С	-3.11927	1.76333	-0.23261
С	-4.10462	2.13589	-1.21824
С	-2.82	2.65185	0.76246
С	-4.57777	1.22549	-2.21848
С	-4.66054	3.42826	-1.17547
С	-338352	3.96243	0.8092
С	-5.51313	1.60472	-3.11999
Н	-4.1833	0.21941	-2.23609
С	-5.63834	3.80225	-2.15126
С	-4.26134	4.33958	-0.14565
Н	-3.08968	4.62695	1.61179
С	-6.0493	2.92389	-3.09434
Н	-5.86677	0.90562	-3.86738
Н	-6.04688	4.80398	-2.1101
Н	-4.69612	5.33133	-0.13371

Table S1. Coordinates (Å) of the optimized structure for 1a calculated at the B3LYP/6-31G (d, p)

Н	-6.79288	3.20814	-3.82818
0	-3.27781	0.08406	2.04006
0	-1.8784	2.28894	1.7572
Р	-2.588	1.31745	2.94405
Se	-3.91934	2.19427	4.35174
Cl	-0.78696	0.45348	3.64769

Table S2. Coordinates (Å) of the optimized structure for 1b calculated at the B3LYP/6-31G (d, p)

	level of theory		
atom	Х	V	Z
С	-0.1172	-1.09217	-3.45728
С	-0.33368	-1.86961	-2.34413
С	-1.08666	-1.3792	-1.24374
С	-1.65671	-0.06352	-1.31042
С	-1.39074	0.71991	-2.46761
С	-0.64205	0.21993	-3.50942
Н	-0.83142	-3.15654	-0.03211
Н	0.46593	-1.4758	-4.28886
Н	0.08125	-2.87194	-2.28112
С	-1.25869	-2.15876	-0.06981
С	-2.42858	0.43064	-0.19929
Н	-1.77458	1.73127	-2.5197
Н	-0.44726	0.84286	-4.37726
С	-2.48173	-0.35796	0.93952
С	-1.92509	-1.65041	1.01608
Н	-2.0426	-2.21296	1.93513
С	-3.11376	1.75381	-0.21909
С	-4.0881	2.12253	-1.21275
С	-2.84996	2.669	0.78608
С	-4.55579	1.21784	-2.2058
С	-4.65652	3.44078	-1.18117
С	-3.41266	3.95912	0.83818
С	-5.49558	1.60452	-3.13488
Н	-4.17304	0.20474	-2.21997
С	-5.61145	3.81079	-2.1659
С	-4.28344	4.34349	-0.15009

Н	-3.14358	4.61186	1.6603
С	-6.02166	2.91712	-3.12693
Н	-5.84085	0.89136	-3.87741
Н	-6.02367	4.81571	-2.1343
Н	-4.72188	5.33708	-0.13699
Н	-6.75738	3.2103	-3.86957
0	-3.16789	0.08838	2.07976
0	-1.95662	2.3149	1.81005
Р	-2.57721	1.32695	2.96494
Cl	-0.77382	0.62486	3.68596
S	-3.75838	2.00141	4.16334

Table S3. Coordinates (Å) of the optimized structure for **1c** calculated at the B3LYP/6-31G (d, p) level of theory

atom	Х	V	Z
С	-0.12516	-1.07903	-3.46341
С	-0.34076	-1.86179	-2.35379
С	-1.09154	-1.37601	-1.24987
С	-1.66081	-0.05969	-1.3092
С	-1.39576	0.72921	-2.4628
С	-0.64875	0.23377	-3.50808
Н	-0.83526	-3.15973	-0.04772
Н	0.45641	-1.45901	-4.29775
Н	0.07335	-2.86478	-2.29623
С	-1.26175	-2.16142	-0.07941
С	-2.43058	0.42944	-0.19377
Н	-1.77851	1.74119	-2.5096
Н	-0.45443	0.86098	-4.37292
С	-2.48038	-0.3643	0.94081
С	-1.9245	-1.65755	1.01067
Н	-2.03992	-2.2237	1.92777
С	-3.11762	1.75157	-0.20955
С	-4.08827	2.11796	-1.20848
С	-2.85769	2.67042	0.79342
С	-4.5595	1.20676	-2.19385
С	-4.64805	3.43982	-1.19149

С	-3.40467	3.96816	0.82493
С	-5.49532	1.59026	-3.1283
Н	-4.18363	0.191	-2.19717
С	-5.59876	3.80661	-2.18145
С	-4.26807	4.35068	-0.17039
Н	-3.12742	4.63118	1.63616
С	-6.01308	2.90614	-3.13433
Н	-5.84404	0.87191	-3.86416
Н	-6.0043	4.8145	-2.16041
Н	-4.69425	5.34963	-0.1707
Н	-6.74568	3.19658	-3.8811
0	-3.15645	0.08055	2.08687
0	-1.97193	2.32485	1.8282
Р	-2.56596	1.31483	2.97144
Cl	-0.76105	0.63141	3.68992
0	-3.54205	1.83706	3.99073

NPA charge distribution and energy levels of LUMO+1 and LUMO+2 of 1 are shown in Table S4, and molecular orbitals of 1 are shown in Figure S1. The NPA charge distribution revealed that, even though the differences among 1a–1c are small, the phosphorus atom of 1a is the most positively charged, while that of 1b is the least positively charged.

charge distribution			Energy	v level (eV)		
	Е	Е	Р	CI	LUMO+1	LUMO+2
1a	0	-0.47	1.08	-0.18	-1.38	-0.82
1b	S	-0.24	0.80	-0.15	-1.44	-1.04
1c	Se	-0.32	0.90	-0.16	-1.71	-1.11

Table S4 NPA charge distribution and energy levels of LUMO+1 and LUMO+2 of 1

Molecular orbitals of 1

Figure S1. Energy diagrams and the pictorial representations of the selected Kohn–Sham molecular orbitals for the phosphoryl (**1a**), phosphorothionyl (**1b**), phosphoroselenoyl chlorides (**1c**) calculated at the B3LYP/6-31G(d,p) level.

Synthesis of compounds **5**, **7–11** Two synthetic procedures were used for phosphonoselenoic acid esters **5**, **7–9**

Typical Procedure of А for the preparation (S_{ax}) -4-methylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5a): Methylmagnesium bromide (2a) (0.68 M Et₂O solution, 0.74 mL, 0.5 mmol) was added to a toluene solution (5 mL) of (S_{ax}) -binaphthylphosphoroselenoic acid chloride $((S_{ax})$ -BISEPCl) (214 mg, 0.5 mmol) via syringe pomp at 40 °C over 20 minutes, and it was stirred at that temperature for 30 min. After that, saturated NH₄Cl aqueous solution was added to the resulting mixture and water was further added to dilute the solution. The aqueous phase was extracted with ether three times. The combined organic layer was dried over MgSO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (CH_2Cl_2 : hexane = 1 : 3, Rf = 0.15) to give (S_{ax}) -4-methylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5a) (156 mg, 76%) as a colorless solid.

(Sax)-4-Methylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5a)

Chemical Formula: C₂₁H₁₅O₂PSe Exact Mass: 410.00 Molecular Weight: 409.28

mp: 214.3-214.9 °C; IR (KBr): 2913, 1618, 1587, 1505, 904, 865, 836, 812, 770, 752 cm⁻¹; ¹H NMR (CDCl₃) δ 2.10 (d, J = 13.5 Hz, 3H, C<u>H₃</u>), 7.13-7.25 (m, 3H, Ar), 7.29-7.39 (m, 4H, Ar), 7.48 (d, J = 8.5 Hz, 1H, Ar), 7.84 (d, J = 8.1 Hz, 2H, Ar), 7.89-7.94 (m, 2H, Ar); ¹³C NMR (CDCl₃): δ 23.0 (δ , ¹J_{C-P} = 86.4 Hz, <u>C</u>H₃), 120.3, 121.6, 122.7, 125.7, 125.9, 126.6, 126.9, 127.2, 128.4, 128.6, 130.8, 131.1, 131.7, 132.0,

132.5, 132.6, 146.0, 146.2, 148.0, 148.2 (Ar); ³¹P NMR (CDCl₃): δ 115.7 (¹*J*_{P-Se} = 921.2 Hz); ⁷⁷Se NMR (CDCl₃): δ –193.9 (¹*J*_{P-Se} = 921.2 Hz); MS (EI) m/z 410 (M⁺); HRMS Calcd for C₂₁H₁₅O₂PSe: 409.9975, Found: 409.9974.

