Extraction of Active Enzyme by Self-Buffering Ionic Liquids: A Green Medium for Enzymatic Research

Bhupender S. Gupta^a, Mohamed Taha^{a,b}, Ming-Jer Lee^a

^a Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan

^b CICECO, Departamento de Química, Universidade de Aveiro 3810-193 Aveiro, Portugal

Compounds	NMR Analysis	Structure
[TMA][TAPS]	¹ H NMR (500 MHz, D ₂ O/TSP); δ [TMA], 3.21(12H, s, C1-C4's H); δ [TAPS], 3.60 (6H, s, C1-C3's H), 1.92 (2H, quin, C6's H), 2.97 (2H, t, C7's H), 2.75 (2H, t, C5's H). <i>wt%</i> = 0.01, Analytical Calculations for C ₁₁ H ₂₈ N ₂ O ₆ S (316.41) C 41.72, H 8.85, and N 8.85; Found C 40.71, H 8.87, and N 8.86.	$4 \longrightarrow N^{+} \longrightarrow 2 \qquad 0 \qquad$
[TEA][TAPS]	¹ H NMR (500 MHz, D ₂ O/TSP); δ [<i>TEA</i>], 3.27 (8H, q, C1C3C5C7's H), 1.28 (12H, m, C2C4C6C8's H); δ [<i>TAPS</i>], 3.60 (6H, s, C1-C3's H), 1.92 (2H, quin, C6's H), 2.98 (2H, t, C7's H), 2.74 (2H, t, C5's H). wt% = 0.2, Analytical calculations for C ₁₅ H ₃₆ N ₂ O ₆ S (372.52) C 48.31, H 9.66, and N 7.52; Found C 48.37, H 9.85, N 7.38.	$ \begin{array}{c} $
[TBA][TAPS]	¹ H NMR (500 MHz, DMSO); δ [<i>TBA</i>], 0.93 (12H, <i>t</i> , C4C8C12C16's <i>H</i>), 1.31 (8H, <i>sext</i> , C3C7C11C15's <i>H</i>), 1.56 (8H, <i>quin</i> , C2C6C10C14's <i>H</i>), 3.17 (8H, <i>t</i> , C1C5C9C13's <i>H</i>); δ [<i>TAPS</i>], 4.18 (6H, <i>s</i> , C1- C3's <i>H</i>), 1.62 (2H, <i>quin</i> , C6's <i>H</i>), 2.54 (2H, <i>t</i> , C7's <i>H</i>), 2.45 (2H, <i>t</i> , C5's <i>H</i>), 3.32 (1H, <i>s</i> , HN), 3.28 (3H, <i>s</i> , HO) . <i>wt%</i> = 0.02, Analytical calculations for C ₂₃ H ₅₂ N ₂ O ₆ S (484.73) C 56.94, H 10.72, and N 5.78; Found C 56.47, H 10.73, N 5.84.	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
[TMA][MOPS]	¹ H NMR (500 MHz, D ₂ O/TSP); δ [<i>TMA</i>], 3.21(12H, <i>s</i> , C1-C4's <i>H</i>); δ [<i>MOPS</i>], 2.58 (4H, <i>m</i> , C4C6's <i>H</i>), 1.97 (2H, <i>quin</i> , C1's H), 2.53 (2H, <i>t</i> , C2's <i>H</i>), 2.93 (2H, <i>t</i> , C7's <i>H</i>), 3.78 (4H,	$4 \longrightarrow \mathbb{N}^{+} \mathbb{Z} \xrightarrow{0}_{0} \mathbb{S} \xrightarrow{7}_{0} \mathbb{N} \xrightarrow{4}_{0} \mathbb{S}$

Table S. 1. Results of NMR analysis and the molecular structures of the synthesized GBILs.

