Supporting Information

Application of group V polyoxometalate as efficient base catalyst: a case study of decaniobate cluster

Shun Hayashi[†], Seiji Yamazoe^{*,†,‡}, Kiichirou Koyasu^{†,‡}, and Tatsuya Tsukuda^{*,†,‡}

[†]Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan [‡]Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan

Table S1. Cartesian coordinates of the calculated $[Nb_{10}O_{28}]^{6-}$ structure.

Green and red spheres represent Nb and O, respectively.

Atom	X (Å)	Y (Å)	Z (Å)
Nb	0.002517	0.001696	-1.723302
Nb	-0.002419	-0.001701	1.723192
Nb	1.702047	-2.478433	0.000966
Nb	-3.38787	0.001388	-1.745362
Nb	3.387111	-0.000023	-1.745166
Nb	-3.386708	-0.001839	1.745193
Nb	-1.702172	2.478326	0.001572
Nb	1.702036	2.477601	0.000646
Nb	-1.702202	-2.47749	-0.003307

Nb	3.387656	0.000487	1.745529
0	-1.380214	-0.001201	0.003636
0	1.37986	0.001245	-0.003432
0	-0.002444	2.004534	-1.267005
0	0.000902	2.007537	1.261955
0	0.003078	-2.004472	1.266991
0	-0.001423	-2.007595	-1.26198
0	-2.912812	1.91782	-1.419056
0	-2.91191	1.917799	1.420199
0	2.909961	1.917393	-1.422175
0	2.914256	1.919925	1.418029
0	-2.915031	-1.919443	-1.418811
0	-2.909321	-1.918145	1.421607
0	2.911001	-1.918135	-1.419521
0	2.913502	-1.917263	1.419611
0	-4.322017	-0.000608	0.000677
0	4.321967	0.000589	-0.000659
0	-1.545287	-0.002932	-2.790264
0	1.54301	-0.002382	-2.797344
0	-1.542981	0.002392	2.797399
0	1.545303	0.002884	2.790417
0	-1.833602	4.260166	0.000883
0	1.831806	4.259626	-0.001738
0	-1.831661	-4.259531	-0.001369
0	1.83376	-4.260256	0.001823
0	-4.67686	0.002202	-3.003053
0	4.676363	-0.000453	-3.0027
0	-4.675802	-0.002571	3.002826
Ο	4.676616	0.000822	3.003252

Figure S1. ESI-MS of $(TMA)_6[Nb_{10}O_{28}] \cdot 6H_2O$ after the reaction (entry 2-1 of Table 1). Peaks for $(TMA)_xH_y[Nb_{10}O_{28}]^-$ are noted as $(x, y)^-$.

Figure S2. Time course of Knoevenagel condensation reactions at 343 K. Fitted curves were obtained by assuming that the coulpling of nitriles with aldehyde was the rate-determining step and that the reactions followed irreversible second-order kinetics.