Supporting Information

Intercalation Based Tungsten Disulfide (WS₂) Li-ion Battery Anode Grown by Atomic Layer Deposition

Dip K. Nandi, Uttam K. Sen, Arpan Dhara, Sagar Mitra* and Shaibal K. Sarkar*

Department of Energy Science and Engineering, IIT Bombay, Mumbai 40 076.

*email: sagar.mitra@iitb.ac.in and shaibal.sarkar@iitb.ac.in

Figure S1. XRD of the as-deposited film on glass substrate (in inset the SAED obtained from TEM for the same).

Figure S2. XPS survey of the film in a binding energy range of 0-1000 eV.

Figure S3. (a) Cross-section and (b) surface SEM image of the ALD grown WS_2 film used as an anode in Li-ion battery.

Figure S4. (a) The rate performance of the WS₂ anode with three different current densities 20, 40 and 60 μ A cm⁻² under a potential window of 1-2.5V and (b) discharge capacity for 100 cycles showing the stability of the ALD grown anode at a higher discharge rate of 60 μ A cm⁻² within the same potential window.

Figure S5. (a) Surface SEM image of WS_2 anode after cycling performance and (b) its corresponding EDX spectra confirming the presence both W and S in the film.

Figure S6: SEM images of the bare MWCNT and WS₂ coated MWCNT on SS substrates.

Figure S7. Charge-discharge capacities with cycle index of the film of (a) the as-grown WS_2 film grown on MWCNT for 1000 ALD cycles and (b) two films with different ALD cycles against Li/Li+ in a voltage range of 1-2.5 V at a current rate of 20μ A/cm².