	t, C3C5's H). $wt% = 0.009$	
[TEA][MOPS]	¹ H NMR (500 MHz, D ₂ O/TSP); δ <i>[TEA]</i> , 3.28	7 / 8 7 2 4 3
	(8H, q, C1C3C5C7's H), 1.28 (12H, m,	
	C2C4C6C8's H); δ [MOPS], 2.59 (4H, m,	$1 - \frac{N}{2} - \frac{1}{2} - $
	C4C6's H), 1.97 (2H, quin, C1's H), 2.53 (2H,	4 3 6 6 5
	t. C2's H). 2.93 (2H. t. C7's H). 3.78 (4H. t.	
	C3C5's <i>H</i>). wt% = 0.25	
[TBA][MOPS]	¹ H NMR (500 MHz, DMSO); δ [TBA], 0.93	12
	(12H, t, C4C8C12C16's H), 1.31 (8H, sext,	1 1 2 4 0 7 2 4 3
	C3C7C11C15's H), 1.57 (8H, quin,	
	C2C6C10C14's H), 3.18 (8H, t,	
	C1C5C9C13's H); δ [MOPS], 2.31 (4H, m,	16 ¹⁵ 14
	C4C6's H), 1.58 (2H, quin, C1's H), 2.39 (2H,	
	t, C2's H), 2.50 (2H, t, C7's H), 3.55 (4H, t,	
	C3C5's <i>H</i>). wt% = 0.3	
[TMA][EPPS]	¹ H NMR (500 MHz, D ₂ O/TSP); δ <i>[TMA]</i> ,	1 4 3 2 - OH
	3.21(12H, s, C1-C4's H); δ [EPPS], 2.52 (4H,	
	<i>t</i> , C4C5's <i>H</i>), 2.59 (4H, <i>t</i> , C3C6's H), 1.20 (2H,	$\begin{array}{c} 4 - \mathbf{N} - 2 \\ \\ 1 - \mathbf{O} \\ \mathbf{S} \\ $
	t, C8's H), 2.93 (2H, t, C1's H), 3.66 (2H, t,	
	C9's H), 3.75 (4H, t, C2's H), 1.95 (2H, quin,	
	C7's H). <i>wt%</i> = 0.0085	
[TEA][EPPS]	¹ H NMR (500 MHz, D ₂ O/TSP); δ [<i>TEA</i>], 3.27	7 4 8 4 3 2 OH
	(8H, q, C1C3C5C7's H), 1.27 (12H, m,	1 $N \neq 5$ $0^{9} = 7$ $N = 1$
	C2C4C6C8's H); δ [EPPS], 2.52 (4H, t,	
	C4C5's <i>H</i>), 2.59 (4H, <i>t</i> , C3C6's H), 1.21 (2H,	4 3 6 0 0
	t, C8's H), 2.92 (2H, t, C1's H), 3.66 (2H, t,	
	C9's H), 3.75 (4H, t, C2's H), 1.95 (2H, quin,	
	C7's H). $wt\% = 0.15$	
[TBA][EPPS]	¹ H NMR (500 MHz, DMSO); δ [<i>TBA</i>], 0.93	
	(12H, t, C4C8C12C16's H), 1.31 (8H, sext,	
	C3C7C11C15's H), 1.58 (8H, quin,	
	C2C6C10C14's <i>H</i>), 3.18 (8H, <i>t</i> ,	y 5 0 S
	C1C5C9C13's H); δ [EPPS], 2.29 (4H, t,	16 15 14 13 6 7
	C4C5's <i>H</i>), 2.37 (4H, <i>t</i> , C3C6's H), 1.05 (2H,	
	t, C8's H), 2.50 (2H, t, C1's H), 3.43 (2H, t,	
	C9's H), 3.47 (4H, t, C2's H), 1.69 (2H, quin,	
	C7's H). $wt\% = 0.3$	
[TMA][CAPS]	¹ H NMR (500 MHz, D_2O/TSP); δ [<i>TMA</i>],	
	3.21(12H, s, C1-C4's H); δ [CAPS], 1.15-	2^{9}
	1.31&1.61-1.74 (10H, <i>m</i> , C2-C6's <i>H</i>), 2.51 (H,	$\begin{vmatrix} 4 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 0 & -S & & \\ 8 & & \\ 8 & & \\ NH & & \\ 6 & & \\ 1 $
	<i>m</i> , C1's <i>H</i>), 2.74 (2H, <i>t</i> , C8's <i>H</i>), 2.95 (2H, <i>t</i> ,	0 0
	(C9's H), 1.91 (2H, quin, C7's H). wt% = 0.01	3