(S_{ax})-4-(p-Tolyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5b)

Chemical Formula: $C_{27}H_{19}O_2PSe$ Exact Mass: 486.03 Molecular Weight: 485.37

The compound was synthesized *via* Procedure A, with 4-methylmagnesium bromide (**2b**) (0.5 M Et₂O solution, 5.0 mL, 2.5 mmol), toluene (10 mL), and (S_{ax})-BISEPCl (1.07 g, 2.5 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.18) gave the corresponding ester (**5b**) (1.05 g, 86%) as a colorless solid.

mp: 197.7-198.2 °C; IR (KBr): 2917, 2863, 1618, 1589, 1507, 1462, 1434, 854, 805, 771, 754 cm⁻¹;

¹H NMR (CDCl₃) δ 2.36 (s, 3H, CH₃), 6.90 (dd, J = 9.0, 0.9 Hz, 1H, Ar), 7.12-7.15 (m, 2H, Ar), 7.24-7.38 (m, 3H, Ar), 7.46-7.50 (m, 3H, Ar), 7.58-7.67 (m, 3H, Ar), 7.78 (d, J = 9.0 Hz, 1H, Ar), 7.89 (d, J = 8.1, 1H, Ar), 7.98 (d, J = 8.1 Hz, 1H, Ar), 8.07 (d, J = 9.0 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 21.6 (CH₃), 121.1 (d, $J_{P-C} = 1.9$ Hz), 121.9 (d, $J_{P-C} = 1.9$ Hz), 122.3 (d, $J_{P-C} = 2.8$ Hz), 122.8 (d, $J_{P-C} = 2.8$ Hz), 125.7, 126.5, 126.6, 127.0, 127.2, 128.4, 128.5, 128.7, 128.9, 130.4, 130.7, 131.5, 131.7, 131.9, 132.0, 132.4, 132.6, 144.2 (d, $J_{P-C} = 2.8$ Hz), 145.9, 146.0, 148.3, 148.5 (Ar); ³¹P NMR (CDCl₃): δ 110.0 (¹J_{P-Se} = 929.1 Hz); ⁷⁷Se NMR (CDCl₃): δ -242.8 (¹J_{P-Se} = 929.1 Hz); MS (EI) m/z 486 (M^+); HRMS Calcd for C₂₇H₁₉O₂PSe: 486.0288, Found: 486.0290.

(S_{ax})-4-Ethylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5c)

Chemical Formula: C22H17O2PSe Exact Mass: 424.01 Molecular Weight: 423.30

The compound was synthesized via Procedure A, with ethylmagnesium bromide (2c) (0.79 M Et₂O solution, 0.63 mL, 0.5 mmol), toluene (5 mL), and (S_{ax})-BISEPCl (215 mg, 0.5 mmol). Purification by column chromatography on silica gel (CH_2Cl_2 : hexane = 1 : 3, Rf = 0.18) gave the corresponding ester (5c) (153 mg, 72%) as a colorless solid.

mp: 238.6-239.5 °C; IR (KBr): 2981, 2939, 1640, 1618, 1587, 1505, 1460, 1430, 951, 856, 813, 767, 753 cm⁻¹; ¹H NMR (CDCl₃) δ 1.38 (dt, J = 23.9 Hz, 7.81 Hz, 3H, PCH₂CH₃), d 2.27 (dq, J = 14.6 Hz, 7.32 Hz, 2H, PCH₂CH₃), 7.25-7.34 (m, 3H, Ar), 7.39-7.51 (m, 4H, Ar), 7.58 (d, J = 8.8 Hz, 1H, Ar), 7.96 (d, J = 8.3 Hz, 2H, Ar), 8.02 (m, 2H, Ar); ¹³C NMR (CDCl₃): δ 7.30 (d, ²J_{C-P} = 2.8 Hz, PCH₂CH₃), d 27.8 (d, ¹J_{C-P} = 81.7 Hz, PCH₂CH₃), 120.2, 121.7, 122.5, 122.7, 125.6, 125.8, 126.5, 126.9, 127.2, 128.4, 128.5, 130.7, 131.0, 131.6, 131.9, 132.6, 146.1, 146.2, 148.1, 148.3 (Ar); ³¹P NMR (CDCl₃): δ 128.0 (¹J_{P-Se} = 920.8 Hz); ⁷⁷Se NMR (CDCl₃): δ -251.2 (¹J_{P-Se} = 920.8 Hz); MS (EI) m/z 424 (M⁺); HRMS Calcd for C₂₂H₁₇O₂PSe: 424.0131, Found: 424.0146.

(S_{ax})-4-Benzylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5d)

Chemical Formula: C27H19O2PSe Exact Mass: 486.03 Molecular Weight: 485.37

bromide (2d) (0.19 M THF solution, 20.6 ml, 4.0 mmol), toluene (20 mL), and (S_{ax}) -BISEPCl (1.72 g, 4.0 mmol). Purification by column chromatography on silica gel (CH_2Cl_2 : hexane = 1 : 3, Rf = 0.18) gave the corresponding ester (5d) (1.62g, 83%) as a colorless solid

The compound was synthesized via Procedure A, with benzylmagnesium

mp: 94-100 °C; IR (KBr): 1588, 1462, 1321, 1222, 1067, 951, 856, 750, 695, 600, 563, 508 cm⁻¹; ¹H NMR (CDCl₃): δ 3.64-3.79 (m, 2H, PCH₂), 7.23-7.35 (m, 6H), 7.38-7.52 (m, 7H), 7.93 (d, J =8.7 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.99 (d, J = 9.2 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H, Ar) ¹³C NMR (CDCl₃): δ 42.4 (d, ${}^{1}J_{C-P}$ = 78.2 Hz, PCH₂), 120.7, 122.0, 122.6, 122.9, 125.8, 126.0, 126.7, 127.0, 127.4, 127.8, 128.6, 128.7, 128.8, 130.0 (d, J = 5.7 Hz, Ar), 130.6, 130.7, 130.9, 131.1, 131.7, 132.1, 132.7, 132.8, 146.2 (d, J = 9.5 Hz, Ar), 148.5 (d, J = 13.4 Hz, Ar); ³¹P NMR (CDCl₃): δ 117.8 (¹ $J_{P-Se} = 934.3$ Hz); ⁷⁷Se NMR (CDCl₃): δ -222.3 (¹ $J_{P-Se} = 934.3$ Hz); MS (EI) m/z 486 (M⁺); HRMS Calcd for C₂₇H₁₉O₂PSe: 486.0288, Found:486.0267.

(Sax)-4-(2-Phenylethyl)-dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphophepin-4-selenide (5e) ^{S1)}

Exact Mass: 500.04 Molecular Weight: 499.40 The following compound was synthesized *via* Procedure A, with phenethylmagnesium bromide (**2e**) (0.68 M THF solution, 11.8 ml, 8.0 mmol), toluene (40 mL), and (S_{ax})-BISEPC1 (3.43 g, 8.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.28) gave the corresponding ester (**5e**) (2.79 g, 79%) as a colorless solid

¹H NMR (CDCl₃): δ 2.51-2.61 (m, 2H), 3.06-3.17 (m, 1H), 3.22-3.33 (m, 1H), 7.16 (d, *J* = 8.7 Hz, 1H), 7.23-7.36 (m, 8H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.46-7.51 (m, 2H), 7.59 (dd, *J* = 0.9, 8.7 Hz, 1H), 7.94 (d, *J* = 9.2 Hz, 1H), 7.96 (d, *J* = 9.2 Hz, 2H), 8.05 (d, *J* = 9.2 Hz, 1H, Ar)

Typical procedure В for the preparation of (S_{ax}) -4-((trimethylsilyl)methyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5f): To a two-necked flask were added (S_{ax}) -binaphthylphosphoroselenoic acid chloride $((S_{ax})$ -BISEPCl) (645.0 mg, 1.5 mmol), DMAP (366.1 mg, 3.0 mmol), and toluene (7.5 mL) under Ar atmosphere. The reaction mixture was stirred for 30 min. After that, (trimethylsilyl)methylmagnesium chloride (2f) (0.76 M THF solution, 1.97 ml, 1.5 mmol) was added to the suspension via syringe pomp at 40 °C over 20 min, and it was stirred at that temperature for 30 min. After that, saturated NH₄Cl aqueous solution was added to the resulting mixture, and water was further added to dilute the solution. The aqueous phase was extracted with ether three times. The combined organic layer was dried over Na₂SO₄ or MgSO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (CH_2Cl_2 : hexane = 1 : 3, Rf = 0.28) to give (S_{ax}) -4-((trimethylsilyl)methyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5f)(474.1 mg, 66%) as a colorless solid.

