Microwave-assisted synthesis of voids induced graphene-wrapped nickeloxide hybrids for supercapacitor application

Rajesh Kumar,*^a Rajesh Kumar Singh,*^b Raluca Savu,^a Pawan Kumar Dubey,^c Pradip Kumar,^d and Stanislav A. Moshkalev ^a

Fig. S1 Magnified view of graphene wrapped NiO nanoparticles and voids.

^{a.} Centre for Semiconductor Components, State University of Campinas (UNICAMP), 13083-870 Campinas, Sao Paulo, Brazil. E-mail: <u>rajeshbhu1@gmail.com</u> ^{b.} Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India. E-mail:

rksbhu@gmail.com

^{c.} Nanotechnology Application Centre, University of Allahabad, Allahabad 211002, India

^d Centre for Materials Architecturing, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea

2. Structural defect on surface

Fig. S2 SEM micrograph of VGWN hybrids show the structural defect on the surfaces after long time microwave irradiation (4 minutes).

Table S1. Comparison of electrochemical performance of NiO-graphene hybrids based supercapacitors

S.	Hybrids/	Synthesis	Sp.	Electrode	Cycling response/	Ref.
No	Nanostructures	method	capacitanc	system	Retention	
			е	(electrolyte)	(cycle, current density	
			(current		or scan rate)	
			density/sc			
			an rate)			
1.	NiO-sulfonated	Thermal	307 F g-1	3 electrode	90% retention after	47
	graphene	treatment	(5.0 A g ⁻¹)	cell	(1000, 5 A g ⁻¹)	
				(6 M KOH)		
2.	3D hierarchical	Pyrolysis	517.8 F g ⁻¹	3 electrode	decreases from 550 to	48
	graphene-NiO	process	(2 A g ⁻¹)	cell	504 F g ⁻¹ after	
	Structure			(6 M KOH)	(2000, 1 A g ⁻¹)	
3.	Ni based compound	Annealing	2394 F g ⁻¹	3 electrode	78% of the value	49
	incorporated with	process	(1 A g ⁻¹)	system	retained after	
	graphene sheets			(2 M KOH)	(5000, 1 A g ⁻¹)	
4.	3D graphene/nickel	High-	1328 F g ⁻¹	3 electrode	87% capacitance after	50
	oxide nanoparticles	temperature	(1 A g ⁻¹)	system	(2000, 2 A g ⁻¹)	
	composites	treatment		(2 M KOH)		
5.	3D	Electrochem	183.1 F g1	2 electrode	8.8% capacity	51
	graphene/Ni(OH) ₂	ical	(at 0.5 A g	system	deterioration after	
	composite	reduction	1)	(2 M KOH)	$(1000, 1 \mathrm{A g}^{-1})$	
		approach				
6.	Ni(OH) ₂ -graphene	Solvotherma	1170.38 F	3 electrode	capacitance decreased	52
	sheet-carbon	l method	g ⁻¹ (0.2 A	system	20.03% of initial after	
	nanotube		g⁻¹)	(6 M KOH)	(1000, 1.2 A g⁻¹)	
	composite					

7.	3D-Ni(OH) ₂	Annealing	2161 F g ⁻¹	3 electrode	51% capacitance	53
	nanoflakes/graphen	process	(3 A g ⁻¹)	cell,	retention after	
	e/ nickel foam			(0.1 M	(500 <i>,</i> 60 A g ⁻¹)	
				Ni(NO ₃) ₂)		
8.	Ni/reduced	Solvotherma	547.3 F g ⁻¹	half-cell setup	81% of initial value	54
	graphene oxide	l Synthesis	(1 A g ⁻¹)	(2 M KOH)	(1000 <i>,</i> 1 A g ⁻¹)	
	composites					
9.	Graphene nanoshee	Microwave-	502 F g ⁻¹	3 electrode	90% specific	55
	ts/ NiO composite	assisted	(3.7 A g ⁻¹)	cell	capacitance after	
		method		(6 M KOH)	(1000, 0.6 A g ⁻¹)	
10.	Reduced graphene	Annealing	356 F g ⁻¹	3 electrode	Columbic efficiency	56
	oxide-nickel oxide	process	(40 mV s⁻¹)	cell	remains 96%	
	composite			(6 M KOH)	(1000, 2 A g ⁻¹)	
11.	Mesoporous nickel	Hydrotherm	520.8 F g ⁻¹	3 electrode	94.9% retention after	57
	oxide/reduced	al synthesis	(10 mV/s)	system	(5000, 10 mV/s)	
	graphene oxide			(6 M KOH)		
	composites					
12.	NiO	Hydrotherm	240 F g-1	3 electrode	superior stability of	58
	nanoflakes/graphen	al method	(5 A g-1)	system	100-120% retention of	
	e nanocomposite			(6 M KOH)	after (1500, 5 A g ⁻¹)	
13.	Graphene	Electrophore	400 F g ⁻¹	3 electrode	94% retention after	59
	sheet/porous NiO	tic	(2 A g ⁻¹)	cell	(2000 <i>,</i> 2 A g ⁻¹)	
	hybrid film	and		(1 M KOH)		
		chemical				
		bath				
		deposition				
14.	3D NiO/ultrathin	Nano-	300 F g ⁻¹	3 electrode	90% retention after	60
	derived graphene	casting	(10 A g ⁻¹)	system	(500, 10 A g-1)	
	hybrid	process		(5 M KOH)		
15.	Voids Induced	Microwave	549 F g ⁻¹	3 electrodes	decreases upto ~12%	Our
	Graphene-Wrapped	Assisted	(10 mV s ⁻¹)	system	of initial value for the	work
	Nickel-Oxide	Synthesis		(5M KOH)	first 115 cycles, after	
	Hybrids				that it shows constant	
					(88%) for long cycling	
					(at 8 A g ⁻¹)	