[TEA][CAPS]	¹ H NMR (500 MHz, D ₂ O/TSP); δ [<i>TEA</i>], 3.28	3 4
	(8H, q, C1C3C5C7's H), 1.29 (12H, m,	$7 \xrightarrow{8} 9 \xrightarrow{7} \begin{pmatrix}2\\1\\\end{pmatrix} 5$
	C2C4C6C8's <i>H</i>); δ <i>[CAPS]</i> , 1.07-1.25 &1.62-	$1 - N^+ - 5$ $- V^+ - N^+$
	1.75 (10H, m, C2-C6's H), 2.49 (H, m, C1's	
	<i>H</i>), 2.72 (2H, <i>t</i> , C8's <i>H</i>), 2.93 (2H, <i>t</i> , C9's <i>H</i>),	4 3 0 0
	1.92 (2H, <i>quin</i> , C7's H). <i>wt%</i> = 0.27	
[TBA][CAPS]	¹ H NMR (500 MHz, DMSO); δ [<i>TBA</i>], 0.93	
	(12H, t, C4C8C12C16's H), 1.31 (8H, sext,	12 3 4
	C3C7C11C15's H), 1.56 (8H, quin,	1 1 2 4 3 9 7 2 1 5
	C2C6C10C14's <i>H</i>), 3.17 (8H, <i>t</i> ,	$10 $ $3 $ $0 $ $10 $ 6 $10 $ $N^+ $ $(-0-S) $ $8 $ NH
	C1C5C9C13's Η); δ [CAPS], 1.08-1.20	
	&1.62-1.76 (10H, <i>m</i> , C2-C6's <i>H</i>), 2.29 (H, <i>m</i> ,	16 ⁻¹⁵ 14
	C1's <i>H</i>), 2.39 (2H, <i>t</i> , C8's <i>H</i>), 2.51 (2H, <i>t</i> , C9's	
	<i>H</i>), 1.59 (2H, <i>quin</i> , C7's H), 3.33 (H, <i>s</i> , HN).	
	wt% = 0.29	
[TMA][BICINE]	¹ H NMR (500 MHz, D ₂ O/TSP); δ [TMA],	О 4 ОН
	3.21(12H, <i>s</i> , C1-C4's <i>H</i>); δ [Bicine], 3.67 (4H,	4
	<i>t</i> , C2C4's <i>H</i>), 2.80 (4H, <i>t</i> , C3C5's <i>H</i>), 3.26 (2H,	$\begin{vmatrix} & -0 & 1 \\ 3 & 0 & 1 \end{vmatrix}$
	<i>s</i> , C1's <i>H</i>). <i>wt%</i> = 0.011	3 OH
[TEA][BICINE]	¹ H NMR (500 MHz, D ₂ O/TSP); δ [<i>TEA</i>],	8 0 ⁴ OH
	3.25(8H, q, C1C3C5C7's H), 1.27 (12H, m,	
	C2C4C6C8's H); & [Bicine], 3.65 (4H, t,	2 N^{+} 0 1 N^{-} 2
	C2C4's <i>H</i>), 2.78 (4H, <i>t</i> , C3C5's <i>H</i>), 3.23 (2H,	4 3 6
	<i>s</i> , C1's <i>H</i>). <i>wt%</i> = 0.2	3 <u>OH</u>
[TBA][BICINE]	¹ H NMR (500 MHz, DMSO); δ [<i>TBA</i>], 0.93	12
	(12H, t, C4C8C12C16's H), 1.31 (8H, sext,	$10 \sqrt{1} \frac{1}{1} \sqrt{3} \frac{4}{3} 0 \frac{4}{5}$
	C3C7C11C15's H), 1.57 (8H, quin,	
	C2C6C10C14's H), 3.18 (8H, t,	$16 \qquad 15 \qquad 13 \qquad 6 \qquad 7 \qquad 1$
	C1C5C9C13's H); δ [Bicine], 3.44 (4H, t,	3 OH
	C2C4's <i>H</i>), 2.30 (4H, <i>t</i> , C3C5's <i>H</i>), 2.85 (2H,	
	<i>s</i> , C1's <i>H</i>). <i>wt%</i> = 0.23	