(S_{ax})-4-((Trimethylsilyl)methyl)binaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepine-4-selenide (5f)

Chemical Formula: C₂₄H₂₃O₂PSeSi Exact Mass: 482.04 Molecular Weight: 481.46

mp: 92-97 °C; IR (KBr): 3055, 2952, 2924, 1620, 1588, 1508, 1462, 1432, 1360, 1322, 1251, 1223, 11200, 1155, 1096, 1070, 979, 952, 852, 832, 814, 749, 709, 696, 672, 654, 605, 563 cm⁻¹; ¹H NMR (CDCl₃): δ 0.29 (s, 9H, Si(C<u>H</u>₃)₃), 1.87 (dd, *J* = 13.2, 16.6 Hz, 1H), 1.98 (dd, *J* = 13.2, 22.3 Hz, 1H), 7.27-7.36 (m, 3H), 7.42-7.52 (m, 4H), 7.55 (dd, *J* =

1.2, 9.2 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 0.04 (d, ³ $J_{C-P} = 3.6$ Hz Si(<u>C</u>H₃)₃), 25.3 (d, ¹ $J_{C-P} = 64.8$ Hz, P<u>C</u>H₂), 122.9, 122.1, 123.0 (d, J = 2.4 Hz, Ar), 123.1 (d, J = 2.4 Hz, Ar), 125.7, 125.8, 126.5, 126.9, 127.1, 127.4, 128.5, 128.7, 130.7, 130.9, 131.7, 132.0, 132.7, 132.8, 146.6 (d, J = 10.8 Hz, Ar), 148.2 (d, J = 14.4 Hz, Ar); ³¹P NMR (CDCl₃): δ 119.2 (¹ $J_{P-Se} = 907.6$ Hz); ⁷⁷Se NMR (CDCl₃): δ -173.0 (¹ $J_{P-Se} = 907.6$ Hz); MS (EI) m/z 482 (M⁺); HRMS Calcd for C₂₄H₂₃O₂PSeSi: 482.0370, Found:482.0368.

(S_{ax})-4-Neopentylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5g)

Chemical Formula: C25H23O2PSe

Exact Mass: 466.06 Molecular Weight: 465.38 neopentylmagnesium bromide (**2g**) (0.31 M THF solution, 9.7 ml, 3.0 mmol), toluene (18 mL), DMAP (0.74 g, 6.0 mmol) and (S_{ax})-BISEPCl (1.29 g, 3.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.28) gave the corresponding ester (**5g**) (0.92 g, 66%) as a colorless solid.

The following compound was synthesized via Procedure B, with

mp: 194-195 °C; IR (KBr): 2959, 1587, 1508, 1462, 1363, 1324, 1220, 1156, 1070, 1028, 977, 951, 836, 816, 751, 694, 595, 570 cm⁻¹; ¹H NMR (CDCl₃): δ 1.27 (s, 9H, C(C<u>H₃</u>)₃), 2.37 (d, *J* = 15 Hz, 2H, PC<u>H₂</u>), 7.25-7.33 (m, 3H), 7.39-7.49 (m, 4H), 7.56 (dd, *J* = 1.4, 8.7 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 8.02 (d, *J* = 9.2 Hz, 1H), 8.03 (d, *J* = 8.7 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 30.8, 31.1, 31.2, 46.9 (${}^{1}J_{C-P} =$ 74.4 Hz, PCH₂), 120.8, 122.3, 122.7, 123.0, 123.0, 125.7, 125.9, 126.6, 126.9, 127.1, 127.5, 128.5, 128.7, 130.6, 131.0, 131.6, 132.0, 132.7, 132.8, 146.2 (d, *J* = 11.4 Hz, Ar), 148.5 (d, *J* = 15.3 Hz, Ar); ³¹P NMR (CDCl₃): δ 118.8 (${}^{1}J_{P-Se} =$ 924.3 Hz); ⁷⁷Se NMR (CDCl₃): δ -173.6 (${}^{1}J_{P-Se} =$ 924.3 Hz); MS (EI) m/z 466 (M⁺); HRMS Calcd for C₂₅H₂₃O₂PSe: 466.0601, Found:466.0604.

(S_{ax})-4-Cyclohexylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5h)

Chemical Formula: C₂₆H₂₃O₂PSe Exact Mass: 478.06 Molecular Weight: 477.39

The following compound was synthesized *via* Procedure A, with cyclohexylmagnesium bromide (**2h**) (1.09 M THF solution, 5.5 mL, 5.0 mmol), toluene (24 mL), and (S_{ax})-BISEPCl (2.15 g, 5.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.13) gave the corresponding ester (**5h**) (1.66 g, 69%) as a colorless solid.

mp: 237.1-238.0 °C; IR (KBr): 3054, 2929, 2854, 1587, 1508, 1227, 1069, 953, 860, 694, 566 cm⁻¹; ¹H NMR (CDCl₃) δ 1.13-1.21 (m, 1H, PCHC₅H₁₀), 1.24-1.34 (m, 2H), 1.62-1.80 (m, 4H), 1.92-2.03 (m, 2H), 2.12-2.21 (m, 2H), 7.23-7.31 (m, 3H, Ar), 7.38-7.49 (m, 4H, Ar), 7.56 (d, *J* = 8.59 Hz, 1H, Ar), 7.92 (d, *J* = 4.58 Hz, 1H, Ar), 7.94 (d, *J* = 4.58 Hz, 1H, Ar), 8.00 (d, *J* = 9.16 Hz, 1H, Ar), 8.02 (d, J = 9.16 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 25.1, 25.2, 25.2, 25.4, (d, $J_{C-P} = 6.0$ Hz, PCHCH₂CH₂) 26.1 (d, $J_{C-P} = 12.0$ Hz, PCHCH₂CH₂), 41.7 (d, $J_{C-P} = 78.0$ Hz, PCHC₅H₁₀), 120.12, 121.9, 122.4, 122.7, 125.5, 125.7, 126.4, 126.7, 126.8, 127.2, 128.3, 128.5, 130.6, 130.9, 131.4, 131.8, 132.5, 132.7, 146.1, 146.2, 148.4, 148.5; ³¹P NMR (CDCl₃): δ 132.6 (¹ $J_{P-Se} = 921.5$ Hz); ⁷⁷Se NMR (CDCl₃): δ -285.2 (d, ¹ $J_{P-Se} = 921.5$ Hz); MS (EI) m/z 478 (M⁺); HRMS Calcd for C₂₆H₂₃O₂PSe: 478.0601, Found: 478.0589.

(Sax)-4-(*tert*-Butyl)binaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepine-4-selenide (5i)

Chemical Formula: C24H21O2PSe

Exact Mass: 452.04 Molecular Weight: 451.36 The following compound was synthesized *via* Procedure A, with *tert*-butylmagnesium chloride (**2i**) (0.79 M THF solution, 5.10 ml, 4.0 mmol), toluene (40 mL), and (S_{ax})-BISEPC1 (1.73 g, 4.0 mmol). Purification by column chromatography on silica gel (EtOAc : hexane = 1 : 10, Rf = 0.40) gave the corresponding ester (**5i**) (1.59 g, 87%) as a colorless solid.

mp: 267-268 °C; IR (KBr): 3061, 2970, 1590, 1506, 1462, 1321, 1225, 1071, 953, 839, 756, 650 cm⁻¹; ¹H NMR (CDCl₃): δ 1.32 (d, J = 19.3 Hz, 9H, C(CH₃)₃), 7.18-7.24 (m, 4H, Ar), 7.32-7.40 (m, 3H), 7.47 (dd, J = 1.4 Hz, 9.0 Hz, 1H), 7.82-7.88 (m, 3H), 7.95 (d, J = 9.0 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 26.1 (C(CH₃)₃), 42.0 (d, ¹ $J_{P-C} = 72.0$ Hz, C(CH₃)₃), 120.9, 121.0, 122.4, 122.9, 125.7, 126.5, 126.8, 127.1, 127.5, 128.4, 128.7, 130.6, 130.7, 131.3, 132.1, 132.9, 146.8, 146.9, 150.9, 151.0 (Ar); ³¹P NMR (CDCl₃): δ 139.5 (¹ $J_{P-Se} = 917.0$ Hz); ⁷⁷Se NMR (CDCl₃): δ -283.4 (¹ $J_{P-Se} = 917.0$ Hz); MS (EI) m/z 452 (M⁺); HRMS Calcd for C₂₄H₂₁O₂PSe: 452.0444, Found: 452.0421.

(Sax)-4-(Adamantan-2-yl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5j)

Chemical Formula: C₃₀H₂₇O₂PSe Exact Mass: 530.09 Molecular Weight: 529.47

The following compound was synthesized *via* Procedure A, with 2-adamanthylmagnesium bromide (**2j**) (0.41 M THF solution, 8.50 ml, 3.5 mmol), toluene solution (35 mL), and (S_{ax})-BISEPCl (1.52 g, 3.5 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 5, Rf = 0.23) gave the corresponding ester (**5j**) (1.15 g, 63%) as a colorless solid.

mp: 282-283 °C; IR (KBr): 3064, 2909, 2849, 1590, 1507, 1462, 1323, 1223, 1071, 951, 831 cm⁻¹; ¹H NMR (CDCl₃): δ 1.70-1.75 (m, 6H, Adm), 2.00 (m, 6H Adm), 2.10-2.14 (m, 3H, Adm), 7.15 (d, J = 8.5 Hz, 1H), 7.19-7.23 (m, 1H, Ar), 7.27-7.31 (m, 2H, Ar), 7.42-7.48 (m, 2H, Ar), 7.50-7.52 (m, 2H, Ar), 7.91-7.93 (m, 2H, Ar), 7.96 (d, J = 9.0 Hz, 1H), 8.02 (d, J = 9.0 Hz, 1H); ¹³C NMR (CDCl₃): δ 27.4 (³ $_{JC-P} = 12.2$ Hz), 36.1, 36.2, 44.6 (¹ $_{JC-P} = 71.4$ Hz) (Adm), 120.7, 121.0, 122.3, 122.7, 125.5, 126.2, 126.5, 126.9, 127.3, 128.2, 128.5, 130.4, 131.0, 131.9, 132.6, 146.5, 146.6, 150.8, 151.0 (Ar); ³¹P NMR (CDCl₃): δ 136.9 (¹ $_{JP-Se} = 913.4$ Hz); ⁷⁷Se NMR (CDCl₃): δ -300.0 $({}^{1}J_{P-Se} = 913.4 \text{ Hz})$; MS (EI) m/z 530 (M⁺); HRMS Calcd for C₃₀H₂₇O₂PSe: 530.0914, Found: 530.0926.

