Supporting Information for

Tailoring of Spectral Responses and Intramolecular Charge Transfer of β-enaminones through HOMO - LUMO Band Gap Tuning: Synthesis, Spectroscopic and Quantum Chemical Studies

Ramprasad Misra^a, Pushkin Chakraborty^b, Subhas C. Roy^b, D.K. Maity^{c,d} and S.P. Bhattacharyya^{e*}

^aDepartment of Physical Chemistry, ^bDepartment of Organic Chemistry,

Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

^c Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre,

Mumbai 400085, India

^dHomi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

^eDepartment of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India

Figure Caption

Fig. S1: The ground state optimized structures of PACO in the (a) gas phase, (b) in SCRF of water (c) 1:3 microcluster with water and (d) PACO: $3H_2O$ microcluster macrosolvated with water. The macroscopic solvation has been taken care of using Cramer and Truhler's SMD model.

Fig. S2: The ground state optimized structures of OACO in the (a) gas phase, (b) in SCRF of water (c) 1:4 microcluster with water and (d) OACO:4H₂O microcluster macrosolvated with water. The macroscopic solvation has been taken care of using Cramer and Truhler's SMD model.

Fig S3: The ground state optimized structures of NACO in the (a) gas phase, (b) in SCRF of water (c) 1:5 microcluster with water and (d) NACO:5H₂O microcluster macrosolvated with water. The macroscopic solvation has been taken care of using Cramer and Truhler's SMD model.

Fig S4: The room temperature emission spectra of NACO in cyclohexane (CYC), ethanol, methanol and water. The excitation wavelength (λ_{ex}) is 360 nm.

Table S1: All components of polarizability (α) and its average value (α_{av}) of PACO, OACO and NACO and their microhydrares, as calculated using B3LYP functional and aug-cc-pVDZ basis set. All values are in atomic unit (a.u.).

System	α _{xx}	α _{xy}	α_{yy}	α _{xz}	α _{yz}	α _{zz}	α _{av}
PACO	229.64	-6.71	159.47	-2.81	7.04	107.12	165.41
PACO.3H ₂ O	271.40	8.97	201.68	7.59	-7.71	127.96	200.35
OACO	257.97	-4.11	178.09	-1.02	6.13	121.85	185.97
OACO.4H ₂ O	318.06	0.68	231.88	-0.99	-9.63	147.89	232.62
NACO	300.16	-7.22	178.97	-1.14	7.30	109.09	196.07
NACO.5H ₂ O	389.07	-11.11	246.87	-1.13	-7.07	143.56	259.83

Table S2: All components of first hyper-polarizability and its total value (β_{total}) of PACO, OACO and NACO and their microhydrares, as calculated using B3LYP functional and aug-cc-pVDZ basis set. All values are in atomic unit (a.u.).

System	β _{xxx}	β _{yxx}	β _{xyy}	β _{yyy}	β _{zxx}	β_{xyz}	β _{zyy}	β _{xzz}	β _{yzz}	β _{zzz}	β _{total}
PACO	247.42	-16.23	-16.55	19.56	-373.71	36.03	22.76	172.79	6.40	79.25	486.68
PACO.3H ₂ O	991.27	50.07	-186.01	-19.85	-33.58	-11.46	-11.06	-44.98	0.78	-3.69	762.44
OACO	1094.94	18.25	-20.86	-37.19	-391.43	-37.55	36.39	214.84	15.27	43.86	1325.95
OACO.4H ₂ O	1589.83	-41.34	-20.62	-54.46	-514.57	-15.40	16.90	157.74	-7.18	54.63	1785.84
NACO	-3359.79	-192.76	62.73	18.78	-272.94	26.12	25.67	302.17	15.06	29.42	3007.01
NACO.5H ₂ O	3546.68	7.87	-48.64	20.62	-1981.47	-83.33	43.28	660.29	41.01	-53.69	4611.30

Table S3: The dominant contributions on vertical transition of first three excited sates (S₁, S₂ and S₃) of PACO, OACO and NACO and their 1:3, 1:4 and 1:5 molecular clusters, respectively with water in the gas phase, in SCRF of water, as calculated using TDDFT (CAM-B3LYP functional and aug-cc-pVTZ basis set).

Molecule/Medium	PACO	OACO	NACO
Gas Phase			
S_1	(H-1) - (L+1) 0.46	(H-1) - (L+1) 0.55	(H-4) – L 0.62
S_2	H – L 0.62	H - (L+1) 0.44	H – L 0.37
S ₃	-	H - (L+3) 0.52	H – L 0.51
		H - (L+1) 0.27	(H-1) - (L+1) 0.21
In SCRF			
S ₁	(H-1) – L 0.49	(H-1) - (L+1) 0.52	(H-4) – L 0.64
S_2	H – L 0.65	H – L 0.46	(H-1) – L 0.33
		H - (L+3) 0.54	(H-1) - (L+1) 0.41
S_3	-		
		H – L 0.20	H – L 0.64
Cluster			
S ₁	H - (L+1) 0.65	H - (L+1) 0.66	H – L 0.66
S_2	(H-1) - (L+1) 0.39	(H-2) - (L+1) 0.59	(H-8) – L 0.65
	(H-2) - (L+1) 0.39		
S ₃	-	H - (L+3) 0.38	(H-2) - (L+2) 0.56
Cluster in SCRF			
S ₁	H - (L+1) 0.62	H - (L+1) 0.64	H – L 0.64
	H-L 0.22		
S ₂	(H-1) - (L+1) 0.56	(H-2) - (L+1) 0.60	(H-8) – L 0.60
S ₃	-	H - (L+2) 0.43	(H-2) - (L+2) 0.54

Fig. S1(a)

Fig. S1(b)

Fig. S1(c)

Fig. S1(d)

Fig. S2(a)

Fig. S2(b)

Fig. S2(c)

Fig. S2(d)

Fig. S3(a)

Fig. S3(b)

Fig. S3(c)

Fig. S3(d)

Fig. S4