[TBA][7	[APS]	[TBA][N	MOPS]	S] [TBA][EPPS]		[TBA][CAPS]		[TBA][BICINE]	
$100 w_1$	$100 w_2$	$100 w_1$	$100 w_2$	$100 w_1$	$100 w_1$	$100 w_2$	$100 w_1$	$100 w_2$	$100 w_1$
42.41	2.91	44.35	2.10	46.66	1.47	48.21	1.72	46.61	2.02
39.60	4.43	39.18	4.94	43.10	3.39	44.62	3.56	43.46	3.66
36.29	6.22	35.85	6.77	40.29	4.91	42.99	4.39	40.88	5.01
29.01	10.16	33.56	8.04	37.50	6.41	40.55	5.64	39.34	5.81
26.76	11.38	32.07	8.86	35.18	7.66	38.49	6.69	37.68	6.68
25.52	12.04	31.09	9.40	33.34	8.66	37.28	7.31	36.36	7.36
24.30	12.70	30.17	9.90	31.94	9.41	36.08	7.92	34.94	8.10
23.24	13.28	28.81	10.65	30.72	10.07	34.88	8.54	33.92	8.63
22.06	13.92	27.37	11.44	29.60	10.67	33.81	9.08	32.40	9.43
20.26	14.89	26.03	12.18	28.66	11.18	32.89	9.55	30.45	10.44
19.13	15.50	25.16	12.66	27.73	11.68	31.78	10.12	29.13	11.13
18.16	16.03	24.66	12.93	26.39	12.41	30.89	10.58	27.92	11.76
17.15	16.57	23.85	13.38	25.14	13.08	29.69	11.19	26.92	12.28
15.70	17.36	23.10	13.80	24.09	13.65	28.87	11.61	25.87	12.83
14.90	17.79	22.55	14.10	23.05	14.21	27.73	12.19	24.39	13.60
14.12	18.21	21.62	14.61	22.22	14.65	26.29	12.92	23.36	14.14
13.29	18.66	20.97	14.97	21.04	15.29	24.74	13.72	21.89	14.91
12.60	19.03	20.34	15.32	20.20	15.75	24.16	14.02	20.73	15.51
11.62	19.56	19.80	15.61	19.24	16.26	23.61	14.29	19.36	16.23
11.04	19.88	19.18	15.95	18.61	16.60	22.83	14.69	17.84	17.02
10.51	20.16	18.64	16.25	16.51	17.74	22.39	14.92	16.55	17.69
9.72	20.59	18.01	16.60	15.76	18.14	21.15	15.55	14.68	18.66
9.09	20.93	17.59	16.83	15.04	18.53	20.76	15.75	13.03	19.53
8.46	21.27	17.04	17.13	14.43	18.86	20.14	16.07	11.67	20.23
6.92	22.10	16.51	17.42	13.64	19.29	19.58	16.35	10.28	20.96
6.11	22.54	15.98	17.72	11.57	20.41	19.24	16.53	8.72	21.77
42.41	2.91	15.47	18.00	11.07	20.67	18.76	16.78	46.61	2.02
39.60	4.43	15.04	18.23	10.74	20.85	17.99	17.17	43.46	3.66
36.29	6.22	14.53	18.51	10.41	21.03	17.24	17.55	40.88	5.01
29.01	10.16	14.25	18.67	10.03	21.23	16.56	17.90	39.34	5.81
26.76	11.38	13.77	18.93	9.75	21.38	15.95	18.21	37.68	6.68
25.52	12.04	13.44	19.11	9.41	21.57	16.19	18.08	36.36	7.36
24.30	12.70	13.12	19.29	9.02	21.78	15.34	18.52	34.94	8.10
23.24	13.28	12.82	19.46	8.67	21.97	15.12	18.63	33.92	8.63
22.06	13.92	12.48	19.64	8.35	22.14	14.81	18.79	32.40	9.43
20.26	14.89	12.16	19.82	8.02	22.32	14.53	18.94	30.45	10.44
19.13	15.50	11.84	19.99	7.79	22.44	14.25	19.08	29.13	11.13
18.16	16.03	11.52	20.17	7.33	22.69	13.96	19.22	27.92	11.76
17.15	16.57	11.26	20.31	7.18	22.77	13.75	19.33	26.92	12.28
15.70	17.36	10.99	20.46	6.96	22.89	13.40	19.51	25.87	12.83
14.90	17.79	10.73	20.61	6.67	23.05	13.24	19.60	24.39	13.60