(S_{ax})-4-Allylbinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5k)

The following compound was synthesized *via* Procedure A, with allylmagnesium bromide (**2k**) (0.93 M Et₂O solution, 0.54 mL, 0.5 mmol), toluene (5 mL), and (S_{ax})-BISEPCl (215 mg, 0.5 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.20) gave the corresponding ester (**5k**) (85 mg, 39%) as a colorless solid.

mp: 187.1-187.5 °C; IR (KBr): 1507, 1225, 1068, 954, 856, 751, 597, 567 cm⁻¹; ¹H NMR (CDCl₃) δ 3.13-3.19 (m, 2H, PC<u>H₂CHCH₂</u>), 5.33-5.42 (m, 2H, PCH₂CHC<u>H₂</u>), 5.92-6.04 (m, 1H, PCH₂C<u>H</u>CH₂), 7.25-7.34 (m, 3H, Ar), 7.39-7.52 (m, 4H, Ar), 7.57 (dd, J = 1.4, 8.7 Hz, 1H, Ar), 7.96 (d, J = 8.2 Hz, 2H, Ar), 8.02 (d, J = 8.2 Hz, 1H, Ar), 8.04 (d, J = 7.8 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 40.4 (d, $J_{P-C} = 80.8$ Hz, PCH₂CHCH₂), 120.5, 121.8, 121.9, 122.6, 122.7, 125.7, 125.9, 126.3, 126.4, 126.6, 126.9, 127.3, 128.4, 128.6, 130.8, 130.9, 131.6, 132.0, 132.6, 132.7, 146.0, 146.1, 148.1, 148.2 (Ar) ; ³¹P NMR (CDCl₃): δ 117.0 (¹ $J_{P-Se} = 930.4$ Hz); ⁷⁷Se NMR (CDCl₃): δ -228.5 (¹ $J_{P-Se} = 930.4$ Hz); MS (EI) m/z 436 (M⁺); HRMS Calcd for C₂₃H₁₇O₂PSe: 436.0131, Found: 436.0165.

(Sax)-4-(4-Methoxyphenyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5l)

Chemical Formula: C₂₇H₁₉O₃PSe Exact Mass: 502.02 Cl Molecular Weight: 501.37

The following compound was synthesized *via* Procedure B, with 4-methoxyphenylmagnesium bromide (**2l**) (0.45 M THF solution, 1.10 mL, 0.5 mmol), toluene (5 mL), DMAP (122 mg, 1.0 mmol) and (S_{ax})-BISEPC1 (215 mg, 0.5 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : AcOEt : hexane = 1 : 1 : 50, Rf = 0.09) gave the corresponding ester (**5l**) (162 mg, 65%) as a colorless

solid.

mp: 112.8-122.4 °C (dec); IR (KBr): 1594, 1500, 1461, 1260, 1221, 1117, 1068, 949, 835, 750, 663, 607, 564, 519 cm⁻¹; ¹H NMR (CDCl₃) δ 3.80 (s, 3H, OC<u>H₃</u>), 6.80-6.82 (m, 2H, Ar), 6.91 (d, J = 8.7 Hz, 1H, Ar), 7.27-7.39 (m, 3H, Ar), 7.47-7.50 (m, 3H, Ar), 7.62-7.67 (m, 3H, Ar), 7.80 (d, J = 8.7 Hz, 1H, Ar), 7.91 (d, J = 8.2, 1H, Ar), 7.98 (d, J = 8.2 Hz, 1H, Ar), 8.08 (d, J = 8.7 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 55.4 (s, O<u>C</u>H₃), 113.5, 113.6, 121.2, 121.9, 122.0, 122.5, 122.9, 123.2, 125.7, 125.8, 126.6, 126.7, 127.1, 127.3, 128.5, 128.6, 130.5, 130.8, 131.6, 132.0, 132.5, 132.7, 134.1, 134.2, 146.1, 146.2, 148.4, 148.6, 163.7, 163.8 (Ar); ³¹P NMR (CDCl₃): δ 109.7 (¹ $J_{P-Se} = 938.4$ Hz); ⁷⁷Se NMR (CDCl₃): δ -246.4 (d, ¹ $J_{P-Se} = 938.4$ Hz); MS (EI) m/z 502 (M⁺); HRMS Calcd for

C₂₇H₁₉O₃PSe: 502.0237, Found: 502.0247.

(S_{ax})-4-(4-Fluorophenyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5m)

Chemical Formula: C₂₆H₁₆FO₂PSe Exact Mass: 490.00 Molecular Weight: 489.34

The following compound was synthesized *via* Procedure B, with 4-fluorophenylmagnesium bromide (**2m**) (1.92 M Et₂O solution, 1.56 mL, 3.0 mmol), toluene (30 mL), DMAP (733 mg, 6.0 mmol) and (S_{ax})-BISEPC1 (1.29 g, 3.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.15) gave the corresponding ester (**5m**) (1.01 g, 69%) as a colorless solid.

mp: 228.5-229.7 °C; IR (KBr): 3056, 1908, 1590, 1496, 1221, 1114, 951, 836, 662, 607, 512 cm⁻¹; ¹H NMR (CDCl₃) δ 6.88-6.89 (d, J = 8.59 Hz, 1H, Ar), 7.03-7.06 (m, 2H, Ar), 7.14-7.29 (m, 3H, Ar), 7.37-7.41 (m, 3H, Ar), 7.49-7.59 (m, 3H, Ar), 7.69 (d, J = 8.78 Hz, 1H, Ar), 7.80 (d, J = 8.78, 1H, Ar), 7.86 (d, J = 8.29 Hz, 1H, Ar), 7.99 (d, J = 9.27 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 115.3, 115.5, 115.5, 115.6, 120.9, 121.8, 122.5, 122.8, 125.8, 125.9, 126.7, 126.8, 127.0, 127.2, 1 28.5, 128.6, 130.6, 130.9, 131.6, 132.1, 132.4, 132.6, 134.5, 134.6, 134.6, 134.7, 145.8, 145.9, 148. 2, 148.3, 164.9, 167.0 (Ar); ¹⁹F NMR (CDCl₃): δ -103.9; ³¹P NMR (CDCl₃): δ 106.8 (¹J_{P-Se} = 938.7 Hz); ⁷⁷Se NMR (CDCl₃): δ -242.0 (d, ¹J_{P-Se} = 938.7 Hz); MS (EI) m/z 490 (M⁺); HRMS Calcd for C₂₆H₁₆FO₂PSe: 490.0037, Found: 490.0024.

(S_{ax})-4-(4-(Trifluoromethyl)phenyl)binaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepine-4-selenide (5n)

Chemical Formula: C₂₇H₁₆F₃O₂PSe Exact Mass: 540.00 Molecular Weight: 539.34

The following compound was synthesized *via* Procedure A, with (4-trifluoromethyl)phenylmagnesium bromide (**2n**) (0.79 M THF solution, 2.40 ml, 2.0 mmol), toluene (20 mL), and (S_{ax})-BISEPC1 (863.6 mg, 2.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 5, Rf = 0.18) gave the corresponding ester (**5n**) (900.2 mg, 83%) as a colorless solid.

mp: 144-145 °C; IR (KBr): 3050, 1589, 1461, 1397, 1324, 1220, 1063, 950, 838, 750 cm⁻¹; ¹H NMR (CDCl₃): δ 6.88 (dd, J = 0.9 Hz, J = 9.0 Hz, 1H), 7.29-7.38 (m, 3H, Ar), 7.46 (d, J = 8.5 Hz, 1H), 7.49-7.53 (m, 2H, Ar), 7.61 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.66 (dd, J = 1.4 Hz, J = 9.0 Hz, 1H), 7.80 (d, J = 9.0 Hz, 1H), 7.85-7.93 (m, 3H, Ar), 8.00 (d, J = 8.1 Hz, 1H), 8.10 (d, J = 8.1 Hz, 1H); ¹³C NMR (CDCl₃): δ 120.7, 121.9, 122.1, 122.5, 122.9, 125.1, 125.2, 126.1, 126.9, 127.0, 127.1, 127.3, 128.7, 128.8, 130.9, 131.2, 131.8, 132.3, 132.4, 132.6, 132.7, 134.7, 135.0, 145.7, 145.8, 148.2, 148.4 (Ar); ¹⁹F NMR (CDCl₃): δ -63.1; ³¹P NMR (CDCl₃): δ 104.7 (¹ $J_{P-Se} = 946.5$ Hz); ⁷⁷Se NMR (CDCl₃): δ -231.7 (¹ $J_{P-Se} = 946.5$ Hz); MS (EI) m/z 540 (M⁺); HRMS Calcd for C₂₇H₁₆F₃O₂PSe: 540.0005, Found: 540.0071.

(S_{ax})-4-(2-Methoxyphenyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (50)

Chemical Formula: C₂₇H₁₉O₃PSe Exact Mass: 502.02

Molecular Weight: 501.37

The following compound was synthesized *via* Procedure B, with 2-methoxyphenylmagnesium bromide (**2o**) (0.90 M Et₂O solution, 0.56 mL, 0.5 mmol), toluene (5 mL), DMAP (122 mg, 1.0 mmol) and (S_{ax})-BISEPC1 (215 mg, 0.5 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : AcOEt : hexane = 1 : 2 : 30, Rf = 0.13) gave the corresponding ester (**5o**) (113 mg, 45%) as a colorless

solid.

mp: 222.5-223.2 °C; IR (KBr): 1588, 1476, 1322, 1223, 1068, 1018, 953, 854, 751, 614, 564, 518, 412 cm⁻¹; ¹H NMR (CDCl₃) δ 3.60 (d, J = 1.37 Hz, 3H, OCH₃), 6.75-6.83 (m, 2H, Ar), 7.07 (d, J = 8.70 Hz, 1H, Ar), 7.12-7.16 (m, 2H, Ar), 7.23-7.37 (m, 5H, Ar), 7.58-7.66 (m, 2H, Ar), 7.69-7.74 (m, 2H, Ar), 7.85 (d, J = 8.24 Hz, 1H, Ar), 7.95 (d, J = 8.70 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 55.8 (OCH₃), 111.7, 111.8, 119.9, 120.3, 120.4, 120.5, 120.9, 122.3, 122.4, 123.0, 125.5, 125.6, 126.3, 126.4, 127.1, 127.2, 128.2, 128.6, 130.3, 130.6, 131.5, 132.0, 132.5, 132.7, 134.0, 134.1, 134.8, 146.2, 146.3, 149.3, 149.4, 160.5 (Ar); ³¹P NMR (CDCl₃): δ 102.4 (¹ $J_{P-Se} = 928.2$ Hz); ⁷⁷Se NMR (CDCl₃): δ -175.4 (d, ¹ $J_{P-Se} = 928.2$ Hz); MS (EI) m/z 502 (M⁺); HRMS Calcd for C₂₇H₁₉O₃PSe: 502.0237, Found:502.0263.

(S_{ax})-4-(Naphtalen-2-yl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (5p)

Chemical Formula: C₃₀H₁₉O₂PSe Exact Mass: 522.03 Molecular Weight: 521.40 The following compound was synthesized *via* Procedure A, with 2-naphthylmagnesium bromide (**2p**) (0.29 M THF solution, 3.45 ml, 1.0 mmol), toluene (10 mL), and (S_{ax})-BISEPCl (426.5 mg, 1.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 5, Rf = 0.49) gave the corresponding ester (**5p**) (422.4 mg, 82%) as a colorless solid.

mp: 218-219 °C; IR (KBr): 3049, 1587, 1507, 1460, 1221, 1089, 954, 834, 747, 710, 655 cm⁻¹; ¹H NMR (CDCl₃): δ 6.87 (dd, J = 0.9 Hz, 9.0 Hz, 1H), 7.29-7.38 (m, 2H, Ar), 7.40 (d, J = 8.1 Hz, 1H), 7.48-7.63 (m, 6H, Ar), 7.69-7.76 (m, 3H, Ar), 7.82 (d, J = 8.1 Hz, 1H), 7.82-7.89 (m, 2H, Ar), 8.00 (d, J = 8.1 Hz, 1H), 8.11 (d, J = 9.0 Hz, 1H), 8.45 (m, 1H, Ar); ¹³C NMR (CDCl₃): δ 121.2, 122.1, 122.5, 123.0, 125.9, 126.7, 126.8, 127.2, 127.4, 127.9, 128.0, 128.6, 128.7, 129.0, 129.5, 130.6, 131.0, 131.7, 132.0, 132.1, 132.2, 132.6, 132.8, 134.8, 134.9, 135.4, 146.1, 146.2, 148.6, 148.7 (Ar); ³¹P NMR (CDCl₃): δ 109.1 (${}^{1}J_{P-Se} = 934.3$ Hz); ⁷⁷Se NMR (CDCl₃): δ -234.7 (${}^{1}J_{P-Se} = 934.3$ Hz); MS (EI) m/z 522 (M⁺); HRMS Calcd for C₃₀H₁₉O₂PSe: 522.0288, Found: 522.0309. (S_{ax})-4-(2-(1,3-Dioxolan-2-yl)ethyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide

(5q)

Chemical Formula: C₂₅H₂₁O₄PSe Exact Mass: 496.03 Molecular Weight: 495.37

The following compound was synthesized *via* Procedure A, with (2-(1,3-dioxolan-2-yl)ethyl)magnesium bromide $(2\mathbf{q})$ (0.43 M THF solution, 7.0 ml, 3.0 mmol), toluene (10 mL), and (S_{ax})-BISEPCl (1.29 g, 3.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 2 : 1, Rf = 0.25) gave the corresponding ester (**5q**) (0.95 g, 64%) as a colorless solid.

mp: 100-110 °C; IR (KBr): 2924, 1588, 1508, 1463, 1322, 1222, 1191, 1155, 1140, 1069, 1045, 976, 951, 857, 838, 813, 750, 696, 598, 567 cm⁻¹; ¹H NMR (CDCl₃) δ 2.18-2.45 (m, 4H), 3.84-3.96 (m, 4H), 5.03 (t, J = 4.0 Hz, 1H), 7.26-7.35 (m, 3H, Ar), 7.39 (d, J = 8.5 Hz, 1H, Ar), 7.45-7.52 (m, 3H, Ar), 7.57 (dd, J = 0.9, 8.5 Hz, 1H), 7.96 (d, J = 8.1 Hz, 2H), 8.02 (d, J = 9.0 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H); ¹³C NMR (CDCl₃): δ 27.7, 28.4 (d, ² $J_{C-P} = 84.6$ Hz), 65.3, 102.7 (d, ³ $J_{C-P} = 20.7$ Hz), 120.5, 121.9, 122.6, 122.9, 125.8, 126.0, 126.7, 127.0, 127.1, 127.4, 128.6, 128.7, 130.9, 131.2, 131.8, 132.1, 132.7, 146.2 (d, J = 10.3 Hz), 148.3 (d, J = 14.1 Hz) (Ar); ³¹P NMR (CDCl₃): δ 124.6 (¹ $J_{P-Se} = 924.4$ Hz); ⁷⁷Se NMR (CDCl₃): δ -236.0 (¹ $J_{P-Se} = 924.4$ Hz); MS (EI) m/z 496 (M⁺); HRMS Calcd for C₂₅H₂₁O₄PSe: 496.0343, Found: 493.0359.

(S_{ax})-4-(Ethylselanyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (6)

Molecular Weight: 502.26

The following compound was synthesized *via* Procedure A, with ethylmagnesium bromide (**2c**) (2.5 M Et₂O solution, 0.4 mL, 1.0 mmol), toluene (4 mL), and (S_{ax})-BISEPCl (431 mg, 1.0 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.38) gave the corresponding ester (**6**) (26 mg, 5%) as a colorless solid.

mp: 180.6-182.9 °C; IR (KBr): 2921, 2853, 1586, 1508, 1460, 1320, 1215, 1198, 1157, 1065, 975, 941, 845, 832, 810, 772, 755, 706, 696, 651, 606, 581, 563, 546, 522, 410 cm⁻¹; ¹H NMR (CDCl₃) δ 1.62 (d, *J* = 7.3 Hz, 3H, CH₂CH₃), 3.04-3.27 (m, 2H, CH₂), 7.27-7.33 (m, 2H), 7.38 (d, *J* = 8.7 Hz, 1H), 7.43 (d, *J* = 8.7 Hz, 1H), 7.47-7.52 (m, 3H), 7.61 (dd, *J* = 1.4, 9.2 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 8.02 (d, *J* = 8.2 Hz, 1H), 8.04 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (CDCl₃): δ 16.6 (d, *J* = 5.6 Hz), 28.1, 121.4, 121.7, 122.7 (d, *J* = 2.8 Hz), 122.9 (d, *J* = 3.8 Hz, 1H), 125.8, 125.9, 126.6, 126.7, 127.0, 127.2, 128.5, 128.6, 130.5, 130.8, 131.8, 132.0, 132.5, 147.0 (d, *J* = 13.2 Hz), 148.2 (d, *J* = 16.0 Hz, Ar); ³¹P NMR (CDCl₃): δ 104.5 (¹*J*_{P-Se} = 517.1, 952.2 Hz); ⁷⁷Se NMR (CDCl₃): δ -60.8 (¹*J*_{P-Se} = 952.2 Hz), 375.5 (¹*J*_{P-Se} = 517.1 Hz); MS (EI) m/z 504 (M⁺); HRMS Calcd for C₂₂H₁₇O₂PSe₂: 503.9297, Found: 503.9315.