Table S. 2. Experimental mass fraction data for the binodal curve of the systems GBIL (1) + sodium sulphate (2) at 25°C under atmospheric pressure.

Table S. 2. Continued.

[TBA][]	ГAPS]	[TBA][N	MOPS]	[TBA][I	EPPS]	[TBA][O	CAPS]	[TBA][H	BICINE]
$100 w_1$	$100 w_2$	$100 w_1$	$100 w_2$	$100 w_1$	$100 w_1$	$100 w_2$	$100 w_1$	$100 w_2$	$100 w_1$
14.12	18.21	10.50	20.73	6.42	23.18	12.98	19.73	23.36	14.14
13.29	18.66	10.16	20.92	6.19	23.31	12.86	19.79	21.89	14.91
12.60	19.03	9.90	21.06	6.01	23.40	12.65	19.89	20.73	15.51
11.62	19.56	9.80	21.12	5.81	23.51	12.50	19.97	19.36	16.23
11.04	19.88	7.30	22.50	5.57	23.64	12.26	20.10	17.84	17.02
10.51	20.16	7.10	22.61	5.44	23.71	12.07	20.19	16.55	17.69
9.72	20.59	6.93	22.70	5.22	23.83	11.85	20.31	14.68	18.66
9.09	20.93	6.75	22.80	5.02	23.94	11.62	20.42	13.03	19.53
8.46	21.27	6.56	22.90	4.83	24.04	11.40	20.54	11.67	20.23
6.92	22.10	6.40	22.99	4.63	24.15	11.28	20.60	10.28	20.96
6.11	22.54	6.20	23.10	4.46	24.24	11.10	20.69	8.72	21.77
		5.99	23.22	4.28	24.33	10.80	20.84		
		5.81	23.32	4.10	24.44	10.57	20.96		
		5.64	23.41	3.93	24.53	10.40	21.05		
		5.49	23.49	3.66	24.67	10.24	21.13		
		5.33	23.58	3.34	24.85	10.05	21.23		
		5.18	23.66	3.02	25.02	9.78	21.36		
		4.90	23.82			9.62	21.45		
		4.77	23.89			9.48	21.52		
		4.61	23.97			9.32	21.60		
		4.51	24.03			9.19	21.67		
		4.29	24.15			9.07	21.73		
		4.10	24.26			8.94	21.79		
		3.93	24.35			8.83	21.85		
		3.79	24.43			8.65	21.94		
		3.69	24.48			8.55	21.99		
		3.54	24.57			8.43	22.05		
		3.42	24.63			8.32	22.11		
		3.29	24.70			8.19	22.17		
		3.14	24.79			8.08	22.23		
		2.88	24.93			7.85	22.35		
		2.78	24.98			7.72	22.41		
						7.63	22.46		
						7.54	22.51		
						7.33	22.61		
						7.14	22.71		
						6.98	22.79		
						0.81	22.88		
						0.68	22.95		
						6.54	23.02		
						6.40	23.09		