(S_{ax})-4-(sec-Butyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (7)

Chemical Formula: C₂₄H₂₁O₂PSe Exact Mass: 452.04 Molecular Weight: 451.36

The following compound was synthesized *via* Procedure B, with *sec*-Butylmagnesium bromide (**2r**) (0.56 M THF solution, 18 mL, 10 mmol), toluene (100 mL), DMAP (2.44 g, 20 mmol) and (S_{ax})-BISEPC1 (4.29 g, 10 mmol). Purification by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.28) gave the corresponding ester (7) (3.22 g, 71%, dr = 50 : 50) as a colorless solid. The diastereoisomers

were separated by recrystallization from CH₂Cl₂ and AcOEt.

(dr = 83 : 17): IR (KBr): 2970, 1588, 1506, 1461, 1320, 1218, 1069, 950, 913, 734, 600, 503 cm⁻¹; ¹H NMR (CDCl₃): δ 0.97 (t, *J* = 7.6 Hz, 0.5H, CH₂CH₃), 1.10 (t, *J* = 7.6 Hz, 2.5H, CH₂CH₃), 1.26 (dd, *J* = 22.9, 6.7 Hz, 2.5H, PCHCH₃), 1.40 (dd, *J* = 22.9, 6.7 Hz, 0.5 H, PCHCH₃), 1.54-1.67 (m, 1H), 1.90-2.00 (m, 0.2H), 2.08-2.20 (m, 1.8H), 7.21-7.30 (m, 3H, Ar), 7.37-7.48 (m, 4H, Ar), 7.57 (m, 1H, Ar), 7.92 (d, *J* = 8.5 Hz, 2H, Ar), 7.97-8.03 (m, 2H, Ar); ¹³C NMR (CDCl₃): δ 11.2 (d, ²*J*_{C-P} = 16.0 Hz), 11.5 (d, ²*J*_{C-P} = 16.9 Hz), 13.0, 13.1, 23.6, 38.3 (d, ¹*J*_{C-P} = 77.1 Hz, P<u>C</u>H), 38.4 (d, ¹*J*_{C-P} = 77.1 Hz, P<u>C</u>H(CH₃)CH₂CH₃)), 120.0, 120.1 (d, *J*_{C-P} = 2.8 Hz), 122.0 (d, *J*_{C-P} = 2.8 Hz), 122.3, 122.4 (d, *J*_{C-P} = 2.8 Hz), 122.6 (d, *J*_{C-P} = 2.8 Hz), 125.5, 125.7, 126.4, 126.8 (d, *J*_{C-P} = 2.8 Hz), 127.2, 128.3, 128.5, 130.6, 130.8, 131.4, 131.8, 132.5, 132.6, 146.1 (d, *J*_{C-P} = 10.3 Hz), 146.3, 148.3 (d, *J*_{C-P} = 14.1 Hz) (Ar); ³¹P NMR (CDCl₃): δ 135.1 (¹*J*_{P-Se} = 920.3 Hz), 135.6 (¹*J*_{P-Se} = 920.3 Hz); ⁷⁷Se NMR (CDCl₃): δ -297.5 (¹*J*_{P-Se} = 920.3 Hz), -299.2 (¹*J*_{P-Se} = 920.3 Hz); MS (EI) m/z 452 (M⁺); HRMS Calcd for C₂₄H₂₁O₂PSe: 452.0444, Found: 452.0442.

(S_{ax}, S)-4-(sec-Butyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (7a)

(dr = >99 : 1): mp: 202.0-202.6 °C; IR (KBr): 2925, 1588, 1462, 1320, 1226, 1071, 950, 836, 742, 560, 503 cm⁻¹; ¹H NMR (CDCl₃): δ 1.11 (t, *J* = 7.3 Hz, 3H, CH₂CH₃), 1.26 (dd, *J* = 22.0, 6.9 Hz, 3H, PCHCH₃), 1.59-1.67 (m, 1H, PCHCH₃), 2.09-2.21 (m, 2H, CH₂CH₃), 7.23-7.31 (m, 3H, Ar), 7.37-7.49 (m, 4H, Ar), 7.57 (dd, *J* = 8.7, 1.4 Hz, 1H, Ar), 7.94 (d, *J* = 8.2 Hz, 2H, Ar), 8.01 (m, 2H, Ar); ¹³C NMR (CDCl₃): δ 11.5 (d, ²*J*_{C-P} = 17.3 Hz, PCH(CH₃)), 13.1, 23.7, 38.4 (d, ¹*J*_{C-P} = 76.7 Hz, PCH), 120.2, 122.0, 122.5, 122.7, 125.6, 125.8, 126.5, 126.8, 126.9, 127.2, 128.3, 128.5, 130.6, 130.8, 131.5, 131.9, 132.6, 132.7, 146.2 (d, *J*_{C-P} = 9.6 Hz), 148.4 (d, *J*_{C-P} = 13.4 Hz) (Ar); ³¹P NMR (CDCl₃): δ 135.1 (¹*J*_{P-Se} = 922.9 Hz); ⁷⁷Se NMR (CDCl₃): δ -299.1 (¹*J*_{P-Se} = 922.9 Hz); MS (EI) m/z 452 (M⁺); HRMS Calcd for C₂₄H₂₁O₂PSe: 452.0444, Found: 452.0442.

(S_{ax})-4-(Decan-2-yl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (8)

Chemical Formula: C₃₀H₃₃O₂PSe Exact Mass: 536.14 Molecular Weight: 535.52 The following compound was synthesized *via* Procedure A, with methylmagnesium bromide (**2s**) (0.09 M THF solution, 5.8 mL, 0.5 mmol), toluene solution (5 mL), and (S_{ax})-BISEPCl (215 mg, 0.5 mmol). Purification by column chromatography on silica gel (AcOEt : hexane = 1 : 25, Rf = 0.48) gave three fractions (first:

28%, (dr = 0: 100), second: 7% (dr = 30: 70), third: 24% (dr = 100: 0)) the corresponding ester (8) as a colorless solid.

(8a) (dr = 0: 100): mp: 143.6-144.5 °C; IR (KBr): 3055, 2928, 2851, 1588, 1224, 1198, 840, 812, 601, 565 cm⁻¹; ¹H NMR (CDCl₃) δ 0.92 (t, *J* = 6.3 Hz, 3H, PCH(CH₃)(CH₂)₇CH₃), 1.26 (dd, *J* = 6.9, 22.3 Hz, 3H, PCH(C<u>H₃</u>)(CH₂)₇CH₃), 1.31-1.37 (m, 11H), 1.56-1.64 (m, 2H), 2.01-2.07 (m, 1H), 2.20-2.27 (m, 1H, PC<u>H</u>), 7.27-7.32 (m, 3H, Ar), 7.38-7.41 (m, 2H, Ar), 7.45-7.50 (m, 2H, Ar), 7.57 (d, *J* = 8.6 Hz, 1H, Ar), 7.95 (d, *J* = 8.0 Hz, 2H, Ar), 7.99-8.02 (m, 2H, Ar); ¹³C NMR (CDCl₃): δ 13.8 (d, *J* = 90.0 Hz), 22.7, 26.6, 26.7, 29.3, 29.5, 29.6, 30.2, 31.9, 36.8 (d, *J* = 76.8 Hz), 120.3, 122.0, 122.5, 122.7, 125.6, 125.8, 126.5, 126.8, 126.9, 127.3, 128.3, 128.6, 130.6, 130.7, 131.5, 131.9, 132.6, 132.7, 146.3 (d, *J* = 10.8 Hz), 148.5 (d, *J* = 14.4 Hz) (Ar); ³¹P NMR (CDCl₃): δ 135.5 (¹*J*_{P-Se} = 920.3 Hz); ⁷⁷Se NMR (CDCl₃): δ -299.9 (d, ¹*J*_{P-Se} = 920.3 Hz); MS (EI) m/z 536 (M⁺); HRMS Calcd for C₃₀H₃₃O₂PSe: 536.1383, Found: 536.1383.

(**8b**) (dr = 100: 0): mp: 44.4-53.0 °C; IR (KBr): 3055, 2927, 2852, 1588, 1225, 1198, 841, 812, 601, 565 cm⁻¹; ¹H NMR (CDCl₃) δ 0.84 (t, *J* = 6.9 Hz, 3H, PCH(CH₃)(CH₂)₇CH₃), 1.2-1.28 (m, 11H), 1.40 (dd, *J* = 6.9, 23.5 Hz, 3H, PCH(CH₃)), 1.46-1.58 (m, 2H), 1.83-1.90 (m, 1H), 2.19-2.26 (m, 1H, PCH), 7.27-7.33 (m, 3H, Ar), 7.40 (d, *J* = 8.6 Hz, 1H, Ar), 7.42 (d, *J* = 8.6 Hz, 1H, Ar), 7.45-7.51 (m, 2H, Ar), 7.58 (dd, *J* = 1.2, 8.6 Hz, 1H, Ar), 7.95 (d, *J* = 8.0 Hz, 2H, Ar), 7.99-8.05 (m, 2H, Ar); ¹³C NMR (CDCl₃): δ 13.7 (d, *J* = 78.0 Hz), 22.6, 26.7, 26.8, 29.1, 29.3, 29.5, 30.4, 31.8, 37.0 (d, *J* = 76.8 Hz), 120.1, 122, 122.4, 122.8, 125.6, 125.8, 126.5, 126.8, 126.9, 127.3, 128.4, 128.6, 130.6, 130.9, 131.5, 131.9, 132.6, 132.7, 146.4 (d, *J* = 10.8 Hz), 148.5 (d, *J* = 13.2 Hz); ³¹P NMR (CDCl₃): δ 135.8 (¹*J*_{P-Se} = 920.3 Hz); ⁷⁷Se NMR (CDCl₃): δ -298.4 (d, ¹*J*_{P-Se} = 920.3 Hz); MS (EI) m/z 536 (M⁺); HRMS Calcd for C₃₀H₃₃O₂PSe: 536.1383, Found: 536.1363.

(S_{ax})-4-(2-Ethylhexyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-selenide (9)

Chemical Formula: C₂₈H₂₉O₂PSe Exact Mass: 508.11 Molecular Weight: 507.46

by recrystallization from CH₂Cl₂ and isopropyl alcohol.

The following compound was synthesized *via* Procedure B. with 2-ethylhexylmagnesium bromide (**2t**) (0.92 M Et₂O solution, 0.55 mL, 0.5 mmol), toluene (5.0 mL), DMAP (122 mg, 2 mmol), (S_{ax})-BISEPCl (215 mg, 0.5 mmol). Purification by column chromatography on silica gel (DCM : hexane = 1 : 3) gave the corresponding ester (183 mg, 72%, dr = 50 : 50) as a colorless solid. The diastereoisomers were separated

(dr = 56 : 44): IR (KBr): 2927, 1588, 1508, 1462, 1322, 1223, 1070, 954, 839, 696, 600, 565 cm⁻¹; ¹H NMR (CDCl₃): δ 0.84 (t, *J* = 7.3 Hz, 1.5H), 0.85 (t, *J* = 6.9 Hz, 1.5H), 0.93 (t, *J* = 6.9 Hz, 1.5H), 0.96 (t, *J* = 7.3 Hz, 1.5H), 1.17-1.39 (m, 4H), 1.43-1.74 (m, 4H), 2.14-2.27 (m, 3H), 7.27-7.34 (m, 3H, Ar), 7.39-7.52 (m, 4H, Ar), 7.55-7.58 (m, 1H, Ar), 7.96 (d, *J* = 8.2 Hz, 2H, Ar), 8.01 (d, *J* = 8.2 Hz, 1H, Ar), 8.04 (d, *J* = 8.2 Hz, 1H, Ar); ¹³C NMR (CDCl₃): δ 10.2, 10.8, 14.0, 14.1, 22.7, 22.8, 26.1 (d, J = 11.5 Hz), 26.7 (d, J = 11.5 Hz), 28.1, 28.6, 32.7 (d, J = 11.5 Hz), 33.3 (d, J = 9.6 Hz), 35.0, 35.2, 38.2 (d, J = 76.7 Hz), 120.6, 122.0, 122.6, 122.8, 125.6, 125.8, 126.5, 126.8, 126.9, 127.3, 128.4, 128.6, 130.6, 130.8, 131.6, 131.9, 132.6, 132.7, 146.2, 146.3, 148.2, 148.3 (Ar); ³¹P NMR (CDCl₃): δ 127.6 (¹ $J_{P-Se} = 920.3$ Hz), 127.7 (¹ $J_{P-Se} = 920.3$ Hz); ⁷⁷Se NMR (CDCl₃): δ -225.2 (d, ¹ $J_{P-Se} = 920.3$ Hz) Only one signal was observed for two diastereoisomers; MS (EI) m/z 508 (M⁺); HRMS Calcd for C₂₄H₂₁O₂PSe: 508.1070, Found: 508.1066.

(dr = 92 : 8): mp: 138.0-138.8 °C; IR (KBr): 2926, 1587, 1507, 1462, 1322, 1224, 1070, 953, 813, 696, 599, 565 cm⁻¹; ¹H NMR (CDCl₃): δ 0.83 (t, *J* = 7.3 Hz, 3H, CH₂CH₃), 0.93 (t, *J* = 6.9 Hz, 3H, CH₂CH₃), 1.27-1.40 (m, 4H), 1.41-1.67 (m, 4H), 2.16-2.27 (m, 3H), 7.24-7.33 (m, 3H, Ar), 7.39-7.51 (m, 4H, Ar), 7.57 (dd, *J* = 1.4, 8.7 Hz, 1H, Ar), 7.96 (d, *J* = 8.2 Hz, 2H), 8.01 (d, *J* = 7.8 Hz, 1H), 8.03 (d, *J* = 8.2 Hz, 1H); ¹³C NMR (CDCl₃): δ 10.2, 14.1, 22.8, 26.1 (d, *J*_{C-P} = 9.6 Hz), 28.6, 33.3 (d, *J*_{C-P} = 11.5 Hz), 35.0, 38.2 (d, ¹*J*_{C-P} = 76.7 Hz, PCH₂), 120.6, 122.0, 122.6, 122.8, 125.6, 125.8, 126.5, 126.8, 126.9, 127.3, 128.4, 128.5, 130.6, 130.8, 131.5, 131.9, 132.6, 146.2 (d, *J*_{C-P} = 9.6 Hz), 148.2 (d, *J*_{C-P} = 13.4 Hz) (Ar); ³¹P NMR (CDCl₃): δ 127.6 (¹*J*_{P-Se} = 919.2 Hz); ⁷⁷Se NMR (CDCl₃): δ -226.0 (d, ¹*J*_{P-Se} = 919.2 Hz); MS (EI) m/z 508 (M⁺); HRMS Calcd for C₂₄H₂₁O₂PSe: 508.1070, Found: 508.1066.

(S_{ax})-4-(Adamantan-2-yl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine (10)

Exact Mass: 450.17 Molecular Weight: 450.51 To the solution of **5j** (161.9 mg, 0.3 mmol) in THF (1.0 mL) was added tri(*n*-butyl)phosphine (0.15 mL, 0.6 mmol), and the resulting solution was stirred at room temperature for 1 h. The precipitate was filtered and washed with hexane (4×5 mL). The corresponding phosphonite (**10**) (92.5 mg, 70%) was isolated as a colorless solid after drying under reduced pressure.

mp: 275-278 °C; IR (KBr): 3059, 2901, 2845, 1590, 1504, 1463, 1230, 1071, 953, 818, 753 cm⁻¹; ¹H NMR (CDCl₃): δ 1.71 (m, 8H, Adm), 1.85-1.88 (m, 4H, Adm), 1.95 (m, 3H, Adm), 7.20 (m, 3H, Ar), 7.27-7.29 (m, 1H, Ar), 7.38-7.42 (m, 2H, Ar), 7.47-7.59 (m, 2H, Ar), 7.89-7.92 (m, 3H, Ar), 7.97-7.99 (m, 1H, Ar); ¹³C NMR (CDCl₃): δ 27.7 (${}^{3}J_{C-P} = 8.5$ Hz), 35.1 (${}^{2}J_{C-P} = 14.1$ Hz) 40.9 (${}^{1}J_{C-P} = 35.7$ Hz) (Adm), 121.7, 122.8, 124.7, 125.0, 126.2, 126.3, 127.1, 127.3, 128.3, 128.5, 129.6, 130.7, 130.9, 131.6, 133.1, 133.2, 151.1, 151.1, 151.6, 151.7 (Ar); ³¹P NMR (CDCl₃): δ 203.6; MS (EI) m/z 450 (M⁺); HRMS Calcd for C₃₀H₂₇O₂P: 450.1749, Found: 450.1720.