Table S. 2. Continued

[TBA][]	ГAPS]	[TBA][N	MOPS]	[TBA][EPPS]		[TBA][CAPS]		[TBA][BICINE]	
$100 w_1$	$100 w_2$	$100 w_1$	$100 w_2$	$100 w_1$	$100 w_1$	$100 w_2$	$100 w_1$	$100 w_2$	$100 w_1$
						6.28	23.15		
						6.14	23.22		
						6.02	23.29		
						5.90	23.35		
						5.79	23.40		
						5.65	23.47		
						5.47	23.56		
						5.29	23.66		
						5.11	23.75		
						5.00	23.81		
						4.84	23.89		
						4.64	23.99		
						4.51	24.06		
						4.41	24.11		
						4.29	24.17		
						4.17	24.23		
						4.07	24.28		
						3.95	24.34		
						3.87	24.39		
						3.70	24.47		
						3.59	24.53		
						3.30	24.68		
						2.89	24.88		

Fig. S. 1. The ¹H NMR spectras of TAPS based GBILs: (a), [TMA][TAPS] in D₂O; (b), [TEA][TAPS] in D₂O; (c); [TBA][TAPS] in DMSO.

Fig. S. 2. The ¹H NMR spectra of MOPS based GBILs: (a), [TMA][MOPS] in D₂O; (b), [TEA][MOPS] in D₂O; (c); [TBA][MOPS] in DMSO.

Fig. S. 3. The ¹H NMR spectra of EPPS based GBILs: (a), [TMA][EPPS] in D₂O; (b), [TEA][EPPS] in D₂O; (c); [TBA][EPPS] in DMSO.

Fig. S. 4. The ¹H NMR spectra of CAPS based GBILs: (a), [TMA][CAPS] in D₂O; (b), [TEA][CAPS] in D₂O; (c); [TBA][CAPS] in DMSO.

Fig. S. 5. The ¹H NMR spectra of CAPS based GBILs: (a), [TMA][CAPS] in D₂O; (b), [TEA][CAPS] in D₂O; (c); [TBA][CAPS] in DMSO.

Fig. S. 6. Thermal profiles of the synthesized MOPS based GBILs (a), EPPS based GBILs (b), CAPS based GBILs (c), and BICINE based GBILs (d): (-), TMA based ILs; (-), TEA based ILs; and (-), TBA based ILs.

Fig. S. 7. Melting curves of the synthesized GBILs: (a), [TMA][TAPS]; (b), [TMA][MOPS]; (c), [TMA][EPPS]; (d), [TMA][CAPS]; (e), [TMA][BICINE].

Fig. S. 8. pH profiles of the synthesized TAPS based GBILs (a), EPPS based GBILs (b), CAPS based GBILs (c), and BICINE based GBILs (d): (-), TMA based ILs; (-), TEA based ILs; and (-), TBA based ILs.

Fig. S. 9. The fluorescence spectra of α -chymotrypsin in [TBA][MOPS] (a), [TBA][EPPS] (b), and [TBA][BICINE] (c) before and after extraction: (**n**); α -chymotrypsin in aqueous GBIL solution before extraction, (**•**); α -chymotrypsin in upper phase after extraction, (**n**); α -chymotrypsin in lower phase after extraction.