(S_{ax})-4-(sec-Butyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepineborane (11)

To a 20 mL two-necked flask were added selenophophonate (7) (451 mg, 1.0 mmol, dr = 59 : 41), THF (5.0 mL), tri(*n*-butyl)phosphine (0.26 mL, 1.5 mmol) under Ar atmosphere. The reaction mixture was stirred for 22.5 h. After that, BH₃•THF (1M, 2.0 mL) was added to the mixture, and it

Chemical Formula: C₂₄H₂₄BO₂P Exact Mass: 386.16 Molecular Weight: 386.23

was further stirred for 2.3 h. The resulting solution was concentrated. Purification by silica gel column chromatography (acetone : hexane = 4 : 5, Rf = 0.25) gave (**11**) (200 mg, 52%) containing selenophophonate and tri(*n*-butyl)phosphine selenide as a white solid. The solid was purified by GPC. The resulting solid (188 mg, 0.49 mmol) was dissolved in CH_2Cl_2

(2.0 mL). To this solution was added hydrogen peroxide (35% aqueous

solution, 36 μ L, 1.46 mmol), and stirred for 3 h. After that, the mixture was filtered, washed with CH₂Cl₂, and the filtrate was concentrated. The resulting solid was passed through column chromatography on silica gel (acetone : hexane = 1 : 30, Rf = 0.15) to give the corresponding ester (91 mg, 48%, dr = 59 : 41) as a colorless solid.

(dr = 59 : 41): IR (KBr): 2969, 2387, 1589, 1507, 1462, 1322, 1230, 1072, 954, 861, 562, 526, 464, 417 cm⁻¹; ¹H NMR (CDCl₃): δ 0.14-0.87 (br, 3H, BH₃), 0.97 (t, *J* = 7.5 Hz, 1.9H, CH₂CH₃), 1.08 (t, *J* = 7.5 Hz, 1.1H, CH₂CH₃), 1.26 (dd, *J* = 7.5, 17.2 Hz, 1.1H, PCHCH₃), 1.36 (dd, *J* = 7.5, 18.3 Hz, 1.9H, PCHCH₃), 1.51-1.63 (m, 1H, PCHCH₃), 1.84-1.96 (m, 1.6H), 2.01-2.11 (m, 0.4H), 7.24-7.26 (m, 2H, Ar), 7.28-7.31 (m, 1H, Ar), 7.35 (d, *J* = 8.6 Hz, 1H, Ar), 7.39-7.49 (m, 3H, Ar), 7.53 (d, *J* = 8.6 Hz, 1H), 7.94 (d, *J* = 8.6 Hz, 2H, Ar), 7.98-8.03 (m, 2H, Ar); ¹³C NMR (CDCl₃): δ 11.7, 11.8, 11.8, 11.9, 12.0, 22.4 (d, *J*_{C-P} = 6.0 Hz), 22.5 (d, *J*_{C-P} = 3.6 Hz), 34.2 (d, *J*_{C-P} = 33.6 Hz), 34.3 (d, *J*_{C-P} = 33.6 Hz), 120.4, 121.7, 122.3, 122.7, 122.8, 125.5, 125.7, 126.9, 127.2, 128.4, 128.5, 130.7, 130.8, 131.5, 131.9, 132.5, 132.7, 147.3, 147.4, 147.5 (Ar); ³¹P NMR (CDCl₃): δ 183.6 (br), 184.1 (br) ; MS (EI) m/z 386 (M⁺); HRMS Calcd for C₂₄H₂₄BO₂P: 386.1607, Found: 386.1584.

(Sax)-4-(sec-Butyl)binaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-oxide

Chemical Formula: C₂₄H₂₁O₃P Exact Mass: 388.12 Molecular Weight: 388.40 (dr = 47 : 53): IR (KBr): 2970, 1590, 1507, 1464, 1229, 1072, 964, 873, 751, 656, 566, 480 cm⁻¹; ¹H NMR (CDCl₃): δ 1.03 (t, *J* = 7.3 Hz, 1.5H, CH₂C<u>H₃</u>), 1.12 (t, *J* = 7.3 Hz, 1.5H, CH₂C<u>H₃</u>), 1.31 (dd, *J* = 19.7, 7.3 Hz, 1.5H, PCHC<u>H₃</u>), 1.42 (dd, *J* = 19.7, 7.3 Hz, 1.5H, PCHC<u>H₃</u>), 1.61-1.72 (m, 1H, PC<u>H</u>CH₃), 1.90-2.17 (m, 2H), 7.25-7.33 (m, 3H, Ar), 7.37-7.39 (m, 1H, Ar), 7.43-7.51 (m, 3H), 7.57 (m, 1H, Ar), 7.94-7.97 (m, 2H, Ar), 8.0-8.04

(m, 2H, Ar); ¹³C NMR (CDCl₃): δ 11.6 (d, ²*J*_{C-P} = 14.4 Hz, PCH(<u>C</u>H₃)), 12.0 (d, ²*J*_{C-P} = 14.4 Hz, PCH(<u>C</u>H₃)), 12.3 (d, ²*J*_{C-P} = 4.8 Hz), 12.6 (d, ²*J*_{C-P} = 4.8 Hz), 22.9 (d, ²*J*_{C-P} = 4.8 Hz), 23.1 (d, ²*J*_{C-P} = 2.4 Hz), 30.3 (d, ¹*J*_{C-P} = 38.4 Hz, P<u>C</u>H), 31.3 (d, ¹*J*_{C-P} = 38.4 Hz, P<u>C</u>H), 119.9, 120.0, 120.1, 120.1, 121.3, 121.7, 121.7, 121.8 125.6, 125.7, 126.6, 126.8, 126.9, 127.3, 128.3, 128.5, 130.9, 131.0, 131.2, 131.4, 131.8, 132.4, 132.6, 145.9 (d, *J* = 6.0 Hz), 146.0 (d, *J* = 4.8 Hz), 147.9 (d, *J* = 9.6 Hz), 148.0 (d, *J* = 10.8 Hz, Ar); ³¹P NMR (CDCl₃): δ 46.6, 46.7; MS (EI) m/z 388 (M⁺); HRMS Calcd for C₂₄H₂₁O₃P: 388.1228, Found: 388.1210.

X-ray structure analysis

Crystal samples were cut from the grown crystals and mounted on a glass fiber. The crystals were coated with an epoxy resin because they were air sensitive. Measurements were carried out on a Rigaku/MSC Mercury CCD using a graphite-monochromator with Mo K α radiation ($\lambda = 0.71069$ Å). The structure was solved by direct methods (SIR97)^{S2)} and refined by full-matrix least-squares procedures (SHELXL-97)^{S3)} using the Yadokari-XG 2009.^{S4)} The crystal data are shown in Tables S5.

Empirical formula	C ₂₄ H ₂₁ O ₂ PSe
Formula weight	451.34
Temperature	0(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	a = 7.4584(3) Å
	b = 8.9425(4) Å
	c = 31.2167(13) Å
Volume	$2082.05(15) \text{ Å}^3$
Ζ	4
Density (calculated)	1.440 g/cm^{-3}
Crystal size	0.20 x 0.20 x 0.10 mm ³
Reflections collected	58681
Independent reflections	4756
Flack parameter	0.100(7)
Goodness-of-fit on F ²	1.136
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0248, wR_2 = 0.0661$
R indices (all data)	$R_1 = 0.0255, wR_2 = 0.0664$

Table S5. Crystal Data and Structure Refinement for Sax,S-7a

References

S1 T. Murai, Y. Maekawa, M. Monzaki, T. Ando and T. Maruyama, *Chem. Commun.*, 2013, 49, 9675.

S2 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Cryst.*, **1999**, *32*, 115.

S3 G. M. Sheldrick, SHELXL-97, *A Program for the Refinement of Crystal Structures*; University of Göttingen: Göttingen, Germany, **1997**.

S4 (*a*) K. Wakita, Yadokari-XG, *Software for Crystal Structure Analyses*, **2001**. (*b*) C. Kabuto, S. Akine, T. Nemoto and E. Kwon, *J. Cryst. Soc. Jpn.*, **2009**, *51*, 218.

Complete list for Gaussian 09, Revision D.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M.; Cossi, G. Scalmani, Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.; Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2009.

YH BISEP-Me 13C-1.jdf

YH BISEP-4-Me-Ph-C6H4 13C-1.esp

YH BISEP-Et 13C-1.esp

YM710 column 1H-5.jdf

YM724 column 1H-1.jdf

YM724 column 13C-1.jdf

YH BISEP-4F-C6H4 13C.esp

190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

KK Naph 13C.jdf

YM783 column 13C-1.jdf

YH 254 nokori 11-1 13C-1.esp

YH 254 recrystal 15 1H-1.esp

YH 254 recrystal 15 13C-1.esp

YH 290 GPC 44-51 1H-1.esp

YH 290 GPC 44-51 13C-1.esp

YH 290 GPC 55-69 13C-1.esp

YH 256 nokori 3-2 13C-1.esp

BISEP-2-ethyl-hezane 1H-1.esp

YH BISEP-2-ethyl-hexane R 13C-1.esp

YH 273 column 7-19 13C-1.esp

YH 264 column 10-15 13C -1